Research Article
BibTex RIS Cite

Light and thermal performance analysis of ınternal surface application of PCM filled solar control elements in glass facade buildings

Year 2025, Volume: 15 Issue: 3, 883 - 894, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1629652

Abstract

In today's conditions, people spend more time in buildings without compromising on comfort conditions, which has caused the amount of energy consumption to increase. Especially buildings, which are one of the sectors where energy consumption is intense, play a decisive role in the measures that can be taken to provide energy saving. Exterior facade elements have a great potential to increase the energy efficiency and environmental sustainability of buildings. In this study; the light and thermal performance evaluation of the use of phase change material (PCM) filled solar control elements (SCE) on the inner surface of triple-glazed facade systems to increase the energy efficiency of buildings is carried out. The experimental results aim to reduce the heating load of buildings in the winter season and increase the thermal resistance of facades. In the results; compared to the situation where there is no SCE in the triple-glazed system, an increase in thermal energy storage and thermal capacity was observed when the PCM filled rectangular profile inner FCE was positioned at 45o horizontally. Compared to the empty test cabin and empty SCE cases, in the experiment where the PCM filled rectangular profile inner SCE was at 45o horizontally, a 12.2% increase in the air temperature inside the cabin was observed at 40000th second in the cooling period. In the daylight value, a 27% decrease occurred compared to the empty test cabin case. It is anticipated that the study results may guide the design of energy efficient building facades for cold climate regions.

Ethical Statement

The author of this article declares that the materials and methods used in this study do not require ethics committee approval and/or legal-special permission.

