Research Article
BibTex RIS Cite

MEW ile üretilmiş kitosan/PCL kompozit stentlerin in vitro testlerle biyobozunma performansının tespiti

Year 2024, Volume: 14 Issue: 4, 1128 - 1137, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1508489

Abstract

Günümüzde biyobozunur implantlar kalıcı implant gruplarına ciddi alternatif olmaya başlamıştır. Özellikle polimer malzeme teknolojisinin gelişmesi metalik gruptaki tıbbi enstrümanlara alternatif olabilmektedir. İşte bu polimerik implantların üretimi için yenilikçi bir üretim metodu da melt electrowritingtir (MEW). Eklemeli imalat teknolojisinin üretim kalitesi üzerine yapılan çalışmalar sonucu ortaya çıkan bu yenilikçi yöntem stentler gibi daha küçük ve kompleks geometriye sahip ürünlerde kullanılmaktadır. Özellikle hastaya özel implant modeli için oldukça elverişli olan bu yöntemin gelecekte implant üretim pazarında önemli bir yere sahip olacağı ön görülmektedir. Bu perspektif çerçevesinde bu çalışmada da MEW yöntemi kullanılarak polikarbolakton grubu üzerine bir çalışma yürütülmüştür. Biyobozunur karakterinin geliştirilmesi amacıyla chitosan takviyesi yapılan stentlerin biyobozunurluk deneyleri in vitro ortamda gerçekleştirilmiştir. İki farklı ortamda 1,7, 14 ve 21 gün esas alınarak daldırmalı korozyona tabi tutulan numunelerin bozunma karakteri kütle kaybı esas alınarak incelenmiştir. Chitosan takviyesinin tampon etkisi göstererek bozunma süresi üzerinde geciktirici bir rol oynadığı tespit edilmiştir. Bozunma miktarları incelendiğinde, yapay vücut sıvısı içinde 21 gün bekletilmiş polikarbolakton stentin 1,6×10-2 gr ile maksimum kütle kaybını yaşadığı tespit edilmiştir. 1. günün sonunda bu stent için ölçülen değer 5,8×10-4 gr dir. 21 gün sonunda minimum kayıp yapay vücut sıvısı içinde kitosan takviyeli polikarbolakton stent için elde edilmiştir (7,98×10-3 gr).

