Review
BibTex RIS Cite

Mikrobesin Öğeleri ve Mikrobiyota Etkileşimi

Year 2017, Volume: 6 Issue: 4, 290 - 302, 31.12.2017

Abstract

İnsan
intestinal mikrobiyotası yaklaşık 10¹³-10¹değişen sayıda mikroorganizmadan
meydana gelen süper organizma olarak tanımlanmaktadır. İnsan organizmasındaki
mikroorganizma sayısı toplam insan hücre sayısından 10 kat daha fazla olup, intestinal
mikrobiyotayı meydana getiren genom insan organizmasını meydana getiren genomun
yaklaşık 150 kat büyüklüğündedir. Bu kadar çok sayıda bileşeniolan mikrobiyota
fetal hayattan yaşlılığa kadar birçok etkenin etkisiyle değişime uğramakta olup
beslenmenin rolü göz ardı edilmemelidir. intestinal mikrobiyota; besinlerle
alınan polisakkaritlerinin fermantasyonu, esansiyel amino asitler ve
vitaminlerin sentezi ve ksenobiyotik ilaçların metabolizması gibi birçok
fonksiyonel özelliğe sahiptir. Mikro besin öğeleri insan metabolizmasını ve
organ fonksiyonlarını ya doğrudan emilim ve hedef hücreye etki mekanizmasıyla
ya da intestinal mikrobiyota vasıtasıyla dolaylı olarak etkilemektedir. Ayrıca
enerji metabolizması,  hücresel büyüme ve
farklılaşma, organ üzerine etki ve bağışıklık mekanizması üzerine kritik öneme
sahipken konak- mikroorganizma-metabolik ekseninde sağlık üzerine de etkileri
vardır. Bu derleme mikro besin öğeleri ve mikrobiyota etkileşimini incelemek
amacıyla yapılmıştır.

