Research Article
BibTex RIS Cite

Farklı kaynak kökü genişliklerine sahip alın kaynaklı alüminyum alaşımlı kirişlerin modal analizi

Year 2025, Volume: 15 Issue: 3, 753 - 762, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1681169

Abstract

Bu çalışmada, farklı kaynak kök genişliklerinin alın kaynaklı alüminyum alaşımı yapıların titreşim davranışlarına etkisi sayısal yöntemlerle incelenmiştir. 250 mm × 25 mm × 5 mm boyutlarında, serbest-serbest sınır şartlarına sahip referans numune ile 0, 1, 2, 3 ve 4 mm kaynak kök genişliğine sahip V-şeklinde 60° açılı birleşimlere sahip numuneler ANSYS Workbench® sonlu elemanlar yazılımında modellenmiştir. Doğal frekans ve mod şekilleri belirlenmiş, kaynaksız numune için Euler-Bernoulli teorisine göre hesaplanan ilk üç doğal frekans değeriyle karşılaştırma yapılmıştır. İki yöntem arasında iyi bir uyum görülmüştür. Sonuçlar, kaynak bölgesindeki geometrik değişimin kütle-hacim değerleri ve yapısal rijitlik üzerinde etkili olduğunu göstermiştir. 0 mm kök genişliğine sahip numunelerde frekanslar düşerken, 1-4 mm arasında özellikle birinci ve üçüncü doğal frekanslarda artış gözlenmiştir. 4 mm kök genişliğine sahip numune ile referans numunesi arasında maksimum %1,34’lük bir fark tespit edilmiştir. Kaynaklı bölgenin node bölgesine denk geldiği ikinci mode şeklinde ikinci doğal frekans değeri değişmemiştir. Bu çalışmanın yeniliği, farklı kaynak kök genişliklerinin titreşim davranışı üzerindeki etkisinin araştırılmasıdır. Gelecekte farklı malzeme ve kaynak parametreleri kullanılarak teorik, sayısal ve deneysel çalışmalar yürütülecektir.

References

  • AbuShanab, W. S., & Moustafa, E. B. (2018). Detection of friction stir welding defects of AA1060 aluminum alloy using specific damping capacity. Materials, 11(12), 2437. https://doi.org/10.3390/ma11122437
  • ANSYS Inc. (2025). ANSYS Academic Research Mechanical, release 18.1: Coupled field analysis guide. ANSYS Inc.
  • Bhusnar, M., & Sarawade, S. S. (2016). Modal analysis of rectangular plate with lap joints to find natural frequencies and mode shapes. IOSR Journal of Mechanical and Civil Engineering, 13(1), 6–14. https://www.iosrjournals.org/iosr-jmce/papers/Conf15008/Vol-4/06-14.pdf.
  • Chandravanshi, M., & Mukhopadhyay, A. (2013). Modal analysis of structural vibration. In Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition (Vol. 14: Vibration, Acoustics and Wave Propagation, V014T15A052, pp. 1–9). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2013-62533
  • Das, D., Pratihar, D. K., & Roy, G. G. (2020). Establishing a correlation between residual stress and natural frequency of vibration for electron beam butt weld of AISI 304 stainless steel. Arabian Journal for Science and Engineering, 45, 5769–5781. https://doi.org/10.1007/s13369-020-04560-0
  • de Arruda, M. V., Correa, E. O., & de Macanhan, V. B. (2023). Optimization of FEM models for welding residual stress analysis using the modal method. Welding in the World, 67, 2361–2372. https://doi.org/10.1007/s40194-023-01570-y
  • de Paula Macanhan, V. B., Correa, E. O., de Lima, A. M., & da Silva, J. T. (2019). Vibration response analysis on stainless steel thin plate weldments. The International Journal of Advanced Manufacturing Technology, 102(5–8), 1779–1786. https://doi.org/10.1007/s00170-019-03297-x
  • Etin-osa, C. E., & Achebo, J. I. (2017). Analysis of optimum butt welded joint for mild steel components using FEM (ANSYS). Advances in Applied Sciences, 2(6), 100–109. https://doi.org/10.11648/j.aas.20170206.12
  • Gharehbaghi, H., Hosseini, S., & Hosseini, R. (2023). Investigation of the effect of welding residual stress on natural frequencies: Experimental and numerical study. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47, 1777–1785. https://doi.org/10.1007/s40997-022-00588-9
  • Hatifi, M. M., Firdaus, M. H., & Razlan, A. Y. (2022). Modal analysis of dissimilar plate metal joining with different thicknesses using MIG welding. International Journal of Automotive and Mechanical Engineering, 9, 1723–1733. https://doi.org/10.15282/ijame.9.2013.21.0143
  • Hicks, J. (2000). Welded design: Theory and practice (1st ed.). Woodhead Publishing.
  • Imran, M., & Verma, R. G. (2021). Fatigue analysis of welded joint using ANSYS: A review study. International Journal of Scientific Research & Engineering Trends, 7(6), 3234–3242. https://ijsret.com/wp-content/uploads/2021/11/IJSRET_V7_issue6_720.pdf
  • Khurshid, M. (2017). Static and fatigue analyses of welded steel structures – Some aspects towards lightweight design [Doctoral dissertation, KTH Royal Institute of Technology]. KTH DiVA. https://www.diva-portal.org/smash/get/diva2:1070954/FULLTEXT01.pdf.
  • Mathers, G. (2002). The welding of aluminium and its alloys (1st ed.). Woodhead Publishing.
  • Pavani, P., Sivasankar, M. P., Lokanadham, M. P., & Mhahesh, M. P. (2015). Finite element analysis of residual stress in butt welding of two similar plates. International Research Journal of Engineering and Technology (IRJET), 2(7), 479–486.
  • Rao, P. S., & Ratnam, Ch. (2012). Experimental and analytical modal analysis of welded structure used for vibration based damage identification. Global Journal of Researches in Engineering (A), 12(1), 45–50.
  • Rao, S. S. (2010). Mechanical vibrations (5th ed.). Pearson.
  • Rao, S. S. (2019). Vibration of continuous systems. John Wiley & Sons.
  • Resan, S. F., & Jasim, N. A. (2022). Experimental and numerical investigation of aluminum beams: Flexural behavior section shape effect. Misan Journal of Engineering Sciences, 1(2), 37–49. https://doi.org/10.61263/MJES.V1I2.19
  • Thirugnanam, A., Kumar, M., & Rakesh, L. (2014). Analysis of stress in welded joint in bending and in torsion using ANSYS. Middle-East Journal of Scientific Research, 20(5), 580–585. https://doi.org/10.5829/idosi.mejsr.2014.20.05.11338

