Research Article
BibTex RIS Cite

Hydrothermal liquefaction of Xanthium Strumarium L. in the presence of Co/TiO2, Mn/TiO2 and Co+Mn/TiO2 catalysts

Year 2024, Volume: 14 Issue: 4, 1259 - 1273, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1509424

Abstract

Hydrothermal liquefaction (HTL) is the process of liquefying biomass under high pressure and temperature and is widely used to provide environmentally friendly energy and material conversion. In the HTL process, the selection of the right catalysts is critical to increase process efficiency and obtain products with high energy value. For this purpose, in this study, Co/TiO2, Mn/TiO2 and Co+Mn/TiO2 catalysts were synthesized, characterized by analysis methods such as SEM, SEM-EDX, XPS and ICP-OES and used in the HTL process of the Xanthium strumarium plant. The reaction temperature in HTS was determined as 275, 300 and 325 °C and the waiting time was determined as 30 minutes. At the end of the experiments, it was observed that the experiments with catalysts increased the amount of liquid product. Elemental and GC-MS analyzes of the obtained liquid products were performed. The highest energy value was obtained in the presence of the Mn/TiO2 catalyst.

References

  • Aranda-Pérez, N., Ruiz, M. P., Echave, J., & Faria, J. (2017). Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization. Applied Catalysis A: General, 531, 106–118. https://doi.org/https://doi.org/10.1016/j.apcata.2016.10.025
  • Batan, L. Y., Graff, G. D., & Bradley, T. H. (2016). Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresource Technology, 219, 45–52. https://doi.org/https://doi.org/10.1016/j.biortech.2016.07.085
  • Brunner, G. (2014). Hydrothermal and supercritical water processes. Elsevier.
  • Briens, C., Piskorz, J., & Berruti, F. (2008). Biomass valorization for fuel and chemicals production--A review. International Journal of Chemical Reactor Engineering, 6(1).
  • Cao, L., Zhang, C., Chen, H., Tsang, D. C., Luo, G., Zhang, S., & Chen, J. (2017). Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresource technology, 245, 1184-1193.
  • Chen, H.-Y. T., Tosoni, S., & Pacchioni, G. (2015a). Hydrogen Adsorption, Dissociation, and Spillover on Ru10 Clusters Supported on Anatase TiO2 and Tetragonal ZrO2 (101) Surfaces. ACS Catalysis, 5(9), 5486–5495. https://doi.org/10.1021/acscatal.5b01093
  • Chen, X. Q., Lin, H. B., Zheng, X. W., Cai, X., Xia, P., Zhu, Y. M., ... & Li, W. S. (2015b). Fabrication of core–shell porous nanocubic Mn 2 O 3@ TiO 2 as a high-performance anode for lithium ion batteries. Journal of Materials Chemistry A, 3(35), 18198-18206.
  • Dong, Z., Yang, H., Chen, P., Liu, Z., Chen, Y., Wang, L., Wang, X., & Chen, H. (2019). Lignin Characterization and Catalytic Pyrolysis for Phenol-Rich Oil with TiO2-Based Catalysts. Energy & Fuels, 33(10), 9934–9941. https://doi.org/10.1021/acs.energyfuels.9b02341
  • Durak, H., & Genel, S. (2020). Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 309, 123375. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123375
  • Durak, H. (2016). Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(10), 1400-1409.
  • Drăgan, N., Crişan, M., Răileanu, M., Crişan, D., Ianculescu, A., Oancea, P., ... & Vasile, B. (2014). The effect of Co dopant on TiO2 structure of sol–gel nanopowders used as photocatalysts. Ceramics International, 40(8), 12273-12284.
  • Elliott, D. C., Beckman, D., Bridgwater, A. V, Diebold, J. P., Gevert, S. B., & Solantausta, Y. (1991). Developments in direct thermochemical liquefaction of biomass: 1983-1990. Energy & Fuels, 5(3), 399–410.
  • Feng, L., Li, X., Wang, Z., & Liu, B. (2021). Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst. Bioresource Technology, 323, 124569. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124569
  • Galamba, N., Paiva, A., Barreiros, S., & Simões, P. (2019). Solubility of polar and nonpolar aromatic molecules in subcritical water: the role of the dielectric constant. Journal of Chemical Theory and Computation, 15(11), 6277-6293.