Project Number

FBA2023-11898

References

  • Brooks-Richards, T. L., Paxton, N. C., Allenby, M. C., & Woodruff, M. A. (2022). Dissolvable 3D printed PVA moulds for melt electrowriting tubular scaffolds with patient-specific geometry. Materials & Design, 215, 110466. https://doi.org/10.1016/J.MATDES.2022.110466
  • Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780–792. https://doi.org/10.1016/J.EURPOLYMJ.2012.12.009
  • Du, L., Yang, L., Lu, H., Nie, L., Sun, Y., Gu, J., Fujiwara, S., Yagi, S., Xu, T., & Xu, H. (2024). Additive manufacturing of ultrahigh-resolution Poly(ε-caprolactone) scaffolds using melt electrowriting. Polymer, 301, 127028. https://doi.org/10.1016/J.POLYMER.2024.127028
  • Ghalia, M. A., & Alhanish, A. (2023). Mechanical and biodegradability of porous PCL/PEG copolymer-reinforced cellulose nanofibers for soft tissue engineering applications. Medical Engineering & Physics, 120, 104055. https://doi.org/10.1016/J.MEDENGPHY.2023.104055
  • Guerra, A., Roca, A., & de Ciurana, J. (2017). A novel 3D additive manufacturing machine to biodegradable stents. Procedia Manufacturing, 13, 718–723. https://doi.org/10.1016/J.PROMFG.2017.09.118
  • Han, Y., Jia, B., Lian, M., Sun, B., Wu, Q., Sun, B., Qiao, Z., & Dai, K. (2021). High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioactive Materials, 6(7), 2173–2186. https://doi.org/10.1016/J.BIOACTMAT.2020.12.018
  • Hussain, M., Khan, S. M., Shafiq, M., & Abbas, N. (2024). A review on PLA-based biodegradable materials for biomedical applications. Giant, 18, 100261. https://doi.org/10.1016/J.GIANT.2024.100261
  • Hussain, M., Khan, S. M., Shafiq, M., Abbas, N., Sajjad, U., & Hamid, K. (2024). Advances in biodegradable materials: Degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon, 10(12), e32713. https://doi.org/10.1016/J.HELIYON.2024.E32713
  • Khan, A. R., Grewal, N. S., Zhou, C., Yuan, K., Zhang, H. J., & Jun, Z. (2023). Recent advances in biodegradable metals for implant applications: Exploring in vivo and in vitro responses. Results in Engineering, 20, 101526. https://doi.org/10.1016/J.RINENG.2023.101526
  • Kim, H., Lee, S. H., Wentworth, A., Babaee, S., Wong, K., Collins, J. E., Chu, J., Ishida, K., Kuosmanen, J., Jenkins, J., Hess, K., Lopes, A., Morimoto, J., Wan, Q., Potdar, S. V., McNally, R., Tov, C., Kim, N. Y., Hayward, A., … Traverso, G. (2022). Biodegradable ring-shaped implantable device for intravesical therapy of bladder disorders. Biomaterials, 288, 121703. https://doi.org/10.1016/J.BIOMATERIALS.2022.121703
  • Kozusko, S. D., Riccio, C., Goulart, M., Bumgardner, J., Jing, X. L., & Konofaos, P. (2018). Chitosan as a bone scaffold biomaterial. Journal of Craniofacial Surgery, 29(7), 1788–1793. https://doi.org/10.1097/SCS.0000000000004909
  • Martins, J. P. ;, Da Silva, E. T. ;, Fernandes, A. A. ;, Martins, J. P., Da Silva, E. T., Fernandes, A. A., & Costa De Oliveira, S. (2024). Three-Dimensional Melted Electrowriting Drug Coating Fibers for the Prevention of Device-Associated Infections: A Pilot Study. Bioengineering 2024, Vol. 11, Page 636, 11(7), 636. https://doi.org/10.3390/BIOENGINEERING11070636
  • Mieszczanek, P., Robinson, T. M., Dalton, P. D., Hutmacher, D. W., Mieszczanek, P., Robinson, T. M., Hutmacher, D. W., & Dalton, P. D. (2021). Convergence of Machine Vision and Melt Electrowriting. Advanced Materials, 33(29), 2100519. https://doi.org/10.1002/ADMA.202100519
  • Ojha, A. K., Rajasekaran, R., Hansda, A. K., Singh, A., Dutta, A., Seesala, V. S., Das, S., Dogra, N., Sharma, S., Goswami, R., Chaudhury, K., & Dhara, S. (2023). Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo. ACS Applied Materials and Interfaces, 15(33), 39099–39116. https://doi.org/10.1021/ACSAMI.3C06585
  • Peng, B., Xu, H., Song, F., Wen, P., Tian, Y., & Zheng, Y. (2024). Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification. Journal of Materials Science & Technology, 182, 79–110. https://doi.org/10.1016/J.JMST.2023.08.072
  • Puppi, D., & Chiellini, F. (2020). Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 20, 100700. https://doi.org/10.1016/J.APMT.2020.100700
  • Sammel, A. M., Chen, D., & Jepson, N. (2013). New Generation Coronary Stent Technology—Is the Future Biodegradable? Heart, Lung and Circulation, 22(7), 495–506. https://doi.org/10.1016/J.HLC.2013.02.008
  • Somszor, K., Bas, O., Karimi, F., Shabab, T., Saidy, N. T., O’Connor, A. J., Ellis, A. V., Hutmacher, D., & Heath, D. E. (2020). Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents via Melt Electrowriting. ACS Macro Letters, 9(12), 1732–1739. https://doi.org/10.1021/ACSMACROLETT.0C00644/SUPPL_FILE/MZ0C00644_SI_001.PDF
  • Song, G., Zhao, H. Q., Liu, Q., & Fan, Z. (2022). A review on biodegradable biliary stents: materials and future trends. Bioactive Materials, 17, 488–495. https://doi.org/10.1016/J.BIOACTMAT.2022.01.017
  • Srivastava, A., Singh, S., Agrawal, M., Bhati, P., Kumari, N., Pandya, M., Vashisth, P., Chauhan, P., & Bhatnagar, N. (2024). Fabrication and characterization of PLLA/PCL/Mg-Zn-Y alloy composite stent. Polymer Engineering and Science, 64(1), 243–253. https://doi.org/10.1002/PEN.26543
  • Tie, D., Liu, H., Guan, R., Holt-Torres, P., Liu, Y., Wang, Y., & Hort, N. (2020). In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomaterialia, 116, 415–425. https://doi.org/10.1016/J.ACTBIO.2020.09.023
  • Wang, X., Zou, Z., Li, K., Ren, C., Yu, X., Zhang, Y., Zhao, P., Yan, S., & Li, Q. (2024). Design and fabrication of dual-layer PCL nanofibrous scaffolds with inductive influence on vascular cell responses. Colloids and Surfaces B: Biointerfaces, 240, 113988. https://doi.org/10.1016/J.COLSURFB.2024.113988
  • Wang, Y., Ren, X., Ji, C., Zhong, D., Wei, X., Zhu, Z., Zhou, X., Zhang, X., Wang, S., Qin, C., & Song, N. (2023). A modified biodegradable mesh ureteral stent for treating ureteral stricture disease. Acta Biomaterialia, 155, 347–358. https://doi.org/10.1016/J.ACTBIO.2022.11.022
  • Wen, K. chao, Li, Z. an, Liu, J. heng, Zhang, C., Zhang, F., & Li, F. qian. (2024). Recent developments in ureteral stent: Substrate material, coating polymer and technology, therapeutic function. Colloids and Surfaces B: Biointerfaces, 238, 113916. https://doi.org/10.1016/J.COLSURFB.2024.113916
  • Xin, Y., Hu, T., & Chu, P. K. (2011). In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomaterialia, 7(4), 1452–1459. https://doi.org/10.1016/J.ACTBIO.2010.12.004
  • Xu, H., & Du, L. (2023). Sustainable medical materials printed by melt electrowriting: A mini-review. Current Opinion in Biomedical Engineering, 27, 100464. https://doi.org/10.1016/J.COBME.2023.100464
  • Xu, T., Gu, J., Meng, J., Du, L., Kumar, A., & Xu, H. (2022). Melt electrowriting reinforced composite membrane for controlled drug release. Journal of the Mechanical Behavior of Biomedical Materials, 132, 105277. https://doi.org/10.1016/J.JMBBM.2022.105277
  • Yoshida, M., Turner, P. R., Ali, M. A., & Cabral, J. D. (2021). Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior. ACS Applied Bio Materials, 4(2),1319–1329.https://doi.org/10.1021/ACSABM.0C01213/ASSET/IMAGES/LARGE/MT0C01213_0009.JPEG
  • Zhang, C., Hui, D., Du, C., Sun, H., Peng, W., Pu, X., Li, Z., Sun, J., & Zhou, C. (2021). Preparation and application of chitosan biomaterials in dentistry. International Journal of Biological Macromolecules, 167, 1198–1210. https://doi.org/10.1016/J.IJBIOMAC.2020.11.073

