Research Article
BibTex RIS Cite

Aktive c kinaz 1 reseptörünün taşınabilir potansiyostatla tayinine yönelik yeni bir biyosensör tasarımı

Year 2025, Volume: 15 Issue: 3, 667 - 676, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1654313

Abstract

Kanser biyobelirteçleri arasında dikkat çekici bir protein olan aktive edilmiş C kinaz 1 (RACK-1) hassas ve seçici tayini için ekran baskılı karbon elektrotlar (SPCE'ler) kullanılarak çiftli kendi kendine düzenlenen tek tabaka (SAMs) taşınabilir bir immünosensör geliştirilmiştir. Biyosensörün tasarımında 4-aminotiyofenol (4-ATP) ve (3-Aminopropil)trietoksi silan ile konjuge edilmiş altın nanopartiküller (AuNP'ler) kullanılmıştır. bu nanomalzemelere bağlanan biyotanıma ajanı, 0,001 ng/mL'lik bir tespit sınırıyla ilişkili olarak 0,002–0,8 ng/mL aralığında hedef molekül RACK-1'i belirleyebilmektedir. Çalışmanın en önemli noktası, biyosensörün tayin aralığı, depolama ömrü, seçicilik ve tekrarlanabilirlik gibi analitik özelliklerinin taşınabilir bir potansiyostat ile izlenebilmesidir. Çift SAMs tabanlı geliştirilen ve farklı proteinlerin varlığında ve yapay serum ortamında RACK-1’in analizi için yüksek seçicilik gösteren mevcut biyosensör tasarımı, insan serumu ile yapılacak ileri çalışmalar için ümit vericidir.

