Review
BibTex RIS Cite

Tekrarlı yüklerin kayaçların deformasyon özelliklerine etkisi

Year 2024, Volume: 14 Issue: 4, 1304 - 1318, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1490810

Abstract

Kayaçlar, doğal afetler ve delme patlatma gibi dışsal etmenlerden kaynaklı tekrarlı yüklere maruz kalmaktadır. Bu tekrarlı yüklerin kayaç deformasyon özelliklerine farklı etkileri olabilmektedir Tekrarlı yüklerin kayaçların deformasyon özelliklerine etkilerini belirlemek; köprüler, yollar, binalar, yer altı depoları gibi mühendislik yapılarının uzun vadeli stabilitesi ve güvenliği için kritik öneme sahiptir. Bu çalışma tekrarlı yüklemenin kayaçların deformasyon özelliklerine etkilerini ve tekrarlı yükleme koşullarında kaya yorulma mekanizmasını açıklamayı amaçlamaktadır. Çalışma üç tema üzerinde oluşturulmuştur. İlk aşamada tekrarlı yüklemenin tanımı, tekrarlı yükleme nedenli yorulma mekanizması, kaya yapıları/kütleleri için tekrarlı yükleme kaynakları ve tekrarlı yükleme ve yorulmanın kaya kütlelerinin deformasyonu açısından önemi açıklanmıştır. İkinci aşamada farklı yükleme parametreleri ve farklı mekanik özelliklerin yorulma ile ilişkisi tartışılmıştır. Son aşamada ise literatürde yer alan konu ile ilgili çalışmaların sonuçları/bulguları özetlenmiştir.