Determination of biodegradation performance for fabricated by MEW chitosan/PCL composite stents with in vitro tests

Year 2024, Volume: 14 Issue: 4, 1128 - 1137, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1508489

Abstract

Today, biodegradable implants have begun to become a serious alternative to permanent implant groups. Especially the development of polymer material technology can be an alternative to metallic medical instruments. An innovative manufacturing method for the fabricated of these polymeric implants is melt electrowriting (MEW). This innovative method, which emerged as a result of studies on the production quality of additive manufacturing technology, is used in products with smaller and more complex geometries, such as stents. It is anticipated that this method, which is particularly convenient for patient-specific implant models, will have an important place in the implant production market in the future. Within the framework of this perspective, in this study, a study was conducted on the polycarbolactone group using the MEW method. In order to improve the biodegradability character, biodegradability experiments of chitosan-doped stents were conducted in vitro. The degradation character of the samples subjected to immersion corrosion in two different media for 1, 7, 14 and 21 days was examined based on residual mass. It has been determined that chitosan reinforcement has a buffering effect and plays a retarding role on the degradation time. When the degradation rates were examined, it was determined that the polycarbolactone stent immersed in artificial body fluid for 21 days experienced the maximum mass loss of 1.6×10-2 gr. The value measured for this stent at the end of the first day was 5.8×10-4 gr. At the end of 21 days, the minimum loss was obtained for the chitosan-doped polycarbolactone stent in artificial body fluid (7.98×10-3 gr).

