September 25, 2024 Yumrukaya-Tatvan (Bitlis, Türkiye) earthquake and a seismo-tectonic evaluation of its impact on the earthquake hazard in the region
Year 2025,
Volume: 15 Issue: 3, 780 - 796, 15.09.2025
Serkan Öztürk
,
Hamdi Alkan
Abstract
The current and future earthquake hazard in and around Bitlis were tired to reveal by utilizing the September 25, 2024, Yumrukaya-Tatvan earthquake (Mw=4.5) and its aftershocks, b-value and Z-value distributions, occurrence probabilities and recurrence periods of earthquakes and variations in Coulomb stress within the scope of this study. Also, it was tried to determine which fault systems in the study area is related to the Yumrukaya-Tatvan mainshock, characterized by strike-slip faulting. b-value in G-R relation was computed as 0.840.06 and small b-values (<1.0) were imaged in the north-northwest-southeast directions throughout the South East Anatolian Thrust Zone and Muş Fault Zone, and west of Lake Van. At the beginning of 2025, significant seismic quiescence was observed near the Muş Fault Zone and the south and southeast of the South East Anatolian Thrust Zone. Recurrence periods for the events with the magnitudes of Mw=5.0, 5.5 and 6.2 were computed as ~10, ~26 and ~100 years, respectively. Additionally, occurrence probabilities of earthquakes with these magnitudes in the intermediate-term (10 years) were calculated as ~64%, ~32% and ~10%, respectively. Positive Coulomb stress changes carry out a movement from the Kavakbaşı Fault zone in the west and the Beğendik segment in the east toward the South East Anatolian Thrust Zone in the east-southeast. In this region, there is no active fault/fault system according to the General Directorate of Mineral Research and Exploration. Thus, these findings are significant clues showing that multiple parameter seismo-tectonic analyses are important in determining the earthquake hazard for the September 25, 2024 earthquake, and that regions with small b-values and seismic quiescence and regions with positive Coulomb stress changes may indicate current hazard and possible earthquake zones in the future.
References
-
Aktug, B., Dikmen U, Dogru, A., & Ozener, H. (2013). Seismicity and strain accumulation around Karliova Triple Junction (Turkey). Journal of Geodynamics, 67, 21-29. http://dx.doi.org/10.1016/j.jog.2012.04.008
-
Alkan, H., Öztürk, S., & Akkaya, İ. (2023). Seismic hazard implications in and around the Yedisu seismic gap (Eastern Türkiye) based on Coulomb stress changes, b-values, and S-wave velocity. Pure and Applied Geophysics, 180, 3227-3248. https://doi:org/10.1007/s00024-023-03342-7
-
Alkan, H., Öztürk, S., Büyüksaraç A., & Bektaş, Ö. (2025). Statistical and seismotectonic analyses of the Marmara region under existing stresses in the west of the NAFZ. Acta Geophysica 73(2), 1117-1136. https://doi.org/10.1007/s11600-024-01449-6
-
Arabasz, W. J., & Hill, S. J. (1996). Applying Reasenberg’s cluster analysis algorithm to regional earthquake catalogs outside California (abstract). Seismological Research Letters, 67, 2, 30.
-
Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
-
Frohlich, C., & Davis, S. (1993). Teleseismic b-values: Or, much ado about 1.0. Journal of Geophysical Research, 98(B1), 631-644. https://doi:org/10.1029/92JB01891
-
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188
-
Hirata, T. (1989). Correlation between the b-value and the fractal dimension of earthquakes. Journal of Geophysical Research, 94, 7507-7514. https://doi:org/10.1029/JB094iB06p07507
-
Işık, E., Aydın, M. C., Bakış, A., & Özlük, M. H. (2012). Bitlis ve civarındaki faylar ve bölgenin depremselliği, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 1(2), 153-169
-
Işık, E. (2013). Bitlis İli’nin depremselliği. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 267-273.
-
Işık, E., & Harirchian, E. (2022). Comparative probabilistic seismic hazard analysis for Eastern Turkey (Bitlis) based on updated hazard map and its effect on regular RC structures. Buildings, 12(1573), 1-19. https://doi.org/10.3390/buildings12101573.