References

  • Abanda, F. H., & Byers, L. (2016). An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy, 97, 517-527. https://doi.org/10.1016/j.energy.2015.12.135
  • Ahamer, G. (2024). The “global change data base” GCDB facilitates a transition to clean energy and sustainability. Clean Energy and Sustainability, 2(1), 10002. https://doi.org/10.35534/ces.2024.10002
  • Alhawari, A., Gretka, V., Lee, I., Roppel, P., & Mukhopadhyaya, P. (2024). Influence of cladding attachment structural elements on the thermal performance of lightweight steel-framed walls. Journal of Building Engineering, 87, 108838. https://doi.org/10.1016/j.jobe.2024.108838
  • Aydın, M. (2020). Türkiye koşullarinda güneş panelleri için optimum sabit ve ayarlanabilir eğim açılarinin belirlenmesi üzerine bir araştırma [Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü].
  • Baniassadi, A., Sailor, D. J., & Bryan, H. J. (2019). Effectiveness of phase change materials for improving the resiliency of residential buildings to extreme thermal conditions. Solar Energy, 188, 190-199. https://doi.org/10.1016/j.solener.2019.06.011
  • Bichiou, Y., & Krarti, M. (2011). Optimization of envelope and HVAC systems selection for residential buildings. Energy and Buildings, 43(12), 3373-3382. https://doi.org/10.1016/j.enbuild.2011.08.031
  • Ceviz, M. A., Mandev, E., Muratçobanoğlu, B., Çelik, A., & Afshari, F. (2023). Experimental analysis of energy storage performance of phase change materials in horizontal double-glazing applications. Journal of Energy Storage, 73, 108836. https://doi.org/10.1016/j.est.2023.108836
  • Cumo, F., Pennacchia, E., & Zylka, C. (2023). Energy-efficient solutions: a multi-criteria decision aid tool to achieve the targets of the european epdb directive. Energies, 16(17), 6245. https://doi.org/10.3390/en16176245
  • Davtalab, J., Deyhimi, S. P., Dessi, V., Hafezi, M. R., & Adib, M. (2020). The impact of green space structure on physiological equivalent temperature index in open space. Urban Climate, 31, 100574. https://doi.org/10.1016/j.uclim.2019.100574
  • Davtalab, J., & Heidari, A. (2021). The effect of kharkhona on outdoor thermal comfort in hot and dry climate: A case study of Sistan Region in Iran. Sustainable Cities and Society, 65, 102607. https://doi.org/10.1016/j.scs.2020.102607
  • Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Castelain, C. (2021). A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. Journal of Energy Storage, 33, 101913. https://doi.org/10.1016/j.est.2020.101913
  • Giannarou, S., & Tsatiris, M. (2021). Energy Conservation in Buildings with Passive Heating & Cooling Strategies: A Prospective Study in Greece’s Climatic Zones. Current Approaches in Science and Technology Research, 7, 95-117. https://doi.org/10.9734/bpi/castr/v7/2480F
  • Gönül, Ö. (2018). Türkiye’nin farkli iklim bölgeleri için optimal fotovoltaik panel eğim açılarının belirlenmesi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Enerji Enstitüsü].
  • Guan, Y., Wang, T., Tang, R., Hu, W., Guo, J., Yang, H., ... & Duan, S. (2020). Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity. Renewable Energy, 150, 1047-1056. https://doi.org/10.1016/j.renene.2019.11.026
  • Haowei, H. U., Xiaonan, C. H. E. N., Tingyong, F. A. N. G., & Mingjun, Z. H. U. (2019). Heat Absorption and Release Characteristics on Heat Storage Walls with Different Materials. E3S Web of Conferences, 136, 02029. https://doi.org/10.1051/e3sconf/201913602029
  • Heidari, A., & Davtalab, J. (2020). The Role of Kharkhona in Temperature Adjustment in Rural Houses of Sistan: An Effective Means for Improving Architecture Sustainability. Journal of Sustainable Architecture and Urban Design, 7(2), 55-67. https://doi.org/10.22061/jsaud.2020.5724.1553
  • Heidari, A., & Davtalab, J. (2024). Effect of Kharkhona on thermal comfort in the indoor space: A case study of Sistan region in Iran. Energy and Buildings, 318, 114431. https://doi.org/10.1016/j.enbuild.2024.114431
  • Heydari, A., Sadati, S. E., & Gharib, M. R. (2021). Effects of different window configurations on energy consumption in building: Optimization and economic analysis. Journal of Building Engineering, 35, 102099. https://doi.org/10.1016/j.jobe.2020.102099
  • Hoffmann, C., Geissler, A., Mutti, M., Wicki, A., & Schwager, F. (2021). Building materials for cities and climate change–A material catalogue with recommendations. In Journal of Physics: Conference Series, 2042, 12057. IOP Publishing. DOI 10.1088/1742-6596/2042/1/012057
  • Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). A comparative simulation study of the thermal performances of the building envelope wall materials in the tropics. Sustainability, 12(12), 4892. https://doi.org/10.3390/su12124892
  • Jazaeri, J., Gordon, R. L., & Alpcan, T. (2019). Influence of building envelopes, climates, and occupancy patterns on residential HVAC demand. Journal of Building Engineering, 22, 33-47. https://doi.org/10.1016/j.jobe.2018.11.011
