Research Article
BibTex RIS Cite

Buldan Horstu boyunca ana drenaj bölünmesinin konumu ve göçünün tektonik aktivite ile ilişkisi (GB Türkiye)

Year 2024, Volume: 14 Issue: 4, 970 - 979, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1469171

Abstract

Drenaj bölünmesi, tektonik aktiviteye tepki olarak göç eden, bir yükseltinin her iki yamacındaki komşu drenaj alanlarını ayıran dinamik bir özelliktir. İki komşu havza arasındaki asimetrik yükselme, bölünmenin daha yavaş bir yükselme alanından daha hızlı bir yükselme alanına doğru göç etmesine neden olur. Bölünme göçü, drenaj alanı, sediman kaynağı ve nehir akışı deşarjında değişikliklere yol açacağından, yeryüzü şekli gelişimi üzerinde önemli bir etkiye sahip olduğu için son zamanlarda popüler bir konu haline gelmiştir. Çalışma alanı olan Buldan Horstu, normal faylarla sınırlı bir yükselim alanıdır. Horstun KD’sunu Buldan Fayı, GB’sını ise Buharkent Segmenti’ni oluşturan normal faylar sınırlamaktadır. Buharkent Segmenti, Büyük Menderes Grabeni’nin (BMG) doğu ucunda yer alan ve en genç graben dolgularını kesen Holosen faylarından oluşmaktadır. Bu çalışmada Buldan Horstu ana drenaj bölünmesinin mevcut ve gelecekteki hareketini belirlemek amacıyla normalleştirilmiş diklik indeksi (ksn), Gibert metrikleri ve Chi integrali (χ) kullanılmıştır. Gilbert metrikleri ile ilgili hesaplamalarda, ana drenaj bölünmesi 3 segment (D1, D2 ve D3) olarak ve taban yüksekliği 300 m alınarak hesaplanmıştır. Elde edilen veriler D1 ve D2 segmentinin güneye göç edeceğini ve dolayısıyla Buldan Horstu’nun güneyini sınırlayan Buharkent segmentinin bu göçte birincil etken olduğunu ortaya koymaktadır. Sonuç olarak Buldan Horstu’nun güneye göç etmesi bu alandaki fayların deprem açısından gelecekte daha çok risk taşıdığını göstermektedir.