-
Joseph, J.D.R., Rao, K. B., & Anoop, M.B. (2011). A study on clustered and de-clustered world-wide earthquake data using G-R recurrence law. International Journal of Earth Science and Engineering, 4(6), 178-182
-
Katsumata, K., & Kasahara, M. (1999). Precursory seismic quiescence before the 1994 Kurile earthquake (Mw=8.3) revealed by three independent seismic catalogs. Pure and Applied Geophysics, 155, 43-470. doi:org/10.1007/s000240050274
-
Katsumata, K. (2011). A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M=9.0). Earth Planets Space, 63, 709-712. https://doi:org/10.5047/eps.2011.06.033
-
King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953. https://doi:org/10.1785/BSSA0840030935
-
Matsumura, S. (1993). Overestimates of earthquake prediction efficiency in a “postprediction” state. Journal of Physics of the Earth, 41(1), 41-43. https://doi.org/10.4294/jpe1952.41.41
-
Nanjo, K. Z. (2020). Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes? Nature Communication 11 (3082), 1-10. https://doi:org/10.1038/s41467-020-16867-5
-
Öncel, A. O., & Wilson, T. H. (2004). Correlation of seismotectonic variables and GPS strain measurements in western Turkey. Journal of Geophysical Research 109 (B11), B11306. https://doi.org/10.1029/2004JB003101
-
Öztürk, S., Çınar, H., Bayrak, Y., Karslı, H., & Daniel, G. (2008). Properties of the aftershock sequences of the 2003 Bingöl, MD = 6.4, (Turkey) earthquake. Pure and Applied Geophysics 165, 349-371. https://doi.org/10.1007/s00024-008-0300-5
-
Öztürk, S. (2015). Depremselliğin fraktal boyutu ve beklenen güçlü depremlerin orta vadede bölgesel olarak tahmini üzerine bir modelleme: Doğu Anadolu Bölgesi, Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1-23. https://doi.org/10.17714/gufbed.2015.05.001
-
Öztürk, S. (2017). Space-time assessing of the earthquake potential in recent years in the Eastern Anatolia region of Turkey. Earth Sciences Research Journal, 21(2), 67-75. http://dx.doi.org/10.15446/esrj.v21n2.50889
-
Öztürk, S. (2018). Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers of earth Science, 12(1), 215-236. https://doi.org/10.1007/s11707-017-0642-3
-
Öztürk, S., & Alkan, H. (2023). Multiple parameter analysis for assessing and forecasting earthquake hazards in the Lake Van region, Turkey. BALTICA, 36(2), 133-154. https://doi.org/10.5200/baltica.2023.2.4
-
Öztürk, S., & Alkan, H. (2024a). An evaluation of the earthquake potential with seismic and tectonic variables for the West Anatolian region of Türkiye. BALTICA, 37(2), 110-124. https://doi.org/10.5200/baltica.2024.2.3
-
Öztürk, S., & Alkan, H. (2024b). Hakkari ve civarının (Güneydoğu Anadolu, Türkiye) Güncel deprem potansiyeli: Bölge-zaman-magnitüd analizleri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 648-664. https://doi.org/10.53433/yyufbd.1433478
-
Reasenberg, P. A. (1985). Second-order moment of Central California seismicity, 1969-1982. Journal of Geophysical Research, 90(B7), 5479-5495. https://doi:org/10.1029/JB090iB07p05479
-
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa A., Filikov, S. V., Gomes, F., Al-Ghazzi, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111, B05411, 1-26. doi:10.1029/2005JB004051
-
Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399-415. https://doi:org/10.1785/BSSA0580010399
-
Sinaga, G. H. D., Silaban, W., & Simanullang, A. F. (2022). Analysis of Coulomb stress of Sumatera earthquake against pyroclastic flow of mount Sinabung as data Prone Volcano disaster. World Journal of Advanced Research and Reviews 13(1), 793-803. https://doi.org/10.30574/wjarr.2022.13.1.0086
-
Tabban, A., & Gencoğlu, S. (1975). Earthquake and its parameters. Bulletin of the Earthquake Research Institute of Turkey, 11, 7-83
-
Tan, O. (2021). A homogeneous earthquake catalogue for Turkey. Natural Hazards and Earth System Sciences, 21(7), 2059-2073. https://doi:org/10.5194/nhess-21-2059-2021
-
Toda, S., Stein, R. S., & Lin, J. (2011). Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophysical Research Letters, 38(7), L00G03, 1-5. https://doi:10.1029/2011GL047834
