Research Article
BibTex RIS Cite

Estimating the uniaxial compressive strength of rocks using P-wave velocity values from a large database

Year 2025, Volume: 15 Issue: 3, 819 - 828, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1682304

Abstract

This study evaluates the statistical relationship between the uniaxial compressive strength (σci) of rocks and the P-wave velocity (Vp) and aims to develop a prediction model based on a large database for the estimation of σci. Although σci is a fundamental parameter in geotechnical and engineering applications, its experimental determination on samples complying with standards is time-consuming. On the other hand, P-wave velocity measurements stand out as a relatively fast, non-destructive and practical method, thus offering an attractive alternative in terms of strength estimation. Within the scope of the study, the data obtained from laboratory tests on 467 samples belonging to 70 different lithologies were combined with 740 samples in the literature and a large data set consisting of a total of 1207 samples was created. As a result of simple regression analyses performed on this data set, the highest correlation coefficient was obtained in the exponential model (R² = 0.72). However, due to its ease of application and similar accuracy level, the linear regression model (σci = 0.032Vp - 52) was recommended for practical application (R² = 0.70). With the t-tests performed on the prediction model, it was determined that both the independent variables used in the model and the model itself were statistically significant at the 95% significance level (p < 0.05). The results show that samples with a Vp value above 6000 m/s mostly have a σci value above 100 MPa, while samples below 3000 m/s mostly have a σci value below 75 MPa. In this context, prediction models based on VP data can be quite useful in the rapid estimation of σci, especially before laboratory experiments.