  • Kim, M., Leigh, S. B., Kim, T., & Cho, S. (2015). A study on external shading devices for reducing cooling loads and improving daylighting in office buildings. Journal of Asian Architecture and Building Engineering, 14(3), 687-694.https://doi.org/10.3130/jaabe.14.687
  • Lagou, A., Kylili, A., Šadauskienė, J., & Fokaides, P. A. (2019). Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions. Construction and Building Materials, 225, 452-464. https://doi.org/10.1016/j.conbuildmat.2019.07.199
  • Li, G., Bi, X., Feng, G., Chi, L., Zheng, X., & Liu, X. (2020). Phase change material Chinese Kang: Design and experimental performance study. Renewable energy, 150, 821-830. https://doi.org/10.1016/j.renene.2020.01.004
  • Mao, R., Duan, H., Gao, H., & Wu, H. (2016). Characterizing the generation and management of a new construction waste in China: glass curtain wall. Procedia Environmental Sciences, 31, 204-210. https://doi.org/10.1016/j.proenv.2016.02.027
  • Miri, A., Heidari, A., Davtalab, J., Nosek, S., & Abdolzadeh, M. (2022). In-situ measurements of indoor dust deposition in Sistan region, Iran–the effect of windcatcher orientation. Building and Environment, 219, 109162. https://doi.org/10.1016/j.buildenv.2022.109162
  • Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renewable and Sustainable Energy Reviews, 53, 1508-1519. https://doi.org/10.1016/j.rser.2015.09.055
  • Moradzadeh, A., Mansour-Saatloo, A., Mohammadi-Ivatloo, B., & Anvari-Moghaddam, A. (2020). Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings. Applied Sciences, 10(11), 3829. https://doi.org/10.3390/app10113829
  • Muhammad, F., & Wonorahardjo, S. (2020). Building material in the perspective of energy efficiency and thermal environment in TOD Area. In IOP Conference Series: Earth and Environmental Science, 532, 12021. IOP Publishing. DOI 10.1088/1755-1315/532/1/012021
  • Myint, N. N., & Shafique, M. (2024). Embodied carbon emissions of buildings: Taking a step towards net zero buildings. Case Studies in Construction Materials, 20, e03024. https://doi.org/10.1016/j.cscm.2024.e03024
  • Orr, J., Drewniok, M. P., Walker, I., Ibell, T., Copping, A., & Emmitt, S. (2019). Minimising energy in construction: Practitioners’ views on material efficiency. Resources, Conservation and Recycling, 140, 125-136. https://doi.org/10.1016/j.resconrec.2018.09.015
  • Ozalp, C., Saydam, D. B., Çerçi, K. N., Hürdoğan, E., & Moran, H. (2019). Evaluation of a sample building with different type building elements in an energetic and environmental perspective. Renewable and Sustainable Energy Reviews, 115, 109386.https://doi.org/10.1016/j.rser.2019.109386
  • Owczarek, M. (2021). Thermal fluxes and solar energy storage in a massive brick wall in natural conditions. Energies, 14(23), 8093. https://doi.org/10.3390/en14238093
  • Udawattha, C., & Halwatura, R. (2018). Thermal performance and structural cooling analysis of brick, cement block, and mud concrete block. Advances in Building Energy Research, 12(2), 150-163. https://doi.org/10.1080/17512549.2016.1257438
  • Ručevskis, S., Akishin, P., & Korjakins, A. (2020). Parametric analysis and design optimisation of PCM thermal energy storage system for space cooling of buildings. Energy and Buildings, 224, 110288. https://doi.org/10.1016/j.enbuild.2020.110288
  • Sarbu, I., & Sebarchievici, C. (2018). A comprehensive review of thermal energy storage. Sustainability, 10(1), 191. https://doi.org/10.3390/su10010191
  • Soares, N., Gaspar, A. R., Santos, P., & Costa, J. J. (2015). Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials. Applied energy, 142, 192-205. https://doi.org/10.1016/j.apenergy.2014.12.034
  • Vaisi, S., Varmazyari, P., Esfandiari, M., & Sharbaf, S. A. (2023). Developing a multi-level energy benchmarking and certification system for office buildings in a cold climate region. Applied Energy, 336, 120824. https://doi.org/10.1016/j.apenergy.2023.120824
  • Wonorahardjo, S., Sutjahja, I., Aisyah Damiati, S., & Kurnia, D. (2020). Adjustment of indoor temperature using internal thermal mass under different tropical weather conditions. Science and Technology for the Built Environment, 26(2), 115-127. https://doi.org/10.1080/23744731.2019.1608126
  • Wonorahardjo, S., Sutjahja, I. M., Mardiyati, Y., Andoni, H., Achsani, R. A., Steven, S., ... & Tedja, S. (2022). Effect of different building façade systems on thermal comfort and urban heat island phenomenon: An experimental analysis. Building and Environment, 217, 109063. https://doi.org/10.1016/j.buildenv.2022.109063
  • Yaman, M. (2021). Different facade types and building integration in energy efficient building design strategies. International Journal of Built Environment and Sustainability, 8(2), 49-61. https://doi.org/10.11113/ijbes.v8.n2.732
  • Zalewski, L., Lassue, S., Rousse, D., & Boukhalfa, K. (2010). Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Conversion and Management, 51(12), 2869-2877. https://doi.org/10.1016/j.enconman.2010.06.026