References

  • Aydın, E. B., Aydın, M., & Sezgintürk, M. K. (2020). A label-free immunosensor for sensitive detection of RACK 1 cancer biomarker based on conjugated polymer modified ITO electrode. Journal of Pharmaceutical and Biomedical Analysis, 190, 113517. https://doi.org/10.1016/j.jpba.2020.113517
  • Bahadır, E. B., & Sezgintürk, M. K. (2016). Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1. Analyst, 141(19), 5618-5626. https://doi.org/10.1039/C6AN00694A
  • Brothers, M. C., Moore, D., St. Lawrence, M., Harris, J., Joseph, R. M., Ratcliff, E., . . . Kim, S. S. (2020). Impact of self-assembled monolayer design and electrochemical factors on impedance-based biosensing. Sensors, 20(8), 2246. https://doi.org/10.3390/s20082246
  • Chin, S. F., Lim, L. S., Pang, S. C., Sum, M. S. H., & Perera, D. (2017). Carbon nanoparticle modified screen printed carbon electrode as a disposable electrochemical immunosensor strip for the detection of Japanese encephalitis virus. Microchimica Acta, 184, 491-497. https://doi.org/10.1007/s00604-016-2029-7
  • Farirai, F., Ozonoh, M., Aniokete, T. C., Eterigho-Ikelegbe, O., Mupa, M., Zeyi, B., & Daramola, M. O. (2021). Methods of extracting silica and silicon from agricultural waste ashes and application of the produced silicon in solar cells: a mini-review. International Journal of Sustainable Engineering, 14(1), 57-78. https://doi.org/10.1080/19397038.2020.1720854
  • Gooding, J. J., & Darwish, N. (2012). The rise of self‐assembled monolayers for fabricating electrochemical biosensors—an interfacial perspective. The Chemical Record, 12(1), 92-105. https://doi.org/10.1002/tcr.201100013
  • Han, H., Wang, D., Yang, M., & Wang, S. (2018). High expression of RACK1 is associated with poor prognosis in patients with pancreatic ductal adenocarcinoma. Oncology Letters, 15(2), 2073-2078. https://doi.org/10.3892/ol.2017.7539
  • Islas-Flores, T., Rahman, A., Ullah, H., & Villanueva, M. A. (2015). The receptor for activated C kinase in plant signaling: tale of a promiscuous little molecule. Frontiers in Plant Science, 6, 1090. https://doi.org/10.3389/fpls.2015.01090
  • Jayanthi, V. S. A., Das, A. B., & Saxena, U. (2017). Recent advances in biosensor development for the detection of cancer biomarkers. Biosensors and Bioelectronics, 91, 15-23. https://doi.org/10.1016/j.bios.2016.12.014
  • Karnwal, A., Kumar Sachan, R. S., Devgon, I., Devgon, J., Pant, G., Panchpuri, M., . . . Kumar, G. (2024). Gold nanoparticles in nanobiotechnology: from synthesis to biosensing applications. ACS omega, 9(28), 29966-29982. https://doi.org/10.1021/acsomega.3c10352
  • Khan, H., Shah, M. R., Barek, J., & Malik, M. I. (2023). Cancer biomarkers and their biosensors: A comprehensive review. TrAC Trends in Analytical Chemistry, 158, 116813. https://doi.org/10.1016/j.trac.2022.116813
  • Li, C.-H., Chan, M.-H., Chang, Y.-C., & Hsiao, M. (2023). Gold nanoparticles as a biosensor for cancer biomarker determination. Molecules, 28(1), 364. https://doi.org/10.3390/molecules28010364
  • Nagashio, R., Sato, Y., Matsumoto, T., Kageyama, T., Satoh, Y., Shinichiro, R., & Okayasu, I. (2010). Expression of RACK1 is a novel biomarker in pulmonary adenocarcinomas. Lung cancer, 69(1), 54-59. https://doi.org/10.1016/j.lungcan.2009.09.015
  • Nur Sonuç Karaboğa, M., & Kemal Sezgintürk, M. (2023). A practical approach for the detection of protein tau with a portable potentiostat. Electroanalysis, 35(3), e202200072. https://doi.org/10.1002/elan.202200072
  • Ron, D., Adams, D. R., Baillie, G. S., Long, A., O’Connor, R., & Kiely, P. A. (2013). RACK (1) to the future–a historical perspective. Cell Communication and Signaling, 11(1), 1-4. https://doi.org/10.1186/1478-811X-11-53
  • Törer, H., Aydın, E. B., & Sezgintürk, M. K. (2018). A label-free electrochemical biosensor for direct detection of RACK 1 by using disposable, low-cost and reproducible ITO based electrode. Analytica chimica acta, 1024, 65-72. https://doi.org/10.1016/j.aca.2018.04.031
  • Uzer, A., Can, Z., Akın, I. l., Ercag, E., & Apak, R. a. (2014). 4-Aminothiophenol functionalized gold nanoparticle-based colorimetric sensor for the determination of nitramine energetic materials. Analytical chemistry, 86(1), 351-356. https://doi.org/10.1021/ac4032725
  • Wang, Y., & Alocilja, E. C. (2015). Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. Journal of biological engineering, 9, 1-7. https://doi.org/10.1186/s13036-015-0014-z
  • Wu, H., Song, S., Yan, A., Guo, X., Chang, L., Xu, L., . . . He, D. (2020). RACK1 promotes the invasive activities and lymph node metastasis of cervical cancer via galectin-1. Cancer letters, 469, 287-300. https://doi.org/10.1016/j.canlet.2019.11.002
  • Wu, J., Meng, J., Du, Y., Huang, Y., Jin, Y., Zhang, J., . . . Tang, J. (2013). RACK1 promotes the proliferation, migration and invasion capacity of mouse hepatocellular carcinoma cell line in vitro probably by PI3K/Rac1 signaling pathway. Biomedicine & Pharmacotherapy, 67(4), 313-319. https://doi.org/10.1016/j.biopha.2013.01.011
  • Zhong, X., Li, M., Nie, B., Wu, F., Zhang, L., Wang, E., & Han, Y. (2013). Overexpressions of RACK1 and CD147 associated with poor prognosis in stage T1 pulmonary adenocarcinoma. Annals of surgical oncology, 20, 1044-1052. https://doi.org/10.1245/s10434-012-2377-4.