References

  • Akesson, U., Hansson, J., & Stigh, J. (2004). Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Engineering Geology, 72(1–2), 131–142. https://doi.org/10.1016/j.enggeo.2003.07.001
  • Arora, K., Chakraborty, T., & Rao, K. S. (2019). Experimental study on stiffness degradation of rock under uniaxial cyclic sinusoidal compression loading. Rock Mechanics and Rock Engineering, 1–13. https://doi.org/10.1007/s00603-019-01835-3
  • Attewell, P. B., & Farmer, I. W. (1973). Fatigue behaviour of rock. International Journal of Rock Mechanics and Mining Sciences and. https://doi.org/10.1016/0148-9062(73)90055-7
  • Bagde, Manoj N.; Petroš, V. (2009). Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 46(1), 200–209. https://doi.org/10.1016/j.ijrmms.2008.05.002
  • Bello, I., González-Fonteboa, B., Wardeh, G., & Martínez-Abella, F. (2023). Characterization of concrete behavior under cyclic loading using 2D digital image correlation. Journal of Building Engineering, 78(August), 1–14. https://doi.org/10.1016/j.jobe.2023.107709
  • Beşer, M. H. (2024). Investigation of the deformation properties of the rocks under cyclic loads. [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Burdine, N. T. (1963). Rock failure under dynamic loading conditions. Society of Petroleum Engineers Journal, 3(01), 1–8
  • Chen, F., Wang, E., Zhang, B., Zhang, L., & Meng, F. (2020). Prediction of fracture damage of sandstone using digital image correlation. Applied Sciences (Switzerland), 10(4). https://doi.org/10.3390/app10041280
  • Cui, Y., Liu, C., Qiao, N., Qi, S., Chen, X., Zhu, P., & Feng, Y. (2022). Characteristics of acoustic emission caused by ıntermittent fatigue of rock salt. Applied Sciences (Switzerland), 12(11), 1–22. https://doi.org/10.3390/app12115528
  • Dal Pino, R., Narducci, P., & Royer-Carfagni, G. (1999). SEM investigation on fatigue damage of marble. Journal of Materials Science Letters, 18(19), 1619–1622. https://doi.org/10.1023/A:1006689022297
  • Dehkhoda, S., & Detournay, E. (2017). Mechanics of actuated disc cutting. Rock Mechanics and Rock Engineering, 50(2), 465–483. https://doi.org/10.1007/s00603-016-1121-y
  • Duan, H., & Ma, D. (2020). Acoustic emission simulation on coal specimen subjected to cyclic loading. Advances in Civil Engineering, 2020. https://doi.org/https://doi.org/10.1155/2020/37898292
  • Eberhardt, E., Stead, D., & Stimpson, B. (1999). Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 36(3), 361–380. https://doi.org/10.1016/S0148-9062(99)00019-4
  • Erarslan, N., & Williams, D. J. (2012a). Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mechanics and Rock Engineering, 45(3), 327–340. https://doi.org/10.1007/s00603-011-0209-7
  • Erarslan, N., & Williams, D. J. (2012b). The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks. International Journal of Rock Mechanics and Mining Sciences, 56, 15–26. https://doi.org/10.1016/j.ijrmms.2012.07.015
  • Fan, J., Chen, J., Jiang, D., Chemenda, A., Chen, J., & Ambre, J. (2017). Discontinuous cyclic loading tests of salt with acoustic emission monitoring. International Journal of Fatigue, 94, 140–144. https://doi.org/10.1016/j.ijfatigue.2016.09.016
  • Fan, J., Chen, J., Jiang, D., Ren, S., & Wu, J. (2016). Fatigue properties of rock salt subjected to interval cyclic pressure. International Journal of Fatigue, 90, 109–115. https://doi.org/10.1016/j.ijfatigue.2016.04.021
  • Fan, Z., & Sun, Y. (2019). Detecting and evaluation of fatigue damage in concrete with industrial computed tomography technology. Construction and Building Materials, 223, 794–805. https://doi.org/10.1016/j.conbuildmat.2019.07.016
  • Fu, B., Hu, L., & Tang, C. (2020). Experimental and numerical investigations on crack development and mechanical behavior of marble under uniaxial cyclic loading compression. International Journal of Rock Mechanics and Mining Sciences, 130(March), 104289. https://doi.org/10.1016/j.ijrmms.2020.104289
  • Fuenkajorn, K., & Phueakphum, D. (2010). Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Engineering Geology, 112(1–4), 43–52. https://doi.org/10.1016/j.enggeo.2010.01.002
  • Gatelier, N., Pellet, F., & Loret, B. (2002). Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. International Journal of Rock Mechanics and Mining Sciences, 39(3), 335–354. https://doi.org/10.1016/S1365-1609(02)00029-1
  • Geranmayeh Vaneghi, R., Thoeni, K., Dyskin, A. V., Sharifzadeh, M., & Sarmadivaleh, M. (2020). Strength and damage response of sandstone and granodiorite under different loading conditions of multistage uniaxial cyclic compression. International Journal of Geomechanics, 20(9), 04020159. https://doi.org/10.1061/(asce)gm.1943-5622.0001801
  • Ghamgosar, M., Erarslan, N., & Williams, D. J. (2017). Experimental ınvestigation of fracture process zone in rocks damaged under cyclic loadings. Experimental Mechanics, 57(1), 97–113. https://doi.org/10.1007/s11340-016-0216-4
