Research Article
BibTex RIS Cite

FEM ve LEM yöntemleri ile Ziğ (Azerbaycan, Bakü) heyelan sahasının incelenmesi

Year 2024, Volume: 14 Issue: 4, 1004 - 1020, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1470976

Abstract

Bu çalışmada, limit denge (LEM) ve sonlu elemanlar yöntemleri (FEM) kullanılarak Azerbaycan'ın Başkenti Bakü'de Zığ heyelan sahasının güvenlik faktörünü ve kritik kayma yüzeyini belirlemek için kullanılan yöntemlerin karşılaştırılması amaçlanmaktadır. Çalışmada incelenen heyelan, RocScience tarafından geliştirilen sonlu elemanlar (FEM) tabanlı Phase2 v8.005 ve limit denge (LEM) tabanlı Slide v 6.0 ve yazılımı kullanılarak 2 boyutlu incelenmiştir. Modellerde yenilme ölçütü olarak Mohr-Coulomb kriteri kabul edilmiş, doruk ve kalıcı parametrelerle kullanılmıştır. LEM analizlerinde, Slide 2D yazılımı kullanılarak yapılan statik ve sismik koşullardaki analizlerde, doruk parametrelerle bulunan güvenlik faktörü statik koşullar için 1.331, sismik koşullarda ise 0.981 olarak tespit edilmiştir. Kalıcı parametrelerle yapılan analizlerde ise güvenlik faktörü statik koşullar için 0.97, sismik koşullarda ise 0.71 olarak belirlenmiştir. FEM analizlerinde ise Phase2 yazılımı kullanılarak yapılan statik ve sismik koşullardaki analizlerde, doruk ve kalıcı parametrelerle hesaplanan güvenlik faktörleri sırasıyla 0.97 ve 0.70 olarak belirlenmiştir. Bu sonuçlar, her iki yöntemin de farklı koşullar altında benzer sonuçlar verdiğini göstermiştir. Slide 2D yazılımında doruk parametrelerle yapılan analizlerde bulunan kayma düzlemi, inklinometre ölçümleri ile uyumlu olup, FEM ile bulunan kayma düzlemi ise daha derin seviyelerde yer almıştır. Bu durum, FEM'in daha detaylı ve derinlemesine analiz yapabilme yeteneğini göstermektedir. Zığ bölgesindeki heyelan riskinin yüksek olduğunu ve doygun zemin koşullarının güvenlik faktörlerini olumsuz etkilediğini ortaya koymaktadır. Arazide bulunan bireysel bahçe alanlarının düzensiz sulanması ve kanalizasyon sisteminden kaynaklı kaçakların olması, ek olarak yağışın yeraltı su tablasını yükselterek zeminlerin birim ağırlıklarını artırması, kayma mukavemetini azaltmaktadır. Bu nedenle, kalıcı parametrelerle yapılan analiz sonuçları, FEM ve LEM yöntemleri ile bulunan güvenlik faktörlerinin gerçeği yansıttığını göstermektedir. Bu nedenle, bölgedeki heyelan riskinin azaltılması için düzenli izleme, yeraltı su seviyesinin kontrolü ve uygun mühendislik çözümlerinin uygulanması gerekmektedir.