References

  • Altindag, R. (2012). Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. Journal of the Southern African Institute of Mining and Metallurgy, 112(3), 229-237.
  • Altindag, R., and Guney, A. (2010) Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks. Scientific Research and Essays, 5(16), 2107 – 2118.
  • Armaghani, J. D., Mohamad, T. E., Hajihassani, M., Yagiz, S., & Motaghedi, H. (2016). Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Engineering with Computers, 32, 189-206. https://doi.org/10.1007/s00366-015-0410-5
  • ASTM. (2008). D2845-00, Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock, ASTM International, West Conshohocken, PA, 2017
  • Aydin, A. (2014). Upgraded ISRM Suggested Method for Determining Sound Velocity by Ultrasonic Pulse Transmission Technique. Rock Mechanics and Rock Engineering, 47. https://doi.org/10.1007/s00603-013-0454-z
  • Bieniawski, Z. T. (1975). The point-load test in geotechnical practice. Engineering Geology, 9(1), 1-11. https://doi.org/10.1016/0013-7952(75)90024-1
  • Çobanoğlu, İ., & Çelik, S. B. (2008). Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bulletin of Engineering Geology and the Environment, 67, 491-498. https://doi.org/10.1007/s10064-008-0158-x
  • Deere, D. U., & Miller, R. P. (1966). Engineering classification and index properties for intact rock. (Air Force Weapons Lab. Technical Report No. AFWL-TR 65–116). Kirtland Base, New Mexico
  • Diamantis, K., Gartzos, E., & Migiros, G. (2009). Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Engineering Geology, 108(3-4), 199-207. https://doi.org/10.1016/j.enggeo.2009.07.002
  • Ersoy, H., Karahan, M., Babacan, A. E., & Sünnetci, M. O. (2019). A new approach to the effect of sample dimensions and measurement techniques on ultrasonic wave velocity. Engineering Geology, 251, 63-70. https://doi.org/10.1016/j.enggeo.2019.02.011
  • Farah, R. (2011). Correlations between ındex properties and unconfined compressive strength of weathered ocala limestone. [Yüksek Lisans Tezi, University of North Florida].
  • Franklin, J. A. (1985). Suggested method for determining point load strength. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(2), 51-60. Pergamon.
  • Gökçeoğlu, C. (1996). Schmidt sertlik çekici kullanılarak tahmin edilen tek eksenli sıkışma dayanımı verilerinin güvenilirliği üzerine bir değerlendirme. Jeoloji Mühendisliği Dergisi, 20(1), 78-81.
  • Heidari, M., Mohseni, H., & Jalali, S. H. (2018). Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotechnical and Geological Engineering, 36, 401-412. https://doi.org/10.1007/s10706-017-0334-5
  • Irfan, T. & Dearman, W. (1978). Engineering classification and index properties of a weathered granite. Bulletin of Engineering Geology & the Environment, 17(1). https://doi.org/10.1007/BF02634696
  • Kahraman, S. (1996). Basinc direnci tahmininde Schmidt ve nokta yuk indeksi kullanmanin guvenilirligi. KTU Jeoloji Muhendisligi Bolumu 30. Yil Sempozyumu. Trabzon.
  • Kahraman, S. A. İ. R. (2001). Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 38(7), 981-994. https://doi.org/10.1016/S1365-1609(01)00039-9
  • Kahraman, S., Fener, M., & Kozman, E. (2012). Predicting the compressive and tensile strength of rocks from indentation hardness index. Journal of the Southern African Institute of Mining and Metallurgy, 112(5), 331-339.
  • Karakul, H., & Ulusay, R. (2013). Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mechanics and Rock Engineering, 46, 981-999. https://doi.org/10.1007/s00603-012-0353-8
  • Khandelwal, M. (2013). Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure and Applied Geophysics, 170, 507-514. https://doi.org/10.1007/s00024-012-0556-7
  • Khandelwal, M., & Singh, T. N. (2009). Correlating static properties of coal measures rocks with P-wave velocity. International Journal of Coal Geology, 79(1-2), 55-60. https://doi.org/10.1016/j.coal.2009.01.004
  • Kılıç, A., & Teymen, A. (2008). Determination of mechanical properties of rocks using simple methods. Bulletin of Engineering Geology and the Environment, 67, 237-244. https://doi.org/10.1007/s10064-008-0128-3
  • Kidybiński, A. (1981, August). Bursting liability indices of coal. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 18, No. 4, pp. 295-304). Pergamon.
  • Kurtulus, C. E. N. G. İ. Z., Bozkurt, A., & Endes, H. (2012). Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey. Pure and applied geophysics, 169(7), 1205-1215. https://doi.org/10.1007/s00024-011-0394-z.
  • Liang, M., Mohamad, E. T., Faradonbeh, R. S., Jahed Armaghani, D., & Ghoraba, S. (2016). Rock strength assessment based on regression tree technique. Engineering with Computers, 32, 343-354. https://doi.org/10.1007/s00366-015-0429-7.
  • Liu, P. H., Wu, J. H., & Lee, D. H. (2022). New rock strength-based UCS-Vp correlation equation for different rock types by statistical regression methods. Geomechanics for Energy and the Environment, 32, 100403. https://doi.org/10.1016/j.gete.2022.100403
  • Malhotra, V. M., & Carino, N. J. (2004). Nondestructive testing of concrete. Boca Raton, New York, Washington DC 2nd Edition. CRC Press LLC.
  • Moradian, Z. A., & Behnia, M. (2009). Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. International Journal of Geomechanics, 9(1), 14-19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14)
  • Nazir, R., Momeni, E., Armaghani, D. J., & Amin, M. M. (2013). Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng, 18(1), 1737-1746.
  • Rahman, T., & Sarkar, K. (2021). Lithological control on the estimation of uniaxial compressive strength by the P-wave velocity using supervised and unsupervised learning. Rock Mechanics and Rock Engineering, 54(6), 3175-3191. https://doi.org/10.1007/s00603-021-02445-8
  • Sharma, L. K., Vishal, V., & Singh, T. N. (2017). Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement, 102, 158-169. https://doi.org/10.1016/j.measurement.2017.01.043
  • Sharma, P. K., & Singh, T. N. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67, 17-22. https://doi.org/10.1007/s10064-007-0109-y
  • Teymen, A., & Mengüç, E. C. (2020). Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks. International Journal of Mining Science and Technology, 30(6), 785-797. https://doi.org/10.1016/j.ijmst.2020.06.008
  • Tuğrul, A., & Zarif, I. H. (1999). Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering geology, 51(4), 303-317. https://doi.org/10.1016/S0013-7952(98)00071-4
  • Ulusay, R., & Hudson, J. A. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring. ISRM Turkish National Group. Ankara, Turkey.
  • Ulusay, R., Ersoy, H., Sünnetci, M. O., & Karahan, M. (2025). The leeb (Equotip) hardness test for rock materials: An overview, assessments on the factors influencing test results, and prediction models based on a large database. Bulletin of Engineering Geology and the Environment, 84(3), 1-46. https://doi.org/10.1007/s10064-025-04170-w
  • Ulusay, R., Türeli, K., & Ider, M. H. (1994). Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engineering Geology, 38(1-2), 135-157. https://doi.org/10.1016/0013-7952(94)90029-9
  • Wang, M., Wan, W., & Zhao, Y. (2020). Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model. Comptes Rendus. Mécanique, 348(1), 3-32. https://doi.org/10.5802/crmeca.3
  • Yagiz, S. (2011). P-wave velocity test for assessment of geotechnical properties of some rock materials. Bulletin of Materials Science, 34, 947-953. https://doi.org/10.1007/s12034-011-0220-3