  • Gong, M., & Smith, I. (2003). Effect of waveform and loading sequence on low-cycle compressive fatigue life of spruce. Journal of Materials in Civil Engineering, 15(1), 93–99. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(93)
  • Haghgouei, H., Hashemolhosseini, H., Baghbanan, A., & Jamali, S. (2018). The effect of loading frequency on fatigue life of green onyx under fully reversed loading. Experimental Techniques, 42(1), 105–113. https://doi.org/10.1007/s40799-017-0226-x
  • Haimson, B. C. (1978). Effect of cyclic loading rock. ASTM Special Technical Publication, 228–245. https://doi.org/10.1520/stp35679s
  • Hashash, Y. M. A., Hook, J. J., Schmidt, B., & I-Chiang Yao, J. (2001). Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology 16, (4), 247–293. https://doi.org/10.1016/S0886-7798(01)00051-7
  • Ishizuka, Y., Abe, T., & Kodama, J. (1990). Fatigue behaviour of granite under cyclic loading. In ISRM international symposium (pp. ISRM-IS). ISRM
  • Jiang, D., Fan, J., Chen, J., Li, L., & Cui, Y. (2016). A mechanism of fatigue in salt under discontinuous cycle loading. International Journal of Rock Mechanics and Mining Sciences, 86(July), 255–260. https://doi.org/10.1016/j.ijrmms.2016.05.004
  • Jobli, A. F., Md Noor, M. J., Tawie, R., Hampden, A. Z., & Julai, N. N. (2017). Uniaxial compressive strength of Malaysian weathered granite due to cyclic loading. ARPN Journal of Engineering and Applied Sciences, 12(14), 4298–4301
  • Kim, K., Kemeny, J., & Nickerson, M. (2014). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47(6), 2005–2019. https://doi.org/10.1007/s00603-013-0523-3
  • Li, N., Chen, W., Zhang, P., & Swoboda, G. (2001). The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 38(7), 1071–1079. https://doi.org/10.1016/S1365-1609(01)00058-2
  • Li, Ning, Zhang, P. P., Chen, Y., & Swoboda, G. (2003). Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 40(1), 145–150. https://doi.org/10.1016/S1365-1609(02)00111-9
  • Liang, W., Zhang, C., Gao, H., Yang, X., Xu, S., & Zhao, Y. (2012). Experiments on mechanical properties of salt rocks under cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 4(1), 54–61. https://doi.org/10.3724/sp.j.1235.2012.00054
  • Liu, E., & He, S. (2012). Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Engineering Geology, 125, 81–91. https://doi.org/10.1016/j.enggeo.2011.11.007
  • Liu, E., Huang, R., & He, S. (2012). Effects of frequency on the dynamic properties of intact rock samples subjected to cyclic loading under confining pressure conditions. Rock Mechanics and Rock Engineering, 45(1), 89–102. https://doi.org/10.1007/s00603-011-0185-y
  • Liu, J., Xie, H., Hou, Z., Yang, C., & Chen, L. (2014). Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotechnica, 9(1), 153–160. https://doi.org/10.1007/s11440-013-0236-5
  • Liu, Y., & Dai, F. (2021). A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1203–1230. https://doi.org/10.1016/j.jrmge.2021.03.012
  • Liu, Y., Dai, F., Zhao, T., & Xu, N. W. (2017). Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression. Rock Mechanics and Rock Engineering, 50(1), 89–112. https://doi.org/10.1007/s00603-016-1085-y
  • Martin, C. D., & Chandler, N. A. (1994). The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences and, 31(6), 643–659. https://doi.org/10.1016/0148-9062(94)90005-1
  • Momeni, A., Karakus, M., Khanlari, G. R., & Heidari, M. (2015). Effects of cyclic loading on the mechanical properties of a granite. International Journal of Rock Mechanics and Mining Sciences, 77, 89–96. https://doi.org/10.1016/j.ijrmms.2015.03.029
  • Nejati, H. R., & Ghazvinian, A. (2014). Brittleness effect on rock fatigue damage evolution. Rock Mechanics and Rock Engineering, 47(5), 1839–1848. https://doi.org/10.1007/s00603-013-0486-4
  • Nguyen, T. L., Hall, S. A., Vacher, P., & Viggiani, G. (2011). Fracture mechanisms in soft rock: Identification and quantification of evolving displacement discontinuities by extended digital image correlation. Tectonophysics, 503(1–2), 117–128. https://doi.org/10.1016/j.tecto.2010.09.024
  • Oraee-Mirzamani, K.; Goodarzi, A.; Oraee-Mirzamani, N. (2011). Assessment of the dynamic loads effect on underground mines supports. 30th International Conference on Ground Control in Mining, 74–79
  • Peng, K., Zhou, J., Zou, Q., & Song, X. (2020). Effect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanism. International Journal of Fatigue, 131(July 2019), 105349. https://doi.org/10.1016/j.ijfatigue.2019.105349
  • Rajaram, V. (1981). Mechanical behavior of granite under cyclic compression. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 11
  • Ray, S. K., Sarkar, M., & Singh, T. N. (1999). Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone. International Journal of Rock Mechanics and Mining Sciences, 36(4), 543–549. https://doi.org/10.1016/S0148-9062(99)00016-9