Project Number

FBA2023-11898

References

  • Brooks-Richards, T. L., Paxton, N. C., Allenby, M. C., & Woodruff, M. A. (2022). Dissolvable 3D printed PVA moulds for melt electrowriting tubular scaffolds with patient-specific geometry. Materials & Design, 215, 110466. https://doi.org/10.1016/J.MATDES.2022.110466
  • Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780–792. https://doi.org/10.1016/J.EURPOLYMJ.2012.12.009
  • Du, L., Yang, L., Lu, H., Nie, L., Sun, Y., Gu, J., Fujiwara, S., Yagi, S., Xu, T., & Xu, H. (2024). Additive manufacturing of ultrahigh-resolution Poly(ε-caprolactone) scaffolds using melt electrowriting. Polymer, 301, 127028. https://doi.org/10.1016/J.POLYMER.2024.127028
  • Ghalia, M. A., & Alhanish, A. (2023). Mechanical and biodegradability of porous PCL/PEG copolymer-reinforced cellulose nanofibers for soft tissue engineering applications. Medical Engineering & Physics, 120, 104055. https://doi.org/10.1016/J.MEDENGPHY.2023.104055
  • Guerra, A., Roca, A., & de Ciurana, J. (2017). A novel 3D additive manufacturing machine to biodegradable stents. Procedia Manufacturing, 13, 718–723. https://doi.org/10.1016/J.PROMFG.2017.09.118
  • Han, Y., Jia, B., Lian, M., Sun, B., Wu, Q., Sun, B., Qiao, Z., & Dai, K. (2021). High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioactive Materials, 6(7), 2173–2186. https://doi.org/10.1016/J.BIOACTMAT.2020.12.018
  • Hussain, M., Khan, S. M., Shafiq, M., & Abbas, N. (2024). A review on PLA-based biodegradable materials for biomedical applications. Giant, 18, 100261. https://doi.org/10.1016/J.GIANT.2024.100261
  • Hussain, M., Khan, S. M., Shafiq, M., Abbas, N., Sajjad, U., & Hamid, K. (2024). Advances in biodegradable materials: Degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon, 10(12), e32713. https://doi.org/10.1016/J.HELIYON.2024.E32713
  • Khan, A. R., Grewal, N. S., Zhou, C., Yuan, K., Zhang, H. J., & Jun, Z. (2023). Recent advances in biodegradable metals for implant applications: Exploring in vivo and in vitro responses. Results in Engineering, 20, 101526. https://doi.org/10.1016/J.RINENG.2023.101526
  • Kim, H., Lee, S. H., Wentworth, A., Babaee, S., Wong, K., Collins, J. E., Chu, J., Ishida, K., Kuosmanen, J., Jenkins, J., Hess, K., Lopes, A., Morimoto, J., Wan, Q., Potdar, S. V., McNally, R., Tov, C., Kim, N. Y., Hayward, A., … Traverso, G. (2022). Biodegradable ring-shaped implantable device for intravesical therapy of bladder disorders. Biomaterials, 288, 121703. https://doi.org/10.1016/J.BIOMATERIALS.2022.121703
  • Kozusko, S. D., Riccio, C., Goulart, M., Bumgardner, J., Jing, X. L., & Konofaos, P. (2018). Chitosan as a bone scaffold biomaterial. Journal of Craniofacial Surgery, 29(7), 1788–1793. https://doi.org/10.1097/SCS.0000000000004909
  • Martins, J. P. ;, Da Silva, E. T. ;, Fernandes, A. A. ;, Martins, J. P., Da Silva, E. T., Fernandes, A. A., & Costa De Oliveira, S. (2024). Three-Dimensional Melted Electrowriting Drug Coating Fibers for the Prevention of Device-Associated Infections: A Pilot Study. Bioengineering 2024, Vol. 11, Page 636, 11(7), 636. https://doi.org/10.3390/BIOENGINEERING11070636
  • Mieszczanek, P., Robinson, T. M., Dalton, P. D., Hutmacher, D. W., Mieszczanek, P., Robinson, T. M., Hutmacher, D. W., & Dalton, P. D. (2021). Convergence of Machine Vision and Melt Electrowriting. Advanced Materials, 33(29), 2100519. https://doi.org/10.1002/ADMA.202100519
  • Ojha, A. K., Rajasekaran, R., Hansda, A. K., Singh, A., Dutta, A., Seesala, V. S., Das, S., Dogra, N., Sharma, S., Goswami, R., Chaudhury, K., & Dhara, S. (2023). Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo. ACS Applied Materials and Interfaces, 15(33), 39099–39116. https://doi.org/10.1021/ACSAMI.3C06585
  • Peng, B., Xu, H., Song, F., Wen, P., Tian, Y., & Zheng, Y. (2024). Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification. Journal of Materials Science & Technology, 182, 79–110. https://doi.org/10.1016/J.JMST.2023.08.072