References

  • Alçiçek, H. (2010). Stratigraphic correlation of the Neogene basins in southwestern Anatolia: regional palaeogeographical, palaeoclimatic, and tectonic implications. Paleogeography, Palaeoclimatology, Palaeoecology. 291, 297–318. https://doi.org/10.1016/j.palaeo.2010.03.002
  • Bonnet, S. (2009). Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nat. Geosci. 2, 766–771. https://doi.org/10.1038/ngeo666
  • Buscher, J.T., Ascione, A., & Valente, E. (2017). Decoding the role of tectonics, incision and lithology on drainage divide migration in the Mt. Alpi region, southern Apennines, Italy. Geomorpholog, 276, 37–50. https://doi.org/10.1016/j.geomorph.2016.10.003
  • Forte, A.M.; Whipple, K.X.; Cowgill, E. Drainage network reveals patterns and history of active deformation in the eastern Greater Caucasus. Geosphere 2015, 11, 1343–1364.
  • Forte, A. M., & Whipple, K. X. (2018). Criteria and tools for determining drainage divide stability. Earth Planet. Sc. Lett., 493, 102–117. https://doi.org/10.1016/j.epsl.2018.04.026
  • Gallen, S.F., & Wegmann, K.W. (2017). River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth Surf. Dyn., 5, 161–186. https://doi.org/10.5194/esurf-5-161-2017
  • Gilbert, G. K. (1877). Geology of the Henry mountains. Government Printing Office. Washington, DC, USA.
  • Goren, L., Willett, S.D., Herman, F., & Braun, J. (2014). Coupled numerical-analytical approach to landscape evolution modeling. Earth Surf. Process. Landf. 39, 522–545. https://doi.org/10.1002/esp.3514
  • Hakyemez, H. Y., Erkal, T., & Göktaş, F. (1999). Late Quaternary evolution of the Gediz and Büyük Menderes grabens, western Anatolia, Turkey. Quaternary Science Reviews 18(4–5), 549-554. https://doi.org/10.1016/S0277-3791(98)00096-1
  • Hançer, M., (2013). Study of the structural evolution of the Babadağ-Honaz and Pamukkale fault zones and the related earthquake risk potential of the Buldan region in SW Anatolia, east of the Mediterranean. J. Earth Sci. 24, 397–409. https://doi.org/10.1007/s12583-013-0333-2
  • He, C., Braun, J., Tang, H., Yuan, X., Acevedo-Trejos, E., Ott, R. F., & Stucky de Quay, G. (2024). Drainage divide migration and implications for climate and biodiversity. Nature Reviews Earth & Environment, 1-16. https://doi.org/10.1038/s43017-023-00511-z
  • Konak, N., & Şenel, M., 2002. 1/500.000 ölçekli Denizli Paftası, MTA Genel Müdürlüğü Ankara.
  • Kirby, E., & Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29, 415–418. https://doi.org/10.1130/0091-7613(2001)029%3C0415:QDRURV%3E2.0.CO;2
  • Kirby, E., & Whipple, K.X. (2012). Expression of active tectonics in erosional landscapes. J. Struct. Geol. 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
  • Li, Z., Wang, X., Yu, Y., Zhang, H., Su, Q., Miao, X., & Lu, H. (2021). The impacts of base level and lithology on fluvial geomorphic evolution at the tectonically active Laohu and Hasi Mountains, northeastern Tibetan Plateau. Sci. China Earth Sci., 51, 994–1008. https://doi.org/10.1007/s11430-020-9743-1
  • Perron, J.T., & Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surf. Process. Landf., 38, 570–576. https://doi.org/10.1002/esp.3302
  • Sakashita, A., & Endo, N. (2023) Mobility and location of drainage divides affected by tilting uplift in Sado Island, Japan. Remote Sens., 15, 729. https://doi.org/10.3390/rs15030729
  • Schwanghart, W., & Scherler, D. (2014). TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2(1), 1-7. https://doi.org/10.5194/esurf-2-1-2014
  • Su, Q., Wang, X., Lu, H., & Xie, H. (2020). Dynamic divide migration as a response to asymmetric uplift: An example from the Zhongtiao Shan, North China. Remote Sensing, 12(24), 4188. https://doi.org/10.3390/rs12244188
  • Sümer, Ö., Sözbilir, H., Uzel, B., (2020). Büyük Menderes Grabeni'nin Rolling Hinge (Yuvarlanan Reze) Modelinde Supra-Detachment (Sıyrılma Üstü) Havzadan Rift Havzasına Evrimi. Türkiye Jeoloji Bülteni, 63, 241-276.
  • Şimşek, Ş. (1984). Denizli-Sarayköy-Buldan alanının jeolojisi ve jeotermal enerji kaynakları. İstanbul Üniversitesi Yer Bilimleri Dergisi 3(1–2), 145- 62.
  • Taner, G. (2001). Denizli Bölgesi Neojeni’ne ait katların stratigrafik konumlarinda yeni düzenleme. Türkiye Jeoloji Kurultayı Bildirisi, 54-79.
  • Wang, Y., Zhang, H., Zheng, D., Yu, J.; Pang, J., & Ma, Y. (2017). Coupling slope–area analysis, integral approach and statistic tests to steady-state bedrock river profile analysis. Earth Surf. Dyn., 5, 145–160. https://doi.org/10.5194/esurf-5-145-2017
  • Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., & Ouimet, W. B. (2017). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122 (1), 248-273. https://doi.org/10.1002/2016JF003973
  • Whipple, K.X., & Tucker, G.E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth, 104, 17661–17674. https://doi.org/10.1029/1999JB900120
  • Willett, S.D., McCoy, S.W., & Beeson, H.W. (2018). Transience of the North American High Plains landscape and its impact on surface water. Nature, 561, 528–532. https://doi.org/10.1038/s41586-018-0532-1
  • Willett, S.D., Mccoy, S.W., Perron, J.T., Goren, L., & Chen, C.Y. (2014). Dynamic reorganization of river basins. Science, 343, 1248765. https://doi.org/10.1126/science.1248765
  • Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., & Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Spec. Pap. Geol. Soc. Am., 398, 55–74. https://doi.org/10.1130/2006.2398(04)
  • Yılmaz, Y. (2017). Morphotectonic development of Anatolia and the surrounding regions. Çemen, İ., Yılmaz, Y. (Ed.). Active Global Seismology; Neotectonics and Earthquake Potential of the Eastern Mediterranean Region. Geophysical Monograph 225, American Geophysical Union, Wiley, New York, 11-91. https://doi.org/10.1002/9781118944998.ch2
  • Yılmaz, Y., Genç, Ş. C., Gürer, Ö. F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş., & Elmas, A. (2000). When did the Western Anatolian Grabens begin to develop? Bozkurt, E., Winchester, J. A., Piper, J. D. A. (Ed.). Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London Special Publications 173, 353-384. https://doi.org/10.1144/GSL.SP.2000.173.01.17
  • Zeng, X., & Tan, X. (2023). Drainage divide migration in response to strike-slip faulting: An example from northern Longmen Shan, eastern Tibet. Tectonophysics, 848, 229720. https://doi.org/10.1016/j.tecto.2023.229720
  • Zhou, C., Tan, X., Liu, Y., & Shi, F. (2022). A cross-divide contrast index (C) for assessing controls on the main drainage divide stability of a mountain belt. Geomorphology, 398, 108071. https://doi.org/10.1016/j.tecto.2023.229720
  • Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W., & Mather, A. E. (2020). Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt. Earth and Planetary Science Letters, 538, 116221. https://doi.org/10.1016/j.epsl.2020.116221