  • Royer-Carfagni, G., & Salvatore, W. (2000). Characterization of marble by cyclic compression loading: experimental results. Mechanics of Cohesive-Frictional Materials, 5(7), 535–563. https://doi.org/10.1002/1099-1484(200010)5:7<535::AID-CFM102>3.0.CO;2-D
  • Singh, S. K. (1989). Fatigue and strain hardening behaviour of graywacke from the flagstaff formation, New South Wales. Engineering Geology, 26(2), 171–179. https://doi.org/10.1190/segam2013-0137.1
  • Song, H., Zhang, H., Kang, Y., Huang, G., Fu, D., & Qu, C. (2013). Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation. Tectonophysics, 608, 1343–1348. https://doi.org/10.1016/j.tecto.2013.06.007
  • Song, R., Yue-ming, B., Jing-Peng, Z., De-yi, J., & Chun-he, Y. (2013). Experimental investigation of the fatigue properties of salt rock. International Journal of Rock Mechanics and Mining Sciences, 64, 68–72. https://doi.org/10.1016/j.ijrmms.2013.08.023
  • Stanchits, S., Vinciguerra, S., & Dresen, G. (2006). Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure and Applied Geophysics, 163(5–6), 974–993. https://doi.org/10.1007/s00024-006-0059-5
  • Tang, J., Chen, X., & Dai, F. (2020). Experimental study on the crack propagation and acoustic emission characteristics of notched rock beams under post-peak cyclic loading. Engineering Fracture Mechanics, 226(November 2019), 106890. https://doi.org/10.1016/j.engfracmech.2020.106890
  • Wang, J., Li, J., Shi, Z., Chen, J., & Lin, H. (2022). Fatigue characteristics and fracture behaviour of sandstone under discontinuous multilevel constant-amplitude fatigue disturbance. Engineering Fracture Mechanics, 274(June), 108773. https://doi.org/10.1016/j.engfracmech.2022.108773
  • Wang, Q., Chen, J., Guo, J., Luo, Y., Wang, H., & Liu, Q. (2019). Acoustic emission characteristics and energy mechanism in karst limestone failure under uniaxial and triaxial compression. Bulletin of Engineering Geology and the Environment, 78, 1427-1442
  • Wang, Y., Gao, S. H., & Han, J. Q. (2020). Fatigue-damage evolution characteristics of ınterbeded marble subjected to dynamic uniaxial cyclic loads. Geotechnical and Geological Engineering, 9. https://doi.org/10.1007/s10706-020-01526-9
  • Wang, Z., Li, S., Qiao, L., & Zhang, Q. (2015). Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. International Journal of Rock Mechanics and Mining Sciences, 73, 70–81. https://doi.org/10.1016/j.ijrmms.2014.09.018
  • Wang, Z., Li, S., Qiao, L., & Zhao, J. (2013). Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mechanics and Rock Engineering, 46(6), 1603–1615. https://doi.org/10.1007/s00603-013-0387-6
  • Xiao, J. Q., Ding, D. X., Jiang, F. L., & Xu, G. (2010). Fatigue damage variable and evolution of rock subjected to cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 47(3), 461–468. https://doi.org/10.1016/j.ijrmms.2009.11.003
  • Xiao, J. Q., Ding, D. X., Xu, G., & Jiang, F. L. (2009). Inverted S-shaped model for nonlinear fatigue damage of rock. International Journal of Rock Mechanics and Mining Sciences, 46(3), 643–648. https://doi.org/10.1016/j.ijrmms.2008.11.002
  • Yang, S. Q., Ranjith, P. G., Huang, Y. H., Yin, P. F., Jing, H. W., Gui, Y. L., & Yu, Q. L. (2015). Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophysical Journal International, 201(2), 662–682. https://doi.org/10.1093/gji/ggv023
  • Yang, S. Q., Tian, W. L., & Ranjith, P. G. (2017). Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading. Rock Mechanics and Rock Engineering, 50(11), 2871–2889. https://doi.org/10.1007/s00603-017-1262-7
  • Zhang, M., Dou, L., Konietzky, H., Song, Z., & Huang, S. (2020). Cyclic fatigue characteristics of strong burst-prone coal: Experimental insights from energy dissipation, hysteresis and micro-seismicity. International Journal of Fatigue, 133(December 2019), 105429. https://doi.org/10.1016/j.ijfatigue.2019.105429
  • Zhang, Z. ., Kou, S. ., Jiang, L., & Lindqvist, P. A. (2002). Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. International Journal of Rock Mechanics and Mining Sciences, 37(5), 745–762. https://doi.org/10.1016/s1365-1609(00)00008-3
  • Zhenyu, T., & Haihong, M. (1990). An experimental study and analysis of the behaviour of rock under cyclic loading. International Journal of Rock Mechanics and Mining Sciences and, 27(1), 51–56. https://doi.org/10.1016/0148-9062(90)90008-P
  • Zhou, Z. L., Wu, Z. B., Li, X. B., Li, X., & Ma, C. De. (2015). Mechanical behavior of red sandstone under cyclic point loading. Transactions of Nonferrous Metals Society of China (English Edition), 25(8), 2708–2717. https://doi.org/10.1016/S1003-6326(15)63895-X
  • Zhu, W. C., & Tang, C. A. (2006). Numerical simulation of Brazilian disk rock failure under static and dynamic loading. International Journal of Rock Mechanics and Mining Sciences, 43(2), 236–252. https://doi.org/10.1016/j.ijrmms.2005.06.008
  • Zhu, Y., Yu, J., Cai, Y., Tang, X., Yao, W., & Liu, X. (2020). A novel fatigue damage model of rock considering temperature effects. Advances in Civil Engineering, 2020, 1-11. https://doi.org/10.1155/2020/8838335