Cam cepheli binalarda FDM dolgulu güneş kontrol elemanlarının iç yüzey uygulamasının ışık ve ısıl performans analizi

Year 2025, Volume: 15 Issue: 3, 883 - 894, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1629652

Abstract

Günümüz şartlarında insanların binalarda konfor şartlarından taviz vermeden fazla zaman geçirmesi enerji tüketim miktarının giderek artmasına sebep olmuştur. Özellikle enerji tüketiminin yoğun olduğu sektörlerden biri olan binalar, enerji tasarrufu sağlamak için alınabilecek önlemlerde belirleyici bir rol oynamaktadır. Binaların enerji verimliliğini ve çevresel sürdürülebilirliğini artırmak için dış cephe elemanları büyük bir potansiyele sahiptir. Bu çalışmada; binaların enerji verimliliğini artırmak için üç camlı cephe sistemlerin iç yüzeyinde faz değiştiren malzeme (FDM) dolgulu güneş kontrol elemanları (GKE) kullanılmasının ışık ve ısıl performans değerlendirilmesi yapılmaktadır. Deney sonuçları ile de kış mevsiminde binaların ısıtma yükünün azaltılması ve cephelerde termal direnci artırılması hedeflenmektedir. Sonuçlarda; üçlü cam sistemde GKE’nın olmadığı duruma göre, FDM dolgulu dikdörtgen profil iç GKE’nın yatayda 45o ‘de konumlandırılması durumunda termal enerji depolama ve ısıl kapasitede artış gözlenmiştir. Boş deney kabini ve içi boş GKE’ları olan durumlara göre FDM dolgulu dikdörtgen profil iç GKE’nın yatayla 45o olduğu deneyde soğuma periyotunda 40000.saniyede kabin içerisindeki hava sıcaklığında %12,2’lik bir artış gözlenmiştir. Gün ışığı değerinde ise boş deney kabini olduğu duruma göre %27 oranında azalma meydana gelmiştir. Çalışma sonuçlarının soğuk iklim bölgeleri için enerji etkin bina cephesi tasarımına rehberlik edebileceği ön görülmektedir.

Ethical Statement

Bu makalenin yazarı, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özel izin gerektirmediğini beyan etmektedir.