Location and migration of the main drainage divide along the Buldan Horst in relation to tectonic activity (SW Türkiye)

Year 2024, Volume: 14 Issue: 4, 970 - 979, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1469171

Abstract

Drainage divide is a dynamic feature that separates adjacent drainage areas on both slopes of an uplift, migrating in response to tectonic activity. Asymmetric uplift between two neighboring basins causes the divide to migrate from an area of slower uplift to an area of faster uplift. Divide migration has recently become a popular topic as it has a significant impact on landform development, as it will lead to changes in drainage area, sediment source and river flow discharge. The Buldan Horst, the study area, is an uplift area bounded by normal faults. The horst is bounded to the NE by the Buldan Fault and to the SW by the normal faults forming the Buharkent segment. The Buharkent Segment consists of Holocene faults located at the eastern end of the Büyük Menderes Graben (BMG) and cutting the youngest graben fills. In this study, normalized steepness index (ksn), Gibert metrics and Chi integral (χ) were used to determine the current and future movement of the main drainage divide of the Buldan Horst. In the calculations related to Gilbert metrics, the main drainage divide was calculated as 3 segments (D1, D2 and D3) with a base height of 300 m. The obtained data reveal that the D1 and D2 segments will migrate to the south and therefore the the Buharken segment bounding the south of Buldan Horst are the primary factor in this migration. As a result, the southward migration of the Buldan Horst indicates that the faults in this area have a higher risk of earthquakes in the future.