A useful architecture based on layer by layer self-assembled monolayers for the determination of receptor for activated c kinase 1 with a portable potentiostat

Year 2025, Volume: 15 Issue: 3, 667 - 676, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1654313

Abstract

A layer by layer self-assembled monolayer-based (SAMs) portable immunosensor was developed using screen printed carbon electrodes (SPCEs) for the sensitive and selective determination of receptor for activated C kinase 1 (RACK-1), which has a remarkable protein among cancer biomarkers. Gold nanoparticles (AuNPs) conjugated with 4-aminothiophenol (4-ATP) and (3-Aminopropyl)triethoxysilane were used in the design of the biosensor. The biorecognition element generated by powerful materials can determine the target molecule RACK-1 in the range of 0.002–0.8 ng/mL associated with a limit of detection of 0.001 ng/mL. The highlight of the study is that the analytical characteristics of the biosensor, such as the determination range, storage life, selectivity, and reproducibility, can be monitored with a portable potentiostat. The current biosensor design, which is developed based on layer by layer SAMs and shows high selectivity in the presence of different proteins and in artificial serum, is promising for further studies with human serum.

References

  • Aydın, E. B., Aydın, M., & Sezgintürk, M. K. (2020). A label-free immunosensor for sensitive detection of RACK 1 cancer biomarker based on conjugated polymer modified ITO electrode. Journal of Pharmaceutical and Biomedical Analysis, 190, 113517. https://doi.org/10.1016/j.jpba.2020.113517
  • Bahadır, E. B., & Sezgintürk, M. K. (2016). Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1. Analyst, 141(19), 5618-5626. https://doi.org/10.1039/C6AN00694A
  • Brothers, M. C., Moore, D., St. Lawrence, M., Harris, J., Joseph, R. M., Ratcliff, E., . . . Kim, S. S. (2020). Impact of self-assembled monolayer design and electrochemical factors on impedance-based biosensing. Sensors, 20(8), 2246. https://doi.org/10.3390/s20082246
  • Chin, S. F., Lim, L. S., Pang, S. C., Sum, M. S. H., & Perera, D. (2017). Carbon nanoparticle modified screen printed carbon electrode as a disposable electrochemical immunosensor strip for the detection of Japanese encephalitis virus. Microchimica Acta, 184, 491-497. https://doi.org/10.1007/s00604-016-2029-7
  • Farirai, F., Ozonoh, M., Aniokete, T. C., Eterigho-Ikelegbe, O., Mupa, M., Zeyi, B., & Daramola, M. O. (2021). Methods of extracting silica and silicon from agricultural waste ashes and application of the produced silicon in solar cells: a mini-review. International Journal of Sustainable Engineering, 14(1), 57-78. https://doi.org/10.1080/19397038.2020.1720854
  • Gooding, J. J., & Darwish, N. (2012). The rise of self‐assembled monolayers for fabricating electrochemical biosensors—an interfacial perspective. The Chemical Record, 12(1), 92-105. https://doi.org/10.1002/tcr.201100013
  • Han, H., Wang, D., Yang, M., & Wang, S. (2018). High expression of RACK1 is associated with poor prognosis in patients with pancreatic ductal adenocarcinoma. Oncology Letters, 15(2), 2073-2078. https://doi.org/10.3892/ol.2017.7539
  • Islas-Flores, T., Rahman, A., Ullah, H., & Villanueva, M. A. (2015). The receptor for activated C kinase in plant signaling: tale of a promiscuous little molecule. Frontiers in Plant Science, 6, 1090. https://doi.org/10.3389/fpls.2015.01090
  • Jayanthi, V. S. A., Das, A. B., & Saxena, U. (2017). Recent advances in biosensor development for the detection of cancer biomarkers. Biosensors and Bioelectronics, 91, 15-23. https://doi.org/10.1016/j.bios.2016.12.014