References

  • Abanda, F. H., & Byers, L. (2016). An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy, 97, 517-527. https://doi.org/10.1016/j.energy.2015.12.135
  • Ahamer, G. (2024). The “global change data base” GCDB facilitates a transition to clean energy and sustainability. Clean Energy and Sustainability, 2(1), 10002. https://doi.org/10.35534/ces.2024.10002
  • Alhawari, A., Gretka, V., Lee, I., Roppel, P., & Mukhopadhyaya, P. (2024). Influence of cladding attachment structural elements on the thermal performance of lightweight steel-framed walls. Journal of Building Engineering, 87, 108838. https://doi.org/10.1016/j.jobe.2024.108838
  • Aydın, M. (2020). Türkiye koşullarinda güneş panelleri için optimum sabit ve ayarlanabilir eğim açılarinin belirlenmesi üzerine bir araştırma [Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü].
  • Baniassadi, A., Sailor, D. J., & Bryan, H. J. (2019). Effectiveness of phase change materials for improving the resiliency of residential buildings to extreme thermal conditions. Solar Energy, 188, 190-199. https://doi.org/10.1016/j.solener.2019.06.011
  • Bichiou, Y., & Krarti, M. (2011). Optimization of envelope and HVAC systems selection for residential buildings. Energy and Buildings, 43(12), 3373-3382. https://doi.org/10.1016/j.enbuild.2011.08.031
  • Ceviz, M. A., Mandev, E., Muratçobanoğlu, B., Çelik, A., & Afshari, F. (2023). Experimental analysis of energy storage performance of phase change materials in horizontal double-glazing applications. Journal of Energy Storage, 73, 108836. https://doi.org/10.1016/j.est.2023.108836
  • Cumo, F., Pennacchia, E., & Zylka, C. (2023). Energy-efficient solutions: a multi-criteria decision aid tool to achieve the targets of the european epdb directive. Energies, 16(17), 6245. https://doi.org/10.3390/en16176245
  • Davtalab, J., Deyhimi, S. P., Dessi, V., Hafezi, M. R., & Adib, M. (2020). The impact of green space structure on physiological equivalent temperature index in open space. Urban Climate, 31, 100574. https://doi.org/10.1016/j.uclim.2019.100574
  • Davtalab, J., & Heidari, A. (2021). The effect of kharkhona on outdoor thermal comfort in hot and dry climate: A case study of Sistan Region in Iran. Sustainable Cities and Society, 65, 102607. https://doi.org/10.1016/j.scs.2020.102607
  • Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Castelain, C. (2021). A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. Journal of Energy Storage, 33, 101913. https://doi.org/10.1016/j.est.2020.101913
  • Giannarou, S., & Tsatiris, M. (2021). Energy Conservation in Buildings with Passive Heating & Cooling Strategies: A Prospective Study in Greece’s Climatic Zones. Current Approaches in Science and Technology Research, 7, 95-117. https://doi.org/10.9734/bpi/castr/v7/2480F
  • Gönül, Ö. (2018). Türkiye’nin farkli iklim bölgeleri için optimal fotovoltaik panel eğim açılarının belirlenmesi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Enerji Enstitüsü].
  • Guan, Y., Wang, T., Tang, R., Hu, W., Guo, J., Yang, H., ... & Duan, S. (2020). Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity. Renewable Energy, 150, 1047-1056. https://doi.org/10.1016/j.renene.2019.11.026
  • Haowei, H. U., Xiaonan, C. H. E. N., Tingyong, F. A. N. G., & Mingjun, Z. H. U. (2019). Heat Absorption and Release Characteristics on Heat Storage Walls with Different Materials. E3S Web of Conferences, 136, 02029. https://doi.org/10.1051/e3sconf/201913602029
  • Heidari, A., & Davtalab, J. (2020). The Role of Kharkhona in Temperature Adjustment in Rural Houses of Sistan: An Effective Means for Improving Architecture Sustainability. Journal of Sustainable Architecture and Urban Design, 7(2), 55-67. https://doi.org/10.22061/jsaud.2020.5724.1553
  • Heidari, A., & Davtalab, J. (2024). Effect of Kharkhona on thermal comfort in the indoor space: A case study of Sistan region in Iran. Energy and Buildings, 318, 114431. https://doi.org/10.1016/j.enbuild.2024.114431
  • Heydari, A., Sadati, S. E., & Gharib, M. R. (2021). Effects of different window configurations on energy consumption in building: Optimization and economic analysis. Journal of Building Engineering, 35, 102099. https://doi.org/10.1016/j.jobe.2020.102099
  • Hoffmann, C., Geissler, A., Mutti, M., Wicki, A., & Schwager, F. (2021). Building materials for cities and climate change–A material catalogue with recommendations. In Journal of Physics: Conference Series, 2042, 12057. IOP Publishing. DOI 10.1088/1742-6596/2042/1/012057
  • Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). A comparative simulation study of the thermal performances of the building envelope wall materials in the tropics. Sustainability, 12(12), 4892. https://doi.org/10.3390/su12124892
  • Jazaeri, J., Gordon, R. L., & Alpcan, T. (2019). Influence of building envelopes, climates, and occupancy patterns on residential HVAC demand. Journal of Building Engineering, 22, 33-47. https://doi.org/10.1016/j.jobe.2018.11.011
  • Kim, M., Leigh, S. B., Kim, T., & Cho, S. (2015). A study on external shading devices for reducing cooling loads and improving daylighting in office buildings. Journal of Asian Architecture and Building Engineering, 14(3), 687-694.https://doi.org/10.3130/jaabe.14.687