The effect of the cyclic loading on deformation properties of the rocks

Year 2024, Volume: 14 Issue: 4, 1304 - 1318, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1490810

Abstract

Rocks are subjected to cyclic loads due to natural disasters and external factors such as drilling and blasting. Determining the effects of cyclic loading on the deformation properties of rocks is critical for the long-term stability and safety of engineering structures such as bridges, roads, buildings and underground storage. This study aims to describe the effects of cyclic loading on the deformation properties of rocks and the mechanism of rock fatigue under cyclic loading conditions. The study is organized on three stages. In the first stage, the definition of cyclic loading, the mechanism of fatigue due to cyclic loading, the sources of cyclic loading for rock structures/masses and the importance of cyclic loading and fatigue for the deformation of rock masses are explained. In the second stage, the relationship between different loading parameters and different mechanical properties and fatigue is discussed. In the last stage, the results/findings of the relevant studies in the literature are summarized.

References

  • Akesson, U., Hansson, J., & Stigh, J. (2004). Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Engineering Geology, 72(1–2), 131–142. https://doi.org/10.1016/j.enggeo.2003.07.001
  • Arora, K., Chakraborty, T., & Rao, K. S. (2019). Experimental study on stiffness degradation of rock under uniaxial cyclic sinusoidal compression loading. Rock Mechanics and Rock Engineering, 1–13. https://doi.org/10.1007/s00603-019-01835-3
  • Attewell, P. B., & Farmer, I. W. (1973). Fatigue behaviour of rock. International Journal of Rock Mechanics and Mining Sciences and. https://doi.org/10.1016/0148-9062(73)90055-7
  • Bagde, Manoj N.; Petroš, V. (2009). Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 46(1), 200–209. https://doi.org/10.1016/j.ijrmms.2008.05.002
  • Bello, I., González-Fonteboa, B., Wardeh, G., & Martínez-Abella, F. (2023). Characterization of concrete behavior under cyclic loading using 2D digital image correlation. Journal of Building Engineering, 78(August), 1–14. https://doi.org/10.1016/j.jobe.2023.107709
  • Beşer, M. H. (2024). Investigation of the deformation properties of the rocks under cyclic loads. [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Burdine, N. T. (1963). Rock failure under dynamic loading conditions. Society of Petroleum Engineers Journal, 3(01), 1–8
  • Chen, F., Wang, E., Zhang, B., Zhang, L., & Meng, F. (2020). Prediction of fracture damage of sandstone using digital image correlation. Applied Sciences (Switzerland), 10(4). https://doi.org/10.3390/app10041280
  • Cui, Y., Liu, C., Qiao, N., Qi, S., Chen, X., Zhu, P., & Feng, Y. (2022). Characteristics of acoustic emission caused by ıntermittent fatigue of rock salt. Applied Sciences (Switzerland), 12(11), 1–22. https://doi.org/10.3390/app12115528
  • Dal Pino, R., Narducci, P., & Royer-Carfagni, G. (1999). SEM investigation on fatigue damage of marble. Journal of Materials Science Letters, 18(19), 1619–1622. https://doi.org/10.1023/A:1006689022297
  • Dehkhoda, S., & Detournay, E. (2017). Mechanics of actuated disc cutting. Rock Mechanics and Rock Engineering, 50(2), 465–483. https://doi.org/10.1007/s00603-016-1121-y
  • Duan, H., & Ma, D. (2020). Acoustic emission simulation on coal specimen subjected to cyclic loading. Advances in Civil Engineering, 2020. https://doi.org/https://doi.org/10.1155/2020/37898292
  • Eberhardt, E., Stead, D., & Stimpson, B. (1999). Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 36(3), 361–380. https://doi.org/10.1016/S0148-9062(99)00019-4
  • Erarslan, N., & Williams, D. J. (2012a). Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mechanics and Rock Engineering, 45(3), 327–340. https://doi.org/10.1007/s00603-011-0209-7
  • Erarslan, N., & Williams, D. J. (2012b). The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks. International Journal of Rock Mechanics and Mining Sciences, 56, 15–26. https://doi.org/10.1016/j.ijrmms.2012.07.015