  • Karnwal, A., Kumar Sachan, R. S., Devgon, I., Devgon, J., Pant, G., Panchpuri, M., . . . Kumar, G. (2024). Gold nanoparticles in nanobiotechnology: from synthesis to biosensing applications. ACS omega, 9(28), 29966-29982. https://doi.org/10.1021/acsomega.3c10352
  • Khan, H., Shah, M. R., Barek, J., & Malik, M. I. (2023). Cancer biomarkers and their biosensors: A comprehensive review. TrAC Trends in Analytical Chemistry, 158, 116813. https://doi.org/10.1016/j.trac.2022.116813
  • Li, C.-H., Chan, M.-H., Chang, Y.-C., & Hsiao, M. (2023). Gold nanoparticles as a biosensor for cancer biomarker determination. Molecules, 28(1), 364. https://doi.org/10.3390/molecules28010364
  • Nagashio, R., Sato, Y., Matsumoto, T., Kageyama, T., Satoh, Y., Shinichiro, R., & Okayasu, I. (2010). Expression of RACK1 is a novel biomarker in pulmonary adenocarcinomas. Lung cancer, 69(1), 54-59. https://doi.org/10.1016/j.lungcan.2009.09.015
  • Nur Sonuç Karaboğa, M., & Kemal Sezgintürk, M. (2023). A practical approach for the detection of protein tau with a portable potentiostat. Electroanalysis, 35(3), e202200072. https://doi.org/10.1002/elan.202200072
  • Ron, D., Adams, D. R., Baillie, G. S., Long, A., O’Connor, R., & Kiely, P. A. (2013). RACK (1) to the future–a historical perspective. Cell Communication and Signaling, 11(1), 1-4. https://doi.org/10.1186/1478-811X-11-53
  • Törer, H., Aydın, E. B., & Sezgintürk, M. K. (2018). A label-free electrochemical biosensor for direct detection of RACK 1 by using disposable, low-cost and reproducible ITO based electrode. Analytica chimica acta, 1024, 65-72. https://doi.org/10.1016/j.aca.2018.04.031
  • Uzer, A., Can, Z., Akın, I. l., Ercag, E., & Apak, R. a. (2014). 4-Aminothiophenol functionalized gold nanoparticle-based colorimetric sensor for the determination of nitramine energetic materials. Analytical chemistry, 86(1), 351-356. https://doi.org/10.1021/ac4032725
  • Wang, Y., & Alocilja, E. C. (2015). Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. Journal of biological engineering, 9, 1-7. https://doi.org/10.1186/s13036-015-0014-z
  • Wu, H., Song, S., Yan, A., Guo, X., Chang, L., Xu, L., . . . He, D. (2020). RACK1 promotes the invasive activities and lymph node metastasis of cervical cancer via galectin-1. Cancer letters, 469, 287-300. https://doi.org/10.1016/j.canlet.2019.11.002
  • Wu, J., Meng, J., Du, Y., Huang, Y., Jin, Y., Zhang, J., . . . Tang, J. (2013). RACK1 promotes the proliferation, migration and invasion capacity of mouse hepatocellular carcinoma cell line in vitro probably by PI3K/Rac1 signaling pathway. Biomedicine & Pharmacotherapy, 67(4), 313-319. https://doi.org/10.1016/j.biopha.2013.01.011
  • Zhong, X., Li, M., Nie, B., Wu, F., Zhang, L., Wang, E., & Han, Y. (2013). Overexpressions of RACK1 and CD147 associated with poor prognosis in stage T1 pulmonary adenocarcinoma. Annals of surgical oncology, 20, 1044-1052. https://doi.org/10.1245/s10434-012-2377-4.
There are 21 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry, Sensor Technology
Journal Section Articles
Authors

Münteha Nur Sonuç Karaboğa 0000-0002-3153-1328

Publication Date September 15, 2025
Submission Date March 9, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Sonuç Karaboğa, M. N. (2025). A useful architecture based on layer by layer self-assembled monolayers for the determination of receptor for activated c kinase 1 with a portable potentiostat. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(3), 667-676. https://doi.org/10.17714/gumusfenbil.1654313