  • Genel, S. (2023). Biyokütlenin heterojen katalizör varlığında katalitik hidrotermal sıvılaştırma yöntemi ile sıvılaştırılması ve elde edilen ürünlerin karakterizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 675–687. https://doi.org/10.17714/gumusfenbil.1279608
  • Genel, Y., Durak, H., Aysu, T., & Genel, İ. (2016). Effect of process parameters on supercritical liquefaction of Xanthium strumarium for bio-oil production. The Journal of Supercritical Fluids, 115, 42–53. https://doi.org/https://doi.org/10.1016/j.supflu.2016.04.009
  • Gou, Q.-Z., Li, C., Zhang, X.-Q., Zhang, B., Zou, S.-R., Hu, N., Sun, D.-W., & Lei, C.-X. (2018). Facile synthesis of porous Mn2O3/TiO2 microspheres as anode materials for lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Science: Materials in Electronics, 29(18), 16064–16073. https://doi.org/10.1007/s10854-018-9695-7
  • Hagen, J. (2015). Catalyst shapes and production of heterogeneous catalysts. Ind. Catal, 211–238.
  • Lei, C. X., Huang, X., Liu, X., Wang, L. S., Zhang, G. S., & Peng, D. L. (2017). Photoelectrochemical performances of the SnO2-TiO2 bilayer composite films prepared by a facile liquid phase deposition method. Journal of Alloys and Compounds, 692, 227-235.
  • Mısıroğlu, P. (2013). Biyokütleden Sıvı Ürün Üretiminde Kullanılacak Heterojen Katalizörün Sentezlenmesi, Yüksek Lisans tezi, Anadolu Üniversitesi, Turkey.
  • Jena, U., Das, K. C., & Kastner, J. R. (2012). Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis. Applied Energy, 98, 368–375. https://doi.org/https://doi.org/10.1016/j.apenergy.2012.03.056
  • Savage, P. E., Levine, R. B., & Huelsman, C. M. (2010). Hydrothermal Processing of Biomass. In M. Crocker (Ed.), Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals (p. 0). The Royal Society of Chemistry. https://doi.org/10.1039/9781849732260-00192
  • Scarsella, M., de Caprariis, B., Damizia, M., & De Filippis, P. (2020). Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy, 140, 105662. https://doi.org/https://doi.org/10.1016/j.biombioe.2020.105662
  • Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R., & Neupane, S. (2015). Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Research, 12, 80–90. https://doi.org/https://doi.org/10.1016/j.algal.2015.08.006
  • Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and sustainable Energy reviews, 40, 673-687.
  • Tian, W., Liu, R., Wang, W., Yin, Z., & Yi, X. (2018). Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst. Bioresource Technology, 263, 569–575. https://doi.org/https://doi.org/10.1016/j.biortech.2018.05.014
  • Van Doren, L. G., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource technology, 225, 67-74.
  • Wang, L., Qi, T., Wang, J., Zhang, S., Xiao, H., & Ma, Y. (2018b). Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. Journal of Hazardous Materials, 342, 579–588. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.08.080
  • Wang, Q., Wu, S., Cui, D., Zhou, H., Wu, D., Pan, S., Xu, F., & Wang, Z. (2022). Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Science of The Total Environment, 850, 158034. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158034
  • Wang, W., Xu, Y., Wang, X., Zhang, B., Tian, W., & Zhang, J. (2018a). Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst. Bioresource Technology, 250, 474–480. https://doi.org/https://doi.org/10.1016/j.biortech.2017.11.051
  • Yang, J., Hong, C., Xing, Y., Zheng, Z., Li, Z., Zhao, X., & Qi, C. (2021). Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis. Environmental Science and Pollution Research, 28(7), 7621–7635. https://doi.org/10.1007/s11356-020-11942-2

Xanthium Strumarium L. bitkisinin Co/TiO2, Mn/TiO2 ve Co+Mn/TiO2 katalizörleri varlığında hidrotermal yöntemle sıvılaştırılması

Year 2024, Volume: 14 Issue: 4, 1259 - 1273, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1509424