References

  • Abramson, L. W., Lee, T. S., Sharma, S., & Boyce, G. M. (2002). Slope stability and stabilization methods. John Wiley & Sons.
  • Akhundov, A, Mammadli, T, Garaveliyev, E, Yetirmishli, Q, and Tanircan.G. (2010) Seismic Hazard Assessment for Azerbaijan,” The NATO Science for Peace and Security Programme
  • Alemdag, S., Zeybek, H. I., & Kulekci, G. (2019). Stability evaluation of the Gümüşhane-Akçakale cave by numerical analysis method. Journal of Mountain Science, 16(9), 2150-2158.
  • Alemdağ, S. (2016). Toprak dolgulu barajlarda gövde duraylılığının limit denge ve sayısal analiz yöntemleri ile değerlendirilmesi: Türkiye’den bir atık barajı örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 6(2), 157-173.
  • ASTM D 2850-15. (2015.)Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
  • ASTM D2487-06. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
  • ASTM D4318-00. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
  • Bowles, J. E., & Guo, Y. (1998). Foundation analysis and design (Vol. 5, p. 127). New York: McGraw-hill.
  • Cheng, Y. M., Lansivaara, T., & Wei, W. B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and geotechnics, 34(3), 137-150. https://doi.org/10.1016/j.compgeo.2006.10.011
  • Clayton, C. R. (1995). The standard penetration test (SPT): methods and use. Construction Industry Research and Information Association.
  • Clough, R. W., & Woodward III, R. J. (1967). Analysis of embankment stresses and deformations. Journal of the Soil Mechanics and Foundations Division, 93(4), 529-549. https://doi.org/10.1061/JSFEAQ.0001005
  • Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical engineering, 122(7), 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
  • Duncan, J. M., Wright, S. G., & Kayabalı, K. (2005). Zemin şevlerinin duraylılığı. Gazi.
  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering geology, 102(3-4), 99-111
  • Griffiths, D. V., & Lane, P. A. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
  • Griffiths, D. V., & Marquez, R. M. (2007). Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique, 57(6), 537-546. https://doi.org/10.1680/geot.2007.57.6.537
  • Gutiérrez, F., Parise, M., De Waele, J., & Jourde, H. (2014). A review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews, 138, 61-88.
  • Hynes-Griffin, M. E., & Franklin, A. G. (1984). Rationalizing the seismic coefficient method. Miscellaneous paper GL-84, 13.
  • İsrafilbeyov, İ.A., Listenqarten, V.A., Şahsuvarov, A.S.(1983) Альбом гидрогеологических и инженерно-геологических карт Апшеронского полуострова масштаба 1:50000 ГУГК СССР.
  • Niftiyev, Ş., Veliyev, S. (2016). Suraxanı rayonun Zığ sahəsində ekzogen geoloji proseslərin öyrənilməsi işlərinin nəticələri haqqında Hesabat. Fövqalədə Hallar Nazirliyi Tikintidə Təhlükəsizliyə Nəzarət Dövlət Agentliyinin “Azərinşaatlayihə” DBLKTİ.
  • Öztürk, S., Beker, Y., Sarı, M., & Pehlivan, L. (2021). Estimation of ground types in different districts of Gümüşhane province based on the ambient vibrations H/V measurements. Sigma Journal of Engineering and Natural Sciences, 39(4), 374-391.
  • Rocscience Inc. Phase2. (2001) 2D finite element program for calculating stresses and estimating support around underground excavations, Rocscience Inc.
  • Sarı, M., & Öztürk, S. (2018). Detection of the complex ground problems by ground penetrating radar: Examples from Gümüşhane University. Sigma Journal of Engineering and Natural Sciences, 36(4), 1297-1310.
  • Sari, M. (2023). Evaluation of stability in rock-fill dams by numerical analysis methods: a case study (Gümüşhane-Midi Dam, Türkiye). Baltica, 36.
  • Sari, M. (2024). Geophysical and numerical approaches to solving the mechanisms of landslides triggered by earthquakes: A case study of Kahramanmaraş (6 February, 2023). Engineering Science and Technology, an International Journal, 55, 101758.
  • Shang-Yi, Z., Zheng, Y. R., & Zhang, Y. F. (2005). Study on slope failure criterion in strength reduction finite element method. Rock and soil mechanics, 26(2), 332-336.
  • Zienkiewicz, O. C., Humpheson, C., & Lewis, R. W. (1975). Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique, 25(4), 671-689. https://doi.org/10.1680/geot.1975.25.4.671
  • Zienkiewicz, O.C., Taylor, R.L. (1989). The Finite Element Method. Vol.1, 4th Edition, McGrawHill, New York
  • ГОСТ 12248. (2010). Методы Лабораторного Определения Характеристик Прочности И Деформируемости

The investigation of the Ziğ (Baku, Azerbaijan) landslide area using FEM and LEM methods

Year 2024, Volume: 14 Issue: 4, 1004 - 1020, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1470976

Abstract

In this study, the aim is to compare the methods used to determine the safety factor and critical slip surface of the Ziğ landslide area in Baku, the capital of Azerbaijan, using limit equilibrium methods (LEM) and finite element methods (FEM). The landslide under investigation was analyzed in 2D using Phase2 v8.005 (FEM-based software) and Slide v6.0 (LEM-based software), both developed by RocScience. The Mohr-Coulomb criterion was used as the failure criterion in the models, employing both peak and residual parameters. In the LEM analyses, the safety factor determined using Slide 2D software with peak parameters was found to be 1.331 under static conditions and 0.981 under seismic conditions. When residual parameters were used, the safety factor was 0.97 under static conditions and 0.71 under seismic conditions. In the FEM analyses conducted with Phase2 software, the safety factors under static and seismic conditions were 0.97 and 0.70, respectively, using both peak and residual parameters. These results show that both methods provide similar results under different conditions. The slip surface found in the Slide 2D software analysis with peak parameters was consistent with inclinometer measurements, while the slip surface found using FEM was at deeper levels. This indicates FEM's capability for more detailed and in-depth analysis. The high landslide risk in the Ziğ region is evident, and saturated soil conditions negatively impact safety factors. The irregular watering of individual garden areas, leaks from the sewer system, and rainfall increasing the groundwater table, thus increasing soil unit weights and reducing shear strength, are contributing factors. Therefore, the results from analyses using residual parameters indicate that the safety factors determined by both FEM and LEM methods reflect reality. Regular monitoring, groundwater level control, and appropriate engineering solutions are necessary to reduce landslide risks in the region.