References

  • Alçiçek, H. (2010). Stratigraphic correlation of the Neogene basins in southwestern Anatolia: regional palaeogeographical, palaeoclimatic, and tectonic implications. Paleogeography, Palaeoclimatology, Palaeoecology. 291, 297–318. https://doi.org/10.1016/j.palaeo.2010.03.002
  • Bonnet, S. (2009). Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nat. Geosci. 2, 766–771. https://doi.org/10.1038/ngeo666
  • Buscher, J.T., Ascione, A., & Valente, E. (2017). Decoding the role of tectonics, incision and lithology on drainage divide migration in the Mt. Alpi region, southern Apennines, Italy. Geomorpholog, 276, 37–50. https://doi.org/10.1016/j.geomorph.2016.10.003
  • Forte, A.M.; Whipple, K.X.; Cowgill, E. Drainage network reveals patterns and history of active deformation in the eastern Greater Caucasus. Geosphere 2015, 11, 1343–1364.
  • Forte, A. M., & Whipple, K. X. (2018). Criteria and tools for determining drainage divide stability. Earth Planet. Sc. Lett., 493, 102–117. https://doi.org/10.1016/j.epsl.2018.04.026
  • Gallen, S.F., & Wegmann, K.W. (2017). River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth Surf. Dyn., 5, 161–186. https://doi.org/10.5194/esurf-5-161-2017
  • Gilbert, G. K. (1877). Geology of the Henry mountains. Government Printing Office. Washington, DC, USA.
  • Goren, L., Willett, S.D., Herman, F., & Braun, J. (2014). Coupled numerical-analytical approach to landscape evolution modeling. Earth Surf. Process. Landf. 39, 522–545. https://doi.org/10.1002/esp.3514
  • Hakyemez, H. Y., Erkal, T., & Göktaş, F. (1999). Late Quaternary evolution of the Gediz and Büyük Menderes grabens, western Anatolia, Turkey. Quaternary Science Reviews 18(4–5), 549-554. https://doi.org/10.1016/S0277-3791(98)00096-1
  • Hançer, M., (2013). Study of the structural evolution of the Babadağ-Honaz and Pamukkale fault zones and the related earthquake risk potential of the Buldan region in SW Anatolia, east of the Mediterranean. J. Earth Sci. 24, 397–409. https://doi.org/10.1007/s12583-013-0333-2
  • He, C., Braun, J., Tang, H., Yuan, X., Acevedo-Trejos, E., Ott, R. F., & Stucky de Quay, G. (2024). Drainage divide migration and implications for climate and biodiversity. Nature Reviews Earth & Environment, 1-16. https://doi.org/10.1038/s43017-023-00511-z
  • Konak, N., & Şenel, M., 2002. 1/500.000 ölçekli Denizli Paftası, MTA Genel Müdürlüğü Ankara.
  • Kirby, E., & Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29, 415–418. https://doi.org/10.1130/0091-7613(2001)029%3C0415:QDRURV%3E2.0.CO;2
  • Kirby, E., & Whipple, K.X. (2012). Expression of active tectonics in erosional landscapes. J. Struct. Geol. 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
  • Li, Z., Wang, X., Yu, Y., Zhang, H., Su, Q., Miao, X., & Lu, H. (2021). The impacts of base level and lithology on fluvial geomorphic evolution at the tectonically active Laohu and Hasi Mountains, northeastern Tibetan Plateau. Sci. China Earth Sci., 51, 994–1008. https://doi.org/10.1007/s11430-020-9743-1
  • Perron, J.T., & Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surf. Process. Landf., 38, 570–576. https://doi.org/10.1002/esp.3302
  • Sakashita, A., & Endo, N. (2023) Mobility and location of drainage divides affected by tilting uplift in Sado Island, Japan. Remote Sens., 15, 729. https://doi.org/10.3390/rs15030729
  • Schwanghart, W., & Scherler, D. (2014). TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2(1), 1-7. https://doi.org/10.5194/esurf-2-1-2014
  • Su, Q., Wang, X., Lu, H., & Xie, H. (2020). Dynamic divide migration as a response to asymmetric uplift: An example from the Zhongtiao Shan, North China. Remote Sensing, 12(24), 4188. https://doi.org/10.3390/rs12244188