  • Fan, J., Chen, J., Jiang, D., Chemenda, A., Chen, J., & Ambre, J. (2017). Discontinuous cyclic loading tests of salt with acoustic emission monitoring. International Journal of Fatigue, 94, 140–144. https://doi.org/10.1016/j.ijfatigue.2016.09.016
  • Fan, J., Chen, J., Jiang, D., Ren, S., & Wu, J. (2016). Fatigue properties of rock salt subjected to interval cyclic pressure. International Journal of Fatigue, 90, 109–115. https://doi.org/10.1016/j.ijfatigue.2016.04.021
  • Fan, Z., & Sun, Y. (2019). Detecting and evaluation of fatigue damage in concrete with industrial computed tomography technology. Construction and Building Materials, 223, 794–805. https://doi.org/10.1016/j.conbuildmat.2019.07.016
  • Fu, B., Hu, L., & Tang, C. (2020). Experimental and numerical investigations on crack development and mechanical behavior of marble under uniaxial cyclic loading compression. International Journal of Rock Mechanics and Mining Sciences, 130(March), 104289. https://doi.org/10.1016/j.ijrmms.2020.104289
  • Fuenkajorn, K., & Phueakphum, D. (2010). Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Engineering Geology, 112(1–4), 43–52. https://doi.org/10.1016/j.enggeo.2010.01.002
  • Gatelier, N., Pellet, F., & Loret, B. (2002). Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. International Journal of Rock Mechanics and Mining Sciences, 39(3), 335–354. https://doi.org/10.1016/S1365-1609(02)00029-1
  • Geranmayeh Vaneghi, R., Thoeni, K., Dyskin, A. V., Sharifzadeh, M., & Sarmadivaleh, M. (2020). Strength and damage response of sandstone and granodiorite under different loading conditions of multistage uniaxial cyclic compression. International Journal of Geomechanics, 20(9), 04020159. https://doi.org/10.1061/(asce)gm.1943-5622.0001801
  • Ghamgosar, M., Erarslan, N., & Williams, D. J. (2017). Experimental ınvestigation of fracture process zone in rocks damaged under cyclic loadings. Experimental Mechanics, 57(1), 97–113. https://doi.org/10.1007/s11340-016-0216-4
  • Gong, M., & Smith, I. (2003). Effect of waveform and loading sequence on low-cycle compressive fatigue life of spruce. Journal of Materials in Civil Engineering, 15(1), 93–99. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(93)
  • Haghgouei, H., Hashemolhosseini, H., Baghbanan, A., & Jamali, S. (2018). The effect of loading frequency on fatigue life of green onyx under fully reversed loading. Experimental Techniques, 42(1), 105–113. https://doi.org/10.1007/s40799-017-0226-x
  • Haimson, B. C. (1978). Effect of cyclic loading rock. ASTM Special Technical Publication, 228–245. https://doi.org/10.1520/stp35679s
  • Hashash, Y. M. A., Hook, J. J., Schmidt, B., & I-Chiang Yao, J. (2001). Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology 16, (4), 247–293. https://doi.org/10.1016/S0886-7798(01)00051-7
  • Ishizuka, Y., Abe, T., & Kodama, J. (1990). Fatigue behaviour of granite under cyclic loading. In ISRM international symposium (pp. ISRM-IS). ISRM
  • Jiang, D., Fan, J., Chen, J., Li, L., & Cui, Y. (2016). A mechanism of fatigue in salt under discontinuous cycle loading. International Journal of Rock Mechanics and Mining Sciences, 86(July), 255–260. https://doi.org/10.1016/j.ijrmms.2016.05.004
  • Jobli, A. F., Md Noor, M. J., Tawie, R., Hampden, A. Z., & Julai, N. N. (2017). Uniaxial compressive strength of Malaysian weathered granite due to cyclic loading. ARPN Journal of Engineering and Applied Sciences, 12(14), 4298–4301
  • Kim, K., Kemeny, J., & Nickerson, M. (2014). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47(6), 2005–2019. https://doi.org/10.1007/s00603-013-0523-3
  • Li, N., Chen, W., Zhang, P., & Swoboda, G. (2001). The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 38(7), 1071–1079. https://doi.org/10.1016/S1365-1609(01)00058-2
  • Li, Ning, Zhang, P. P., Chen, Y., & Swoboda, G. (2003). Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 40(1), 145–150. https://doi.org/10.1016/S1365-1609(02)00111-9
  • Liang, W., Zhang, C., Gao, H., Yang, X., Xu, S., & Zhao, Y. (2012). Experiments on mechanical properties of salt rocks under cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 4(1), 54–61. https://doi.org/10.3724/sp.j.1235.2012.00054