Modal analysis of butt-welded aluminum alloy beams with different welding root widths

Year 2025, Volume: 15 Issue: 3, 753 - 762, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1681169

Abstract

In this study, the effect of different welding root widths on the vibrational behavior of butt-welded aluminum alloy structures was investigated using numerical methods. Specimens with dimensions of 250 mm × 25 mm × 5 mm and free-free boundary conditions were modeled in ANSYS Workbench® finite element software, including a weld-free reference specimen and specimens with V-shaped joints at a 60° angle having welding root widths of 0, 1, 2, 3, and 4 mm. Natural frequencies and mode shapes were determined and the first three natural frequencies of the unwelded specimen were calculated based on the Euler-Bernoulli beam theory for comparison. A good agreement was observed between the two methods. The results indicated that geometric variations in the welding region affect the mass-volume values and structural stiffness. In specimens with 0 mm root width, frequency values decreased, while an increasing trend in the first and third natural frequencies was observed for root widths between 1-4 mm. A maximum change of 1.34% was found between the 4 mm welding root specimen and the reference. The second natural frequency remained unchanged, as the welded region corresponded to the node location of the second mode shape. This study is novel in that it investigates the effect of different root widths on vibration behavior. In the future, theoretical, numerical, and experimental studies will be conducted using different material and welding parameters.

Ethical Statement

The author declares that this study does not require ethical committee approval or any legal permission.