  • Puppi, D., & Chiellini, F. (2020). Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 20, 100700. https://doi.org/10.1016/J.APMT.2020.100700
  • Sammel, A. M., Chen, D., & Jepson, N. (2013). New Generation Coronary Stent Technology—Is the Future Biodegradable? Heart, Lung and Circulation, 22(7), 495–506. https://doi.org/10.1016/J.HLC.2013.02.008
  • Somszor, K., Bas, O., Karimi, F., Shabab, T., Saidy, N. T., O’Connor, A. J., Ellis, A. V., Hutmacher, D., & Heath, D. E. (2020). Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents via Melt Electrowriting. ACS Macro Letters, 9(12), 1732–1739. https://doi.org/10.1021/ACSMACROLETT.0C00644/SUPPL_FILE/MZ0C00644_SI_001.PDF
  • Song, G., Zhao, H. Q., Liu, Q., & Fan, Z. (2022). A review on biodegradable biliary stents: materials and future trends. Bioactive Materials, 17, 488–495. https://doi.org/10.1016/J.BIOACTMAT.2022.01.017
  • Srivastava, A., Singh, S., Agrawal, M., Bhati, P., Kumari, N., Pandya, M., Vashisth, P., Chauhan, P., & Bhatnagar, N. (2024). Fabrication and characterization of PLLA/PCL/Mg-Zn-Y alloy composite stent. Polymer Engineering and Science, 64(1), 243–253. https://doi.org/10.1002/PEN.26543
  • Tie, D., Liu, H., Guan, R., Holt-Torres, P., Liu, Y., Wang, Y., & Hort, N. (2020). In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomaterialia, 116, 415–425. https://doi.org/10.1016/J.ACTBIO.2020.09.023
  • Wang, X., Zou, Z., Li, K., Ren, C., Yu, X., Zhang, Y., Zhao, P., Yan, S., & Li, Q. (2024). Design and fabrication of dual-layer PCL nanofibrous scaffolds with inductive influence on vascular cell responses. Colloids and Surfaces B: Biointerfaces, 240, 113988. https://doi.org/10.1016/J.COLSURFB.2024.113988
  • Wang, Y., Ren, X., Ji, C., Zhong, D., Wei, X., Zhu, Z., Zhou, X., Zhang, X., Wang, S., Qin, C., & Song, N. (2023). A modified biodegradable mesh ureteral stent for treating ureteral stricture disease. Acta Biomaterialia, 155, 347–358. https://doi.org/10.1016/J.ACTBIO.2022.11.022
  • Wen, K. chao, Li, Z. an, Liu, J. heng, Zhang, C., Zhang, F., & Li, F. qian. (2024). Recent developments in ureteral stent: Substrate material, coating polymer and technology, therapeutic function. Colloids and Surfaces B: Biointerfaces, 238, 113916. https://doi.org/10.1016/J.COLSURFB.2024.113916
  • Xin, Y., Hu, T., & Chu, P. K. (2011). In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomaterialia, 7(4), 1452–1459. https://doi.org/10.1016/J.ACTBIO.2010.12.004
  • Xu, H., & Du, L. (2023). Sustainable medical materials printed by melt electrowriting: A mini-review. Current Opinion in Biomedical Engineering, 27, 100464. https://doi.org/10.1016/J.COBME.2023.100464
  • Xu, T., Gu, J., Meng, J., Du, L., Kumar, A., & Xu, H. (2022). Melt electrowriting reinforced composite membrane for controlled drug release. Journal of the Mechanical Behavior of Biomedical Materials, 132, 105277. https://doi.org/10.1016/J.JMBBM.2022.105277
  • Yoshida, M., Turner, P. R., Ali, M. A., & Cabral, J. D. (2021). Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior. ACS Applied Bio Materials, 4(2),1319–1329.https://doi.org/10.1021/ACSABM.0C01213/ASSET/IMAGES/LARGE/MT0C01213_0009.JPEG
  • Zhang, C., Hui, D., Du, C., Sun, H., Peng, W., Pu, X., Li, Z., Sun, J., & Zhou, C. (2021). Preparation and application of chitosan biomaterials in dentistry. International Journal of Biological Macromolecules, 167, 1198–1210. https://doi.org/10.1016/J.IJBIOMAC.2020.11.073
There are 29 citations in total.

Details

Primary Language English
Subjects Biomaterial , Material Design and Behaviors
Journal Section Articles
Authors

Yusuf Burak Bozkurt 0000-0003-3859-9322

Project Number FBA2023-11898
Publication Date December 15, 2024
Submission Date July 1, 2024
Acceptance Date September 10, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Bozkurt, Y. B. (2024). Determination of biodegradation performance for fabricated by MEW chitosan/PCL composite stents with in vitro tests. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1128-1137. https://doi.org/10.17714/gumusfenbil.1508489