  • Liu, E., & He, S. (2012). Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Engineering Geology, 125, 81–91. https://doi.org/10.1016/j.enggeo.2011.11.007
  • Liu, E., Huang, R., & He, S. (2012). Effects of frequency on the dynamic properties of intact rock samples subjected to cyclic loading under confining pressure conditions. Rock Mechanics and Rock Engineering, 45(1), 89–102. https://doi.org/10.1007/s00603-011-0185-y
  • Liu, J., Xie, H., Hou, Z., Yang, C., & Chen, L. (2014). Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotechnica, 9(1), 153–160. https://doi.org/10.1007/s11440-013-0236-5
  • Liu, Y., & Dai, F. (2021). A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1203–1230. https://doi.org/10.1016/j.jrmge.2021.03.012
  • Liu, Y., Dai, F., Zhao, T., & Xu, N. W. (2017). Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression. Rock Mechanics and Rock Engineering, 50(1), 89–112. https://doi.org/10.1007/s00603-016-1085-y
  • Martin, C. D., & Chandler, N. A. (1994). The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences and, 31(6), 643–659. https://doi.org/10.1016/0148-9062(94)90005-1
  • Momeni, A., Karakus, M., Khanlari, G. R., & Heidari, M. (2015). Effects of cyclic loading on the mechanical properties of a granite. International Journal of Rock Mechanics and Mining Sciences, 77, 89–96. https://doi.org/10.1016/j.ijrmms.2015.03.029
  • Nejati, H. R., & Ghazvinian, A. (2014). Brittleness effect on rock fatigue damage evolution. Rock Mechanics and Rock Engineering, 47(5), 1839–1848. https://doi.org/10.1007/s00603-013-0486-4
  • Nguyen, T. L., Hall, S. A., Vacher, P., & Viggiani, G. (2011). Fracture mechanisms in soft rock: Identification and quantification of evolving displacement discontinuities by extended digital image correlation. Tectonophysics, 503(1–2), 117–128. https://doi.org/10.1016/j.tecto.2010.09.024
  • Oraee-Mirzamani, K.; Goodarzi, A.; Oraee-Mirzamani, N. (2011). Assessment of the dynamic loads effect on underground mines supports. 30th International Conference on Ground Control in Mining, 74–79
  • Peng, K., Zhou, J., Zou, Q., & Song, X. (2020). Effect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanism. International Journal of Fatigue, 131(July 2019), 105349. https://doi.org/10.1016/j.ijfatigue.2019.105349
  • Rajaram, V. (1981). Mechanical behavior of granite under cyclic compression. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 11
  • Ray, S. K., Sarkar, M., & Singh, T. N. (1999). Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone. International Journal of Rock Mechanics and Mining Sciences, 36(4), 543–549. https://doi.org/10.1016/S0148-9062(99)00016-9
  • Royer-Carfagni, G., & Salvatore, W. (2000). Characterization of marble by cyclic compression loading: experimental results. Mechanics of Cohesive-Frictional Materials, 5(7), 535–563. https://doi.org/10.1002/1099-1484(200010)5:7<535::AID-CFM102>3.0.CO;2-D
  • Singh, S. K. (1989). Fatigue and strain hardening behaviour of graywacke from the flagstaff formation, New South Wales. Engineering Geology, 26(2), 171–179. https://doi.org/10.1190/segam2013-0137.1
  • Song, H., Zhang, H., Kang, Y., Huang, G., Fu, D., & Qu, C. (2013). Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation. Tectonophysics, 608, 1343–1348. https://doi.org/10.1016/j.tecto.2013.06.007
  • Song, R., Yue-ming, B., Jing-Peng, Z., De-yi, J., & Chun-he, Y. (2013). Experimental investigation of the fatigue properties of salt rock. International Journal of Rock Mechanics and Mining Sciences, 64, 68–72. https://doi.org/10.1016/j.ijrmms.2013.08.023
  • Stanchits, S., Vinciguerra, S., & Dresen, G. (2006). Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure and Applied Geophysics, 163(5–6), 974–993. https://doi.org/10.1007/s00024-006-0059-5
  • Tang, J., Chen, X., & Dai, F. (2020). Experimental study on the crack propagation and acoustic emission characteristics of notched rock beams under post-peak cyclic loading. Engineering Fracture Mechanics, 226(November 2019), 106890. https://doi.org/10.1016/j.engfracmech.2020.106890