Kayaların tek eksenli basınç dayanımının geniş bir veritabanına ait P-dalga hızı değerleriyle tahmin edilmesi

Year 2025, Volume: 15 Issue: 3, 819 - 828, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1682304

Abstract

Bu çalışma, kayaçların tek eksenli basınç dayanımı (σci) ile boyuna dalga hızı (Vp) arasındaki istatistiksel ilişkiyi değerlendirmekte ve σci’nin tahminine yönelik olarak geniş bir veritabanına dayanan bir tahmin modeli geliştirmeyi amaçlamaktadır. σci, jeoteknik ve mühendislik uygulamalarında temel bir parametre olmasına karşın standartlara uygun örnekler üzerinde deneysel olarak belirlenmesi zaman alıcı olmaktadır. Buna karşın, boyuna dalga hızı ölçümleri nispeten hızlı, tahribatsız ve pratik bir yöntem olarak öne çıkmakta, dolayısıyla dayanım tahmini açısından cazip bir alternatif sunmaktadır. Çalışma kapsamında, 70 farklı litolojiye ait 467 adet örnek üzerinde yapılan laboratuvar deneylerinden elde edilen veriler, literatürde yer alan 740 örnekle birleştirilmiş ve toplamda 1207 örnekten oluşan geniş bir veri seti oluşturulmuştur. Bu veri seti üzerinden gerçekleştirilen basit regresyon analizleri sonucunda en yüksek korelasyon katsayısı eksponansiyel modelde elde edilmiştir (R² = 0.72). Ancak uygulama kolaylığı ve benzer doğruluk düzeyi nedeniyle doğrusal regresyon modelinin (σci = 0.032Vp - 52) pratikte uygulanması önerilmiştir. Tahmin modeli üzerinde gerçekleştirilen t-testleriyle hem modelde kullanılan bağımsız değişkenlerin hem de modelin kendisinin %95 anlamlılık düzeyinde (p < 0.05) istatistiksel olarak anlamlı olduğu belirlenmiştir. Sonuçlar, Vp değeri 6000 m/s’nin üzerinde olan örneklerin çoğunlukla 100 MPa’ın üzerinde σci değerine, 3000 m/s altındaki örneklerin ise 75 MPa altında σci değerine sahip olduğunu göstermektedir. Bu bağlamda, VP verilerine dayalı tahmin modelleri, özellikle laboratuvar deneylerinden önce σci’nin hızlı bir şekilde kestirilmesi konusunda oldukça faydalı olabilmektedir.