-
Ulukavak, M., Yalçınkaya, M., Kayıkçı, E. T., Öztürk, S., Kandemir, R., & Karslı, H. (2020). Analysis of ionospheric TEC anomalies for global earthquakes during 2000–2019 with respect to earthquake magnitude (Mw ≥ 6.0). Journal of Geodynamics, 135 (101721), 1-10. https://doi.org/10.1016/j.jog.2020.101721
-
Utsu, T. (1971). Aftershock and earthquake statistic (III): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). Journal of Faculty of Science Hokkaido University Series VII (Geophysics) 3, 379-441. http://hdl.handle.net/2115/8688
-
Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556-5564. https://doi:org/10.1029/2019GC008515
-
Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the Landers (M=7.5) and Big Bear (6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84(3), 900-916. https://doi:org/10.1785/BSSA0840030900
-
Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin Seismological Society of America, 90(4), 859-869. https://doi:org/10.1785/0119990114
-
Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(2), 373-382. https://doi:org/10.1785/gssrl.72.3.373
-
Wyss, M., & Habermann, R. E. (1988). Precursory seismic quiescence. Pure and Applied Geophysics, 126(2-4), 319-332. https://doi:org/10.1007/BF00879001
-
Wyss, M., & Martirosyan, A. H. (1998). Seismic quiescence before the M7, 1988, Spitak earthquake, Armenia. Geophysical Journal International, 134(2), 329-340. https://doi:org/10.1046/j.1365-246x.1998.00543.x
-
Yadav, R. B. S., Gahalaut, V. K., & Chopra, S. B. (2012). Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence. Journal of Asian Earth Sciences, 45, 167-178. https://doi:org/10.1016/j.jseaes.2011.10.003
-
Yang, L., Wang, J., & Xu, C. (2024). Coseismic Coulomb stress changes induced by a 2020–2021 Mw > 7.0 Alaska earthquake sequence in and around the Shumagin gap and its influence on the Alaska-Aleutian subduction interface. Geodesy and Geodynamics, 15(1), 1-12. https://doi.org/10.1016/j.geog.2023.04.007
25 Eylül 2024 Yumrukaya-Tatvan (Bitlis, Türkiye) depremi ve bölgedeki deprem tehlikesine etkisi üzerine sismo-tektonik bir değerlendirme
Year 2025,
Volume: 15 Issue: 3, 780 - 796, 15.09.2025
Serkan Öztürk
,
Hamdi Alkan
Abstract
Bu çalışma kapsamında, 25 Eylül 2024 depremi (Mw=4.5) ve artçı şoklarından, b-değeri ve Z-değeri dağılımlarından, depremlerin oluşma olasılıkları ve tekrarlama periyodlarından ve Coulomb gerilmesindeki değişimlerden yararlanılarak Bitlis ve civarındaki güncel ve gelecek deprem tehlikesi ortaya konulmaya çalışılmıştır. Ayrıca, doğrultu atımlı faylanma ile karakterize edilen Yumrukaya-Tatvan ana şokunun çalışma alanındaki hangi fay sistemleri ile ilişkili olduğu belirlenmeye çalışılmıştır. G-R ilişkisinin b-değeri 0.840.06 olarak hesaplanmış ve düşük b-değerleri (<1.0), Güneydoğu Anadolu Yitim Zonu ve Muş Fay Zonu boyunca kuzey-kuzeybatı-güneydoğu yönlerinde ve Van Gölü’nün batısında görüntülenmiştir. 2025 yılı başlangıcında, Muş Fay Zonu civarı ile Güneydoğu Anadolu Yitim Zonunun güney ve güneydoğusunda önemli sismik durgunluklar gözlenmiştir. Mw=5.0, 5.5 ve 6.2 büyüklüğündeki depremlerin tekrarlama periyodları sırasıyla ~10, ~26 ve ~100 yıl olarak hesaplanmıştır. Ayrıca, bu büyüklükteki depremlerin orta vadede (10 yıl) oluşma olasılıkları sırasıyla ~%64, ~%32 ve ~%10 olarak hesaplanmıştır. Pozitif Coulomb gerilme değişimleri batıda Kavakbaşı Fay zonundan ve doğuda Beğendik segmentinden doğu-güneydoğuda Güneydoğu Anadolu Bindirme Zonuna doğru bir hareketi ortaya koymaktadır. Bu bölgede Maden Tetkik ve Arama Genel Müdürlüğü’ne göre hiçbir aktif fay/fay sistemleri bulunmamaktadır. Sonuç olarak bu bulgular, 25 Eylül 2024 Yumrukaya-Tatvan depremi için, çok parametreli sismo-tektonik analizlerin deprem tehlikesinin ortaya konulmasında önemli olduğunu, düşük b-değerleri ve sismik durgunluğun izlendiği bölgeler ile pozitif Coulomb gerilme değişimlerinin gözlendiği bölgelerin güncel tehlikeyi ve gelecekteki olası deprem bölgelerine işaret edebileceğini gösteren önemli ipuçlarıdır.