  • Wang, J., Li, J., Shi, Z., Chen, J., & Lin, H. (2022). Fatigue characteristics and fracture behaviour of sandstone under discontinuous multilevel constant-amplitude fatigue disturbance. Engineering Fracture Mechanics, 274(June), 108773. https://doi.org/10.1016/j.engfracmech.2022.108773
  • Wang, Q., Chen, J., Guo, J., Luo, Y., Wang, H., & Liu, Q. (2019). Acoustic emission characteristics and energy mechanism in karst limestone failure under uniaxial and triaxial compression. Bulletin of Engineering Geology and the Environment, 78, 1427-1442
  • Wang, Y., Gao, S. H., & Han, J. Q. (2020). Fatigue-damage evolution characteristics of ınterbeded marble subjected to dynamic uniaxial cyclic loads. Geotechnical and Geological Engineering, 9. https://doi.org/10.1007/s10706-020-01526-9
  • Wang, Z., Li, S., Qiao, L., & Zhang, Q. (2015). Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. International Journal of Rock Mechanics and Mining Sciences, 73, 70–81. https://doi.org/10.1016/j.ijrmms.2014.09.018
  • Wang, Z., Li, S., Qiao, L., & Zhao, J. (2013). Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mechanics and Rock Engineering, 46(6), 1603–1615. https://doi.org/10.1007/s00603-013-0387-6
  • Xiao, J. Q., Ding, D. X., Jiang, F. L., & Xu, G. (2010). Fatigue damage variable and evolution of rock subjected to cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 47(3), 461–468. https://doi.org/10.1016/j.ijrmms.2009.11.003
  • Xiao, J. Q., Ding, D. X., Xu, G., & Jiang, F. L. (2009). Inverted S-shaped model for nonlinear fatigue damage of rock. International Journal of Rock Mechanics and Mining Sciences, 46(3), 643–648. https://doi.org/10.1016/j.ijrmms.2008.11.002
  • Yang, S. Q., Ranjith, P. G., Huang, Y. H., Yin, P. F., Jing, H. W., Gui, Y. L., & Yu, Q. L. (2015). Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophysical Journal International, 201(2), 662–682. https://doi.org/10.1093/gji/ggv023
  • Yang, S. Q., Tian, W. L., & Ranjith, P. G. (2017). Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading. Rock Mechanics and Rock Engineering, 50(11), 2871–2889. https://doi.org/10.1007/s00603-017-1262-7
  • Zhang, M., Dou, L., Konietzky, H., Song, Z., & Huang, S. (2020). Cyclic fatigue characteristics of strong burst-prone coal: Experimental insights from energy dissipation, hysteresis and micro-seismicity. International Journal of Fatigue, 133(December 2019), 105429. https://doi.org/10.1016/j.ijfatigue.2019.105429
  • Zhang, Z. ., Kou, S. ., Jiang, L., & Lindqvist, P. A. (2002). Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. International Journal of Rock Mechanics and Mining Sciences, 37(5), 745–762. https://doi.org/10.1016/s1365-1609(00)00008-3
  • Zhenyu, T., & Haihong, M. (1990). An experimental study and analysis of the behaviour of rock under cyclic loading. International Journal of Rock Mechanics and Mining Sciences and, 27(1), 51–56. https://doi.org/10.1016/0148-9062(90)90008-P
  • Zhou, Z. L., Wu, Z. B., Li, X. B., Li, X., & Ma, C. De. (2015). Mechanical behavior of red sandstone under cyclic point loading. Transactions of Nonferrous Metals Society of China (English Edition), 25(8), 2708–2717. https://doi.org/10.1016/S1003-6326(15)63895-X
  • Zhu, W. C., & Tang, C. A. (2006). Numerical simulation of Brazilian disk rock failure under static and dynamic loading. International Journal of Rock Mechanics and Mining Sciences, 43(2), 236–252. https://doi.org/10.1016/j.ijrmms.2005.06.008
  • Zhu, Y., Yu, J., Cai, Y., Tang, X., Yao, W., & Liu, X. (2020). A novel fatigue damage model of rock considering temperature effects. Advances in Civil Engineering, 2020, 1-11. https://doi.org/10.1155/2020/8838335
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Rock Mechanics and Fortification
Journal Section Reviews
Authors

Melek Hanım Beşer 0000-0002-3748-4040

Kerim Aydıner 0000-0002-4942-3085

Publication Date December 15, 2024
Submission Date May 28, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Beşer, M. H., & Aydıner, K. (2024). Tekrarlı yüklerin kayaçların deformasyon özelliklerine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1304-1318. https://doi.org/10.17714/gumusfenbil.1490810