Abstract

Hidrotermal sıvılaştırma (HTS), biyokütlenin yüksek basınç ve sıcaklık altında sıvı hale getirilmesi sürecidir ve çevre dostu enerji ve malzeme dönüşümü sağlamak için yaygın olarak kullanılmaktadır. HTS sürecinde, doğru katalizörlerin seçimi, süreç verimliliğini artırmak ve enerji değeri yüksek ürünler elde etmek açısından kritik öneme sahiptir. Bu amaçla bu çalışmada Co/TiO2, Mn/TiO2 ve Co+Mn/TiO2 katalizörleri sentezlenmiş, SEM, SEM-EDX, XPS ve ICP-OES gibi analiz yöntemleri ile karakterize edilmiştir ve Xanthium strumarium bitkisinin HTS prosesinde kullanılmıştır. HTS prosesinde reaksiyon sıcaklığı 275, 300 ve 325 °C bekleme süresi ise 30 dakika olarak belirlenmiştir. Deneyler sonunda katalizörlü denemelerin sıvı ürün miktarını artırdığı gözlemlenmiştir. Elde edilen sıvı ürünlerin Elementel ve GC-MS analizleri yapılmıştır. En yüksek enerji değeri, Mn/TiO2 katalizörü varlığında elde edilmiştir.