References
-
Aktug, B., Dikmen U, Dogru, A., & Ozener, H. (2013). Seismicity and strain accumulation around Karliova Triple Junction (Turkey). Journal of Geodynamics, 67, 21-29. http://dx.doi.org/10.1016/j.jog.2012.04.008
-
Alkan, H., Öztürk, S., & Akkaya, İ. (2023). Seismic hazard implications in and around the Yedisu seismic gap (Eastern Türkiye) based on Coulomb stress changes, b-values, and S-wave velocity. Pure and Applied Geophysics, 180, 3227-3248. https://doi:org/10.1007/s00024-023-03342-7
-
Alkan, H., Öztürk, S., Büyüksaraç A., & Bektaş, Ö. (2025). Statistical and seismotectonic analyses of the Marmara region under existing stresses in the west of the NAFZ. Acta Geophysica 73(2), 1117-1136. https://doi.org/10.1007/s11600-024-01449-6
-
Arabasz, W. J., & Hill, S. J. (1996). Applying Reasenberg’s cluster analysis algorithm to regional earthquake catalogs outside California (abstract). Seismological Research Letters, 67, 2, 30.
-
Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
-
Frohlich, C., & Davis, S. (1993). Teleseismic b-values: Or, much ado about 1.0. Journal of Geophysical Research, 98(B1), 631-644. https://doi:org/10.1029/92JB01891
-
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188
-
Hirata, T. (1989). Correlation between the b-value and the fractal dimension of earthquakes. Journal of Geophysical Research, 94, 7507-7514. https://doi:org/10.1029/JB094iB06p07507
-
Işık, E., Aydın, M. C., Bakış, A., & Özlük, M. H. (2012). Bitlis ve civarındaki faylar ve bölgenin depremselliği, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 1(2), 153-169
-
Işık, E. (2013). Bitlis İli’nin depremselliği. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 267-273.
-
Işık, E., & Harirchian, E. (2022). Comparative probabilistic seismic hazard analysis for Eastern Turkey (Bitlis) based on updated hazard map and its effect on regular RC structures. Buildings, 12(1573), 1-19. https://doi.org/10.3390/buildings12101573.
-
Joseph, J.D.R., Rao, K. B., & Anoop, M.B. (2011). A study on clustered and de-clustered world-wide earthquake data using G-R recurrence law. International Journal of Earth Science and Engineering, 4(6), 178-182
-
Katsumata, K., & Kasahara, M. (1999). Precursory seismic quiescence before the 1994 Kurile earthquake (Mw=8.3) revealed by three independent seismic catalogs. Pure and Applied Geophysics, 155, 43-470. doi:org/10.1007/s000240050274
-
Katsumata, K. (2011). A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M=9.0). Earth Planets Space, 63, 709-712. https://doi:org/10.5047/eps.2011.06.033
-
King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953. https://doi:org/10.1785/BSSA0840030935
-
Matsumura, S. (1993). Overestimates of earthquake prediction efficiency in a “postprediction” state. Journal of Physics of the Earth, 41(1), 41-43. https://doi.org/10.4294/jpe1952.41.41
-
Nanjo, K. Z. (2020). Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes? Nature Communication 11 (3082), 1-10. https://doi:org/10.1038/s41467-020-16867-5
-
Öncel, A. O., & Wilson, T. H. (2004). Correlation of seismotectonic variables and GPS strain measurements in western Turkey. Journal of Geophysical Research 109 (B11), B11306. https://doi.org/10.1029/2004JB003101
-
Öztürk, S., Çınar, H., Bayrak, Y., Karslı, H., & Daniel, G. (2008). Properties of the aftershock sequences of the 2003 Bingöl, MD = 6.4, (Turkey) earthquake. Pure and Applied Geophysics 165, 349-371. https://doi.org/10.1007/s00024-008-0300-5
-
Öztürk, S. (2015). Depremselliğin fraktal boyutu ve beklenen güçlü depremlerin orta vadede bölgesel olarak tahmini üzerine bir modelleme: Doğu Anadolu Bölgesi, Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1-23. https://doi.org/10.17714/gufbed.2015.05.001
-
Öztürk, S. (2017). Space-time assessing of the earthquake potential in recent years in the Eastern Anatolia region of Turkey. Earth Sciences Research Journal, 21(2), 67-75. http://dx.doi.org/10.15446/esrj.v21n2.50889
-