  • Lagou, A., Kylili, A., Šadauskienė, J., & Fokaides, P. A. (2019). Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions. Construction and Building Materials, 225, 452-464. https://doi.org/10.1016/j.conbuildmat.2019.07.199
  • Li, G., Bi, X., Feng, G., Chi, L., Zheng, X., & Liu, X. (2020). Phase change material Chinese Kang: Design and experimental performance study. Renewable energy, 150, 821-830. https://doi.org/10.1016/j.renene.2020.01.004
  • Mao, R., Duan, H., Gao, H., & Wu, H. (2016). Characterizing the generation and management of a new construction waste in China: glass curtain wall. Procedia Environmental Sciences, 31, 204-210. https://doi.org/10.1016/j.proenv.2016.02.027
  • Miri, A., Heidari, A., Davtalab, J., Nosek, S., & Abdolzadeh, M. (2022). In-situ measurements of indoor dust deposition in Sistan region, Iran–the effect of windcatcher orientation. Building and Environment, 219, 109162. https://doi.org/10.1016/j.buildenv.2022.109162
  • Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renewable and Sustainable Energy Reviews, 53, 1508-1519. https://doi.org/10.1016/j.rser.2015.09.055
  • Moradzadeh, A., Mansour-Saatloo, A., Mohammadi-Ivatloo, B., & Anvari-Moghaddam, A. (2020). Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings. Applied Sciences, 10(11), 3829. https://doi.org/10.3390/app10113829
  • Muhammad, F., & Wonorahardjo, S. (2020). Building material in the perspective of energy efficiency and thermal environment in TOD Area. In IOP Conference Series: Earth and Environmental Science, 532, 12021. IOP Publishing. DOI 10.1088/1755-1315/532/1/012021
  • Myint, N. N., & Shafique, M. (2024). Embodied carbon emissions of buildings: Taking a step towards net zero buildings. Case Studies in Construction Materials, 20, e03024. https://doi.org/10.1016/j.cscm.2024.e03024
  • Orr, J., Drewniok, M. P., Walker, I., Ibell, T., Copping, A., & Emmitt, S. (2019). Minimising energy in construction: Practitioners’ views on material efficiency. Resources, Conservation and Recycling, 140, 125-136. https://doi.org/10.1016/j.resconrec.2018.09.015
  • Ozalp, C., Saydam, D. B., Çerçi, K. N., Hürdoğan, E., & Moran, H. (2019). Evaluation of a sample building with different type building elements in an energetic and environmental perspective. Renewable and Sustainable Energy Reviews, 115, 109386.https://doi.org/10.1016/j.rser.2019.109386
  • Owczarek, M. (2021). Thermal fluxes and solar energy storage in a massive brick wall in natural conditions. Energies, 14(23), 8093. https://doi.org/10.3390/en14238093
  • Udawattha, C., & Halwatura, R. (2018). Thermal performance and structural cooling analysis of brick, cement block, and mud concrete block. Advances in Building Energy Research, 12(2), 150-163. https://doi.org/10.1080/17512549.2016.1257438
  • Ručevskis, S., Akishin, P., & Korjakins, A. (2020). Parametric analysis and design optimisation of PCM thermal energy storage system for space cooling of buildings. Energy and Buildings, 224, 110288. https://doi.org/10.1016/j.enbuild.2020.110288
  • Sarbu, I., & Sebarchievici, C. (2018). A comprehensive review of thermal energy storage. Sustainability, 10(1), 191. https://doi.org/10.3390/su10010191
  • Soares, N., Gaspar, A. R., Santos, P., & Costa, J. J. (2015). Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials. Applied energy, 142, 192-205. https://doi.org/10.1016/j.apenergy.2014.12.034
  • Vaisi, S., Varmazyari, P., Esfandiari, M., & Sharbaf, S. A. (2023). Developing a multi-level energy benchmarking and certification system for office buildings in a cold climate region. Applied Energy, 336, 120824. https://doi.org/10.1016/j.apenergy.2023.120824
  • Wonorahardjo, S., Sutjahja, I., Aisyah Damiati, S., & Kurnia, D. (2020). Adjustment of indoor temperature using internal thermal mass under different tropical weather conditions. Science and Technology for the Built Environment, 26(2), 115-127. https://doi.org/10.1080/23744731.2019.1608126
  • Wonorahardjo, S., Sutjahja, I. M., Mardiyati, Y., Andoni, H., Achsani, R. A., Steven, S., ... & Tedja, S. (2022). Effect of different building façade systems on thermal comfort and urban heat island phenomenon: An experimental analysis. Building and Environment, 217, 109063. https://doi.org/10.1016/j.buildenv.2022.109063
  • Yaman, M. (2021). Different facade types and building integration in energy efficient building design strategies. International Journal of Built Environment and Sustainability, 8(2), 49-61. https://doi.org/10.11113/ijbes.v8.n2.732
  • Zalewski, L., Lassue, S., Rousse, D., & Boukhalfa, K. (2010). Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Conversion and Management, 51(12), 2869-2877. https://doi.org/10.1016/j.enconman.2010.06.026
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Ali Celik 0000-0001-6359-6698

Publication Date September 15, 2025
Submission Date January 30, 2025
Acceptance Date September 8, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Celik, A. (2025). Cam cepheli binalarda FDM dolgulu güneş kontrol elemanlarının iç yüzey uygulamasının ışık ve ısıl performans analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(3), 883-894. https://doi.org/10.17714/gumusfenbil.1629652