References

  • AbuShanab, W. S., & Moustafa, E. B. (2018). Detection of friction stir welding defects of AA1060 aluminum alloy using specific damping capacity. Materials, 11(12), 2437. https://doi.org/10.3390/ma11122437
  • ANSYS Inc. (2025). ANSYS Academic Research Mechanical, release 18.1: Coupled field analysis guide. ANSYS Inc.
  • Bhusnar, M., & Sarawade, S. S. (2016). Modal analysis of rectangular plate with lap joints to find natural frequencies and mode shapes. IOSR Journal of Mechanical and Civil Engineering, 13(1), 6–14. https://www.iosrjournals.org/iosr-jmce/papers/Conf15008/Vol-4/06-14.pdf.
  • Chandravanshi, M., & Mukhopadhyay, A. (2013). Modal analysis of structural vibration. In Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition (Vol. 14: Vibration, Acoustics and Wave Propagation, V014T15A052, pp. 1–9). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2013-62533
  • Das, D., Pratihar, D. K., & Roy, G. G. (2020). Establishing a correlation between residual stress and natural frequency of vibration for electron beam butt weld of AISI 304 stainless steel. Arabian Journal for Science and Engineering, 45, 5769–5781. https://doi.org/10.1007/s13369-020-04560-0
  • de Arruda, M. V., Correa, E. O., & de Macanhan, V. B. (2023). Optimization of FEM models for welding residual stress analysis using the modal method. Welding in the World, 67, 2361–2372. https://doi.org/10.1007/s40194-023-01570-y
  • de Paula Macanhan, V. B., Correa, E. O., de Lima, A. M., & da Silva, J. T. (2019). Vibration response analysis on stainless steel thin plate weldments. The International Journal of Advanced Manufacturing Technology, 102(5–8), 1779–1786. https://doi.org/10.1007/s00170-019-03297-x
  • Etin-osa, C. E., & Achebo, J. I. (2017). Analysis of optimum butt welded joint for mild steel components using FEM (ANSYS). Advances in Applied Sciences, 2(6), 100–109. https://doi.org/10.11648/j.aas.20170206.12
  • Gharehbaghi, H., Hosseini, S., & Hosseini, R. (2023). Investigation of the effect of welding residual stress on natural frequencies: Experimental and numerical study. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47, 1777–1785. https://doi.org/10.1007/s40997-022-00588-9
  • Hatifi, M. M., Firdaus, M. H., & Razlan, A. Y. (2022). Modal analysis of dissimilar plate metal joining with different thicknesses using MIG welding. International Journal of Automotive and Mechanical Engineering, 9, 1723–1733. https://doi.org/10.15282/ijame.9.2013.21.0143
  • Hicks, J. (2000). Welded design: Theory and practice (1st ed.). Woodhead Publishing.
  • Imran, M., & Verma, R. G. (2021). Fatigue analysis of welded joint using ANSYS: A review study. International Journal of Scientific Research & Engineering Trends, 7(6), 3234–3242. https://ijsret.com/wp-content/uploads/2021/11/IJSRET_V7_issue6_720.pdf
  • Khurshid, M. (2017). Static and fatigue analyses of welded steel structures – Some aspects towards lightweight design [Doctoral dissertation, KTH Royal Institute of Technology]. KTH DiVA. https://www.diva-portal.org/smash/get/diva2:1070954/FULLTEXT01.pdf.
  • Mathers, G. (2002). The welding of aluminium and its alloys (1st ed.). Woodhead Publishing.
  • Pavani, P., Sivasankar, M. P., Lokanadham, M. P., & Mhahesh, M. P. (2015). Finite element analysis of residual stress in butt welding of two similar plates. International Research Journal of Engineering and Technology (IRJET), 2(7), 479–486.
  • Rao, P. S., & Ratnam, Ch. (2012). Experimental and analytical modal analysis of welded structure used for vibration based damage identification. Global Journal of Researches in Engineering (A), 12(1), 45–50.
  • Rao, S. S. (2010). Mechanical vibrations (5th ed.). Pearson.
  • Rao, S. S. (2019). Vibration of continuous systems. John Wiley & Sons.
  • Resan, S. F., & Jasim, N. A. (2022). Experimental and numerical investigation of aluminum beams: Flexural behavior section shape effect. Misan Journal of Engineering Sciences, 1(2), 37–49. https://doi.org/10.61263/MJES.V1I2.19
  • Thirugnanam, A., Kumar, M., & Rakesh, L. (2014). Analysis of stress in welded joint in bending and in torsion using ANSYS. Middle-East Journal of Scientific Research, 20(5), 580–585. https://doi.org/10.5829/idosi.mejsr.2014.20.05.11338
There are 20 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control
Journal Section Articles
Authors

Muhammet Raci Aydın 0000-0002-4120-1816

Publication Date September 15, 2025
Submission Date April 21, 2025
Acceptance Date July 16, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Aydın, M. R. (2025). Modal analysis of butt-welded aluminum alloy beams with different welding root widths. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(3), 753-762. https://doi.org/10.17714/gumusfenbil.1681169