Öztürk, S. (2018). Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers of earth Science, 12(1), 215-236. https://doi.org/10.1007/s11707-017-0642-3
-
Öztürk, S., & Alkan, H. (2023). Multiple parameter analysis for assessing and forecasting earthquake hazards in the Lake Van region, Turkey. BALTICA, 36(2), 133-154. https://doi.org/10.5200/baltica.2023.2.4
-
Öztürk, S., & Alkan, H. (2024a). An evaluation of the earthquake potential with seismic and tectonic variables for the West Anatolian region of Türkiye. BALTICA, 37(2), 110-124. https://doi.org/10.5200/baltica.2024.2.3
-
Öztürk, S., & Alkan, H. (2024b). Hakkari ve civarının (Güneydoğu Anadolu, Türkiye) Güncel deprem potansiyeli: Bölge-zaman-magnitüd analizleri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 648-664. https://doi.org/10.53433/yyufbd.1433478
-
Reasenberg, P. A. (1985). Second-order moment of Central California seismicity, 1969-1982. Journal of Geophysical Research, 90(B7), 5479-5495. https://doi:org/10.1029/JB090iB07p05479
-
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa A., Filikov, S. V., Gomes, F., Al-Ghazzi, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111, B05411, 1-26. doi:10.1029/2005JB004051
-
Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399-415. https://doi:org/10.1785/BSSA0580010399
-
Sinaga, G. H. D., Silaban, W., & Simanullang, A. F. (2022). Analysis of Coulomb stress of Sumatera earthquake against pyroclastic flow of mount Sinabung as data Prone Volcano disaster. World Journal of Advanced Research and Reviews 13(1), 793-803. https://doi.org/10.30574/wjarr.2022.13.1.0086
-
Tabban, A., & Gencoğlu, S. (1975). Earthquake and its parameters. Bulletin of the Earthquake Research Institute of Turkey, 11, 7-83
-
Tan, O. (2021). A homogeneous earthquake catalogue for Turkey. Natural Hazards and Earth System Sciences, 21(7), 2059-2073. https://doi:org/10.5194/nhess-21-2059-2021
-
Toda, S., Stein, R. S., & Lin, J. (2011). Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophysical Research Letters, 38(7), L00G03, 1-5. https://doi:10.1029/2011GL047834
-
Ulukavak, M., Yalçınkaya, M., Kayıkçı, E. T., Öztürk, S., Kandemir, R., & Karslı, H. (2020). Analysis of ionospheric TEC anomalies for global earthquakes during 2000–2019 with respect to earthquake magnitude (Mw ≥ 6.0). Journal of Geodynamics, 135 (101721), 1-10. https://doi.org/10.1016/j.jog.2020.101721
-
Utsu, T. (1971). Aftershock and earthquake statistic (III): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). Journal of Faculty of Science Hokkaido University Series VII (Geophysics) 3, 379-441. http://hdl.handle.net/2115/8688
-
Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556-5564. https://doi:org/10.1029/2019GC008515
-
Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the Landers (M=7.5) and Big Bear (6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84(3), 900-916. https://doi:org/10.1785/BSSA0840030900
-
Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin Seismological Society of America, 90(4), 859-869. https://doi:org/10.1785/0119990114
-
Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(2), 373-382. https://doi:org/10.1785/gssrl.72.3.373
-
Wyss, M., & Habermann, R. E. (1988). Precursory seismic quiescence. Pure and Applied Geophysics, 126(2-4), 319-332. https://doi:org/10.1007/BF00879001
-
Wyss, M., & Martirosyan, A. H. (1998). Seismic quiescence before the M7, 1988, Spitak earthquake, Armenia. Geophysical Journal International, 134(2), 329-340. https://doi:org/10.1046/j.1365-246x.1998.00543.x
-
Yadav, R. B. S., Gahalaut, V. K., & Chopra, S. B. (2012). Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence. Journal of Asian Earth Sciences, 45, 167-178. https://doi:org/10.1016/j.jseaes.2011.10.003
-
Yang, L., Wang, J., & Xu, C. (2024). Coseismic Coulomb stress changes induced by a 2020–2021 Mw > 7.0 Alaska earthquake sequence in and around the Shumagin gap and its influence on the Alaska-Aleutian subduction interface. Geodesy and Geodynamics, 15(1), 1-12. https://doi.org/10.1016/j.geog.2023.04.007