References

  • Aranda-Pérez, N., Ruiz, M. P., Echave, J., & Faria, J. (2017). Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization. Applied Catalysis A: General, 531, 106–118. https://doi.org/https://doi.org/10.1016/j.apcata.2016.10.025
  • Batan, L. Y., Graff, G. D., & Bradley, T. H. (2016). Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresource Technology, 219, 45–52. https://doi.org/https://doi.org/10.1016/j.biortech.2016.07.085
  • Brunner, G. (2014). Hydrothermal and supercritical water processes. Elsevier.
  • Briens, C., Piskorz, J., & Berruti, F. (2008). Biomass valorization for fuel and chemicals production--A review. International Journal of Chemical Reactor Engineering, 6(1).
  • Cao, L., Zhang, C., Chen, H., Tsang, D. C., Luo, G., Zhang, S., & Chen, J. (2017). Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresource technology, 245, 1184-1193.
  • Chen, H.-Y. T., Tosoni, S., & Pacchioni, G. (2015a). Hydrogen Adsorption, Dissociation, and Spillover on Ru10 Clusters Supported on Anatase TiO2 and Tetragonal ZrO2 (101) Surfaces. ACS Catalysis, 5(9), 5486–5495. https://doi.org/10.1021/acscatal.5b01093
  • Chen, X. Q., Lin, H. B., Zheng, X. W., Cai, X., Xia, P., Zhu, Y. M., ... & Li, W. S. (2015b). Fabrication of core–shell porous nanocubic Mn 2 O 3@ TiO 2 as a high-performance anode for lithium ion batteries. Journal of Materials Chemistry A, 3(35), 18198-18206.
  • Dong, Z., Yang, H., Chen, P., Liu, Z., Chen, Y., Wang, L., Wang, X., & Chen, H. (2019). Lignin Characterization and Catalytic Pyrolysis for Phenol-Rich Oil with TiO2-Based Catalysts. Energy & Fuels, 33(10), 9934–9941. https://doi.org/10.1021/acs.energyfuels.9b02341
  • Durak, H., & Genel, S. (2020). Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 309, 123375. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123375
  • Durak, H. (2016). Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(10), 1400-1409.
  • Drăgan, N., Crişan, M., Răileanu, M., Crişan, D., Ianculescu, A., Oancea, P., ... & Vasile, B. (2014). The effect of Co dopant on TiO2 structure of sol–gel nanopowders used as photocatalysts. Ceramics International, 40(8), 12273-12284.
  • Elliott, D. C., Beckman, D., Bridgwater, A. V, Diebold, J. P., Gevert, S. B., & Solantausta, Y. (1991). Developments in direct thermochemical liquefaction of biomass: 1983-1990. Energy & Fuels, 5(3), 399–410.
  • Feng, L., Li, X., Wang, Z., & Liu, B. (2021). Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst. Bioresource Technology, 323, 124569. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124569
  • Galamba, N., Paiva, A., Barreiros, S., & Simões, P. (2019). Solubility of polar and nonpolar aromatic molecules in subcritical water: the role of the dielectric constant. Journal of Chemical Theory and Computation, 15(11), 6277-6293.
  • Genel, S. (2023). Biyokütlenin heterojen katalizör varlığında katalitik hidrotermal sıvılaştırma yöntemi ile sıvılaştırılması ve elde edilen ürünlerin karakterizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 675–687. https://doi.org/10.17714/gumusfenbil.1279608
  • Genel, Y., Durak, H., Aysu, T., & Genel, İ. (2016). Effect of process parameters on supercritical liquefaction of Xanthium strumarium for bio-oil production. The Journal of Supercritical Fluids, 115, 42–53. https://doi.org/https://doi.org/10.1016/j.supflu.2016.04.009
  • Gou, Q.-Z., Li, C., Zhang, X.-Q., Zhang, B., Zou, S.-R., Hu, N., Sun, D.-W., & Lei, C.-X. (2018). Facile synthesis of porous Mn2O3/TiO2 microspheres as anode materials for lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Science: Materials in Electronics, 29(18), 16064–16073. https://doi.org/10.1007/s10854-018-9695-7
  • Hagen, J. (2015). Catalyst shapes and production of heterogeneous catalysts. Ind. Catal, 211–238.
  • Lei, C. X., Huang, X., Liu, X., Wang, L. S., Zhang, G. S., & Peng, D. L. (2017). Photoelectrochemical performances of the SnO2-TiO2 bilayer composite films prepared by a facile liquid phase deposition method. Journal of Alloys and Compounds, 692, 227-235.
  • Mısıroğlu, P. (2013). Biyokütleden Sıvı Ürün Üretiminde Kullanılacak Heterojen Katalizörün Sentezlenmesi, Yüksek Lisans tezi, Anadolu Üniversitesi, Turkey.
  • Jena, U., Das, K. C., & Kastner, J. R. (2012). Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis. Applied Energy, 98, 368–375. https://doi.org/https://doi.org/10.1016/j.apenergy.2012.03.056
  • Savage, P. E., Levine, R. B., & Huelsman, C. M. (2010). Hydrothermal Processing of Biomass. In M. Crocker (Ed.), Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals (p. 0). The Royal Society of Chemistry. https://doi.org/10.1039/9781849732260-00192
  • Scarsella, M., de Caprariis, B., Damizia, M., & De Filippis, P. (2020). Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy, 140, 105662. https://doi.org/https://doi.org/10.1016/j.biombioe.2020.105662
  • Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R., & Neupane, S. (2015). Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Research, 12, 80–90. https://doi.org/https://doi.org/10.1016/j.algal.2015.08.006
  • Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and sustainable Energy reviews, 40, 673-687.
  • Tian, W., Liu, R., Wang, W., Yin, Z., & Yi, X. (2018). Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst. Bioresource Technology, 263, 569–575. https://doi.org/https://doi.org/10.1016/j.biortech.2018.05.014
  • Van Doren, L. G., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource technology, 225, 67-74.
  • Wang, L., Qi, T., Wang, J., Zhang, S., Xiao, H., & Ma, Y. (2018b). Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. Journal of Hazardous Materials, 342, 579–588. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.08.080
  • Wang, Q., Wu, S., Cui, D., Zhou, H., Wu, D., Pan, S., Xu, F., & Wang, Z. (2022). Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Science of The Total Environment, 850, 158034. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158034
  • Wang, W., Xu, Y., Wang, X., Zhang, B., Tian, W., & Zhang, J. (2018a). Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst. Bioresource Technology, 250, 474–480. https://doi.org/https://doi.org/10.1016/j.biortech.2017.11.051
  • Yang, J., Hong, C., Xing, Y., Zheng, Z., Li, Z., Zhao, X., & Qi, C. (2021). Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis. Environmental Science and Pollution Research, 28(7), 7621–7635. https://doi.org/10.1007/s11356-020-11942-2
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Chemical Thermodynamics and Energetics
Journal Section Articles
Authors

Salih Genel 0000-0003-4279-9976

Publication Date December 15, 2024
Submission Date July 2, 2024
Acceptance Date November 29, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Genel, S. (2024). Xanthium Strumarium L. bitkisinin Co/TiO2, Mn/TiO2 ve Co+Mn/TiO2 katalizörleri varlığında hidrotermal yöntemle sıvılaştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1259-1273. https://doi.org/10.17714/gumusfenbil.1509424