  • Sümer, Ö., Sözbilir, H., Uzel, B., (2020). Büyük Menderes Grabeni'nin Rolling Hinge (Yuvarlanan Reze) Modelinde Supra-Detachment (Sıyrılma Üstü) Havzadan Rift Havzasına Evrimi. Türkiye Jeoloji Bülteni, 63, 241-276.
  • Şimşek, Ş. (1984). Denizli-Sarayköy-Buldan alanının jeolojisi ve jeotermal enerji kaynakları. İstanbul Üniversitesi Yer Bilimleri Dergisi 3(1–2), 145- 62.
  • Taner, G. (2001). Denizli Bölgesi Neojeni’ne ait katların stratigrafik konumlarinda yeni düzenleme. Türkiye Jeoloji Kurultayı Bildirisi, 54-79.
  • Wang, Y., Zhang, H., Zheng, D., Yu, J.; Pang, J., & Ma, Y. (2017). Coupling slope–area analysis, integral approach and statistic tests to steady-state bedrock river profile analysis. Earth Surf. Dyn., 5, 145–160. https://doi.org/10.5194/esurf-5-145-2017
  • Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., & Ouimet, W. B. (2017). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122 (1), 248-273. https://doi.org/10.1002/2016JF003973
  • Whipple, K.X., & Tucker, G.E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth, 104, 17661–17674. https://doi.org/10.1029/1999JB900120
  • Willett, S.D., McCoy, S.W., & Beeson, H.W. (2018). Transience of the North American High Plains landscape and its impact on surface water. Nature, 561, 528–532. https://doi.org/10.1038/s41586-018-0532-1
  • Willett, S.D., Mccoy, S.W., Perron, J.T., Goren, L., & Chen, C.Y. (2014). Dynamic reorganization of river basins. Science, 343, 1248765. https://doi.org/10.1126/science.1248765
  • Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., & Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Spec. Pap. Geol. Soc. Am., 398, 55–74. https://doi.org/10.1130/2006.2398(04)
  • Yılmaz, Y. (2017). Morphotectonic development of Anatolia and the surrounding regions. Çemen, İ., Yılmaz, Y. (Ed.). Active Global Seismology; Neotectonics and Earthquake Potential of the Eastern Mediterranean Region. Geophysical Monograph 225, American Geophysical Union, Wiley, New York, 11-91. https://doi.org/10.1002/9781118944998.ch2
  • Yılmaz, Y., Genç, Ş. C., Gürer, Ö. F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş., & Elmas, A. (2000). When did the Western Anatolian Grabens begin to develop? Bozkurt, E., Winchester, J. A., Piper, J. D. A. (Ed.). Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London Special Publications 173, 353-384. https://doi.org/10.1144/GSL.SP.2000.173.01.17
  • Zeng, X., & Tan, X. (2023). Drainage divide migration in response to strike-slip faulting: An example from northern Longmen Shan, eastern Tibet. Tectonophysics, 848, 229720. https://doi.org/10.1016/j.tecto.2023.229720
  • Zhou, C., Tan, X., Liu, Y., & Shi, F. (2022). A cross-divide contrast index (C) for assessing controls on the main drainage divide stability of a mountain belt. Geomorphology, 398, 108071. https://doi.org/10.1016/j.tecto.2023.229720
  • Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W., & Mather, A. E. (2020). Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt. Earth and Planetary Science Letters, 538, 116221. https://doi.org/10.1016/j.epsl.2020.116221
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Savaş Topal 0000-0001-7451-6606

Publication Date December 15, 2024
Submission Date April 16, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Topal, S. (2024). Buldan Horstu boyunca ana drenaj bölünmesinin konumu ve göçünün tektonik aktivite ile ilişkisi (GB Türkiye). Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 970-979. https://doi.org/10.17714/gumusfenbil.1469171