References

  • Abramson, L. W., Lee, T. S., Sharma, S., & Boyce, G. M. (2002). Slope stability and stabilization methods. John Wiley & Sons.
  • Akhundov, A, Mammadli, T, Garaveliyev, E, Yetirmishli, Q, and Tanircan.G. (2010) Seismic Hazard Assessment for Azerbaijan,” The NATO Science for Peace and Security Programme
  • Alemdag, S., Zeybek, H. I., & Kulekci, G. (2019). Stability evaluation of the Gümüşhane-Akçakale cave by numerical analysis method. Journal of Mountain Science, 16(9), 2150-2158.
  • Alemdağ, S. (2016). Toprak dolgulu barajlarda gövde duraylılığının limit denge ve sayısal analiz yöntemleri ile değerlendirilmesi: Türkiye’den bir atık barajı örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 6(2), 157-173.
  • ASTM D 2850-15. (2015.)Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
  • ASTM D2487-06. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
  • ASTM D4318-00. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
  • Bowles, J. E., & Guo, Y. (1998). Foundation analysis and design (Vol. 5, p. 127). New York: McGraw-hill.
  • Cheng, Y. M., Lansivaara, T., & Wei, W. B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and geotechnics, 34(3), 137-150. https://doi.org/10.1016/j.compgeo.2006.10.011
  • Clayton, C. R. (1995). The standard penetration test (SPT): methods and use. Construction Industry Research and Information Association.
  • Clough, R. W., & Woodward III, R. J. (1967). Analysis of embankment stresses and deformations. Journal of the Soil Mechanics and Foundations Division, 93(4), 529-549. https://doi.org/10.1061/JSFEAQ.0001005
  • Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical engineering, 122(7), 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
  • Duncan, J. M., Wright, S. G., & Kayabalı, K. (2005). Zemin şevlerinin duraylılığı. Gazi.
  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering geology, 102(3-4), 99-111
  • Griffiths, D. V., & Lane, P. A. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
  • Griffiths, D. V., & Marquez, R. M. (2007). Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique, 57(6), 537-546. https://doi.org/10.1680/geot.2007.57.6.537
  • Gutiérrez, F., Parise, M., De Waele, J., & Jourde, H. (2014). A review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews, 138, 61-88.
  • Hynes-Griffin, M. E., & Franklin, A. G. (1984). Rationalizing the seismic coefficient method. Miscellaneous paper GL-84, 13.
  • İsrafilbeyov, İ.A., Listenqarten, V.A., Şahsuvarov, A.S.(1983) Альбом гидрогеологических и инженерно-геологических карт Апшеронского полуострова масштаба 1:50000 ГУГК СССР.
  • Niftiyev, Ş., Veliyev, S. (2016). Suraxanı rayonun Zığ sahəsində ekzogen geoloji proseslərin öyrənilməsi işlərinin nəticələri haqqında Hesabat. Fövqalədə Hallar Nazirliyi Tikintidə Təhlükəsizliyə Nəzarət Dövlət Agentliyinin “Azərinşaatlayihə” DBLKTİ.
  • Öztürk, S., Beker, Y., Sarı, M., & Pehlivan, L. (2021). Estimation of ground types in different districts of Gümüşhane province based on the ambient vibrations H/V measurements. Sigma Journal of Engineering and Natural Sciences, 39(4), 374-391.
  • Rocscience Inc. Phase2. (2001) 2D finite element program for calculating stresses and estimating support around underground excavations, Rocscience Inc.
  • Sarı, M., & Öztürk, S. (2018). Detection of the complex ground problems by ground penetrating radar: Examples from Gümüşhane University. Sigma Journal of Engineering and Natural Sciences, 36(4), 1297-1310.
  • Sari, M. (2023). Evaluation of stability in rock-fill dams by numerical analysis methods: a case study (Gümüşhane-Midi Dam, Türkiye). Baltica, 36.
  • Sari, M. (2024). Geophysical and numerical approaches to solving the mechanisms of landslides triggered by earthquakes: A case study of Kahramanmaraş (6 February, 2023). Engineering Science and Technology, an International Journal, 55, 101758.
  • Shang-Yi, Z., Zheng, Y. R., & Zhang, Y. F. (2005). Study on slope failure criterion in strength reduction finite element method. Rock and soil mechanics, 26(2), 332-336.
  • Zienkiewicz, O. C., Humpheson, C., & Lewis, R. W. (1975). Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique, 25(4), 671-689. https://doi.org/10.1680/geot.1975.25.4.671
  • Zienkiewicz, O.C., Taylor, R.L. (1989). The Finite Element Method. Vol.1, 4th Edition, McGrawHill, New York
  • ГОСТ 12248. (2010). Методы Лабораторного Определения Характеристик Прочности И Деформируемости
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Geology of Engineering
Journal Section Articles
Authors

Elvin Karimov 0009-0006-1834-0566

Publication Date December 15, 2024
Submission Date April 19, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Karimov, E. (2024). FEM ve LEM yöntemleri ile Ziğ (Azerbaycan, Bakü) heyelan sahasının incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1004-1020. https://doi.org/10.17714/gumusfenbil.1470976