References

  • Altindag, R. (2012). Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. Journal of the Southern African Institute of Mining and Metallurgy, 112(3), 229-237.
  • Altindag, R., and Guney, A. (2010) Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks. Scientific Research and Essays, 5(16), 2107 – 2118.
  • Armaghani, J. D., Mohamad, T. E., Hajihassani, M., Yagiz, S., & Motaghedi, H. (2016). Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Engineering with Computers, 32, 189-206. https://doi.org/10.1007/s00366-015-0410-5
  • ASTM. (2008). D2845-00, Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock, ASTM International, West Conshohocken, PA, 2017
  • Aydin, A. (2014). Upgraded ISRM Suggested Method for Determining Sound Velocity by Ultrasonic Pulse Transmission Technique. Rock Mechanics and Rock Engineering, 47. https://doi.org/10.1007/s00603-013-0454-z
  • Bieniawski, Z. T. (1975). The point-load test in geotechnical practice. Engineering Geology, 9(1), 1-11. https://doi.org/10.1016/0013-7952(75)90024-1
  • Çobanoğlu, İ., & Çelik, S. B. (2008). Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bulletin of Engineering Geology and the Environment, 67, 491-498. https://doi.org/10.1007/s10064-008-0158-x
  • Deere, D. U., & Miller, R. P. (1966). Engineering classification and index properties for intact rock. (Air Force Weapons Lab. Technical Report No. AFWL-TR 65–116). Kirtland Base, New Mexico
  • Diamantis, K., Gartzos, E., & Migiros, G. (2009). Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Engineering Geology, 108(3-4), 199-207. https://doi.org/10.1016/j.enggeo.2009.07.002
  • Ersoy, H., Karahan, M., Babacan, A. E., & Sünnetci, M. O. (2019). A new approach to the effect of sample dimensions and measurement techniques on ultrasonic wave velocity. Engineering Geology, 251, 63-70. https://doi.org/10.1016/j.enggeo.2019.02.011
  • Farah, R. (2011). Correlations between ındex properties and unconfined compressive strength of weathered ocala limestone. [Yüksek Lisans Tezi, University of North Florida].
  • Franklin, J. A. (1985). Suggested method for determining point load strength. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(2), 51-60. Pergamon.
  • Gökçeoğlu, C. (1996). Schmidt sertlik çekici kullanılarak tahmin edilen tek eksenli sıkışma dayanımı verilerinin güvenilirliği üzerine bir değerlendirme. Jeoloji Mühendisliği Dergisi, 20(1), 78-81.
  • Heidari, M., Mohseni, H., & Jalali, S. H. (2018). Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotechnical and Geological Engineering, 36, 401-412. https://doi.org/10.1007/s10706-017-0334-5
  • Irfan, T. & Dearman, W. (1978). Engineering classification and index properties of a weathered granite. Bulletin of Engineering Geology & the Environment, 17(1). https://doi.org/10.1007/BF02634696
  • Kahraman, S. (1996). Basinc direnci tahmininde Schmidt ve nokta yuk indeksi kullanmanin guvenilirligi. KTU Jeoloji Muhendisligi Bolumu 30. Yil Sempozyumu. Trabzon.
  • Kahraman, S. A. İ. R. (2001). Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 38(7), 981-994. https://doi.org/10.1016/S1365-1609(01)00039-9
  • Kahraman, S., Fener, M., & Kozman, E. (2012). Predicting the compressive and tensile strength of rocks from indentation hardness index. Journal of the Southern African Institute of Mining and Metallurgy, 112(5), 331-339.
  • Karakul, H., & Ulusay, R. (2013). Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mechanics and Rock Engineering, 46, 981-999. https://doi.org/10.1007/s00603-012-0353-8
  • Khandelwal, M. (2013). Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure and Applied Geophysics, 170, 507-514. https://doi.org/10.1007/s00024-012-0556-7
  • Khandelwal, M., & Singh, T. N. (2009). Correlating static properties of coal measures rocks with P-wave velocity. International Journal of Coal Geology, 79(1-2), 55-60. https://doi.org/10.1016/j.coal.2009.01.004
  • Kılıç, A., & Teymen, A. (2008). Determination of mechanical properties of rocks using simple methods. Bulletin of Engineering Geology and the Environment, 67, 237-244. https://doi.org/10.1007/s10064-008-0128-3
  • Kidybiński, A. (1981, August). Bursting liability indices of coal. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 18, No. 4, pp. 295-304). Pergamon.
  • Kurtulus, C. E. N. G. İ. Z., Bozkurt, A., & Endes, H. (2012). Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey. Pure and applied geophysics, 169(7), 1205-1215. https://doi.org/10.1007/s00024-011-0394-z.
  • Liang, M., Mohamad, E. T., Faradonbeh, R. S., Jahed Armaghani, D., & Ghoraba, S. (2016). Rock strength assessment based on regression tree technique. Engineering with Computers, 32, 343-354. https://doi.org/10.1007/s00366-015-0429-7.
  • Liu, P. H., Wu, J. H., & Lee, D. H. (2022). New rock strength-based UCS-Vp correlation equation for different rock types by statistical regression methods. Geomechanics for Energy and the Environment, 32, 100403. https://doi.org/10.1016/j.gete.2022.100403
  • Malhotra, V. M., & Carino, N. J. (2004). Nondestructive testing of concrete. Boca Raton, New York, Washington DC 2nd Edition. CRC Press LLC.
  • Moradian, Z. A., & Behnia, M. (2009). Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. International Journal of Geomechanics, 9(1), 14-19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14)
  • Nazir, R., Momeni, E., Armaghani, D. J., & Amin, M. M. (2013). Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng, 18(1), 1737-1746.
  • Rahman, T., & Sarkar, K. (2021). Lithological control on the estimation of uniaxial compressive strength by the P-wave velocity using supervised and unsupervised learning. Rock Mechanics and Rock Engineering, 54(6), 3175-3191. https://doi.org/10.1007/s00603-021-02445-8
  • Sharma, L. K., Vishal, V., & Singh, T. N. (2017). Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement, 102, 158-169. https://doi.org/10.1016/j.measurement.2017.01.043
  • Sharma, P. K., & Singh, T. N. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67, 17-22. https://doi.org/10.1007/s10064-007-0109-y
  • Teymen, A., & Mengüç, E. C. (2020). Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks. International Journal of Mining Science and Technology, 30(6), 785-797. https://doi.org/10.1016/j.ijmst.2020.06.008
  • Tuğrul, A., & Zarif, I. H. (1999). Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering geology, 51(4), 303-317. https://doi.org/10.1016/S0013-7952(98)00071-4
  • Ulusay, R., & Hudson, J. A. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring. ISRM Turkish National Group. Ankara, Turkey.
  • Ulusay, R., Ersoy, H., Sünnetci, M. O., & Karahan, M. (2025). The leeb (Equotip) hardness test for rock materials: An overview, assessments on the factors influencing test results, and prediction models based on a large database. Bulletin of Engineering Geology and the Environment, 84(3), 1-46. https://doi.org/10.1007/s10064-025-04170-w
  • Ulusay, R., Türeli, K., & Ider, M. H. (1994). Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engineering Geology, 38(1-2), 135-157. https://doi.org/10.1016/0013-7952(94)90029-9
  • Wang, M., Wan, W., & Zhao, Y. (2020). Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model. Comptes Rendus. Mécanique, 348(1), 3-32. https://doi.org/10.5802/crmeca.3
  • Yagiz, S. (2011). P-wave velocity test for assessment of geotechnical properties of some rock materials. Bulletin of Materials Science, 34, 947-953. https://doi.org/10.1007/s12034-011-0220-3
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Rock Mechanics
Journal Section Articles
Authors

Hakan Ersoy 0000-0001-5556-547X

Muhammet Oğuz Sünnetci 0000-0002-5215-3143

Murat Karahan 0000-0002-4500-0050

Arzu Fırat Ersoy 0000-0002-4181-1219

Publication Date September 15, 2025
Submission Date April 23, 2025
Acceptance Date August 23, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Ersoy, H., Sünnetci, M. O., Karahan, M., Fırat Ersoy, A. (2025). Kayaların tek eksenli basınç dayanımının geniş bir veritabanına ait P-dalga hızı değerleriyle tahmin edilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(3), 819-828. https://doi.org/10.17714/gumusfenbil.1682304