References

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102:11070-5.
  • Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual review of nutrition. 2002; 22:283-307.
  • Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486:207-14.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. nature. 2010; 464:59-65.
  • Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences. 2007; 104:979-84.
  • Çelebi G, Uygun A. İntestinal Mikrobiyota ve Fekal Transplantasyon. Güncel gastroenteroloji. 2013:17/2.
  • Cabreiro F, Au C, Leung K-Y, Vergara-Irigaray N, Cochemé HM, Noori T, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013; 153:228-39.
  • Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Annals of the New York Academy of Sciences. 2016; 1372:53-64.
  • Walker W. Protective nutrients and bacterial colonization in the immature human gut. Advances in pediatrics. 1998; 46:353-82.
  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489:220-30.
  • Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microbial cell factories. 2013; 12:1.
  • Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences. 2007; 104:13780-5.
  • Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome research. 2009; 19:1141-52.
  • Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014; 7:17-44.
  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World Journal of Gastroenterology: WJG. 2015; 21:8787. Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. The role of diet on gut microbiota composition. European Review for Medical and Pharmacological Sciences. 2016; 20:4742-9.
  • Guarner F, Malagelada J-R. Gut flora in health and disease. The Lancet. 2003; 361:512-9.
  • Ramnani P, Chitarrari R, Tuohy K, Grant J, Hotchkiss S, Philp K, et al. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe. 2012; 18:1-6.
  • Li D, Wang P, Wang P, Hu X, Chen F. The gut microbiota: a treasure for human health. Biotechnology Advances. 2016; 34:1210-24.
  • Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature communications. 2012; 3:1245.
  • Lyra A, Rinttilä T, Nikkilä J, Krogius-Kurikka L, Kajander K, Malinen E, et al. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol. 2009; 15:5936-45.
  • Jeffery IB, O'Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EM, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012; 61:997-1006.
  • DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE, editors. Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings; 2008: Elsevier.
  • Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society. 2003; 62:67-72.
  • Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome biology. 2012; 13:1.
  • Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates1’2. fuel. 1987; 9:11.
  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences. 2008; 105:16767-72.
  • Bourriaud C, Akoka S, Goupry S, Robins R, Cherbut C, Michel C. Butyrate production from lactate by human colonic microflora. REPRODUCTION NUTRITION DEVELOPMENT. 2002; 42:S55-S.
  • Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PloS one. 2012; 7:e28742.
  • Magwira C, Kullin B, Lewandowski S, Rodgers A, Reid S, Abratt V. Diversity of faecal oxalate‐degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. Journal of applied microbiology. 2012; 113:418-28.
  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001; 291:881-4.
  • Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. Journal of gastroenterology and hepatology. 2013; 28:9-17.
  • Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014; 146:1449-58.
  • O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. International journal of food microbiology. 2012; 152:189-205.
  • Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed research international. 2015; 2015.
  • Feitoza AB, Pereira AF, da Costa NF, Ribeiro BG. Conjugated linoleic acid (CLA): effect modulation of body composition and lipid profile. Nutr Hosp. 2009; 24:422-8.
  • Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. Journal of lipid research. 2010; 51:1101-12.
  • LeBlanc JG, Milani C, de Giori GS, Sesma F, Van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current opinion in biotechnology. 2013; 24:160-8.
  • Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011; 3:118-34.
  • Gu BQ, Li P. Biosynthesis of Vitamins by Probiotic Bacteria. In: Rao V, Rao LG, editors. Probiotics and Prebiotics in Human Nutrition and Health 2016.
  • Kerns JC, Arundel C, Chawla LS. Thiamin deficiency in people with obesity. Advances in Nutrition: An International Review Journal. 2015; 6:147-53.
  • Du Q, Wang H, Xie J. Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets. Int J Biol Sci. 2011; 7:41-52.
  • Champagne CP, Tompkins TA, Buckley ND, Green-Johnson JM. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food microbiology. 2010; 27:968-72.
  • Hill M. Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention. 1997; 6:S43-S5.
  • Bacher A, Eberhardt S, Fischer M, Kis K, Richter G. Biosynthesis of vitamin B2 (riboflavin). Annual review of nutrition. 2000; 20:153-67.
  • Sonenshein AL, Hoch JA, Losick R. Bacillus subtilis and its closest relatives: from genes to cells: Asm Press; 2002.
  • LeBlanc J, Laiño J, del Valle MJ, Vannini V, Van Sinderen D, Taranto M, et al. B‐Group vitamin production by lactic acid bacteria–current knowledge and potential applications. Journal of applied microbiology. 2011; 111:1297-309.
  • Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in genetics. 2015; 6:148.
  • M. A. Beslenme Biyokimyası. Ankara: Hatiboğlu Basım 2011.
  • Degnan PH, Taga ME, Goodman AL. Vitamin B 12 as a modulator of gut microbial ecology. Cell metabolism. 2014; 20:769-78.
  • Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, et al. β-Carotene is an important vitamin A source for humans. The Journal of nutrition. 2010; 140:2268S-85S.
  • Culligan E, Sleator R, Marchesi J, Hill C, Friedberg I. Metagenomic Identification of a Novel Salt Tolerance Gene from the Human Gut Microbiome Which. 2014.
  • Konieczna P, Ferstl R, Ziegler M, Frei R, Nehrbass D, Lauener RP, et al. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PloS one. 2013; 8:e62617.
  • Cross HS, Nittke T, Peterlik M. Modulation of vitamin D synthesis and catabolism in colorectal mucosa: a new target for cancer prevention. Anticancer research. 2009; 29:3705-12.
  • Lucas RM, Gorman S, Geldenhuys S, Hart PH. Vitamin D and immunity. F1000Prime Rep. 2014; 6:118.
  • Zeeuwen PL, Kleerebezem M, Timmerman HM, Schalkwijk J. Microbiome and skin diseases. Current opinion in allergy and clinical immunology. 2013; 13:514-20.
  • Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, De Simone C. Pretreatment with the probiotic VSL# 3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2011; 301:G1004-G13.
  • McCullough F, Northrop-Clewes C, Thurnham D. The effect of vitamin A on epithelial integrity. Proceedings of the Nutrition Society. 1999; 58:289-93.
  • Balamurugan R, Mary RR, Chittaranjan S, Jancy H, Devi RS, Ramakrishna BS. Low levels of faecal lactobacilli in women with iron-deficiency anaemia in south India. British journal of nutrition. 2010; 104:931-4.
  • Dostal A, Lacroix C, Bircher L, Pham VT, Follador R, Zimmermann MB, et al. Iron Modulates Butyrate Production by a Child Gut Microbiota In Vitro. mBio. 2015; 6:e01453-15.
  • Scholz-Ahrens KE, Schrezenmeir J. Inulin and oligofructose and mineral metabolism: the evidence from animal trials. The Journal of nutrition. 2007; 137:2513S-23S.
  • Dostal A, Lacroix C, Pham VT, Zimmermann MB, Del'homme C, Bernalier-Donadille A, et al. Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. British Journal of Nutrition. 2014; 111:2135-45.
  • Dostal A, Fehlbaum S, Chassard C, Zimmermann MB, Lacroix C. Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS microbiology ecology. 2013; 83:161-75.
  • Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences. 2013; 18:144-57.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nature reviews Microbiology. 2014; 12:661-72.
  • Davenport ER, Mizrahi-Man O, Michelini K, Barreiro LB, Ober C, Gilad Y. Seasonal variation in human gut microbiome composition. PloS one. 2014; 9:e90731.
  • Chan YK, Estaki M, Gibson DL. Clinical consequences of diet-induced dysbiosis. Annals of Nutrition and Metabolism. 2013; 63:28-40.
  • Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature genetics. 2013; 45:450-5.
  • Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014; 146:1564-72.
  • Groer MW, Luciano AA, Dishaw LJ, Ashmeade TL, Miller E, Gilbert JA. Development of the preterm infant gut microbiome: a research priority. Microbiome. 2014; 2:1.
  • Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nature immunology. 2013; 14:660-7.
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME journal. 2011; 5:220-30.
  • Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacological research. 2013; 69:52-60.
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut microbes. 2012; 3:289-306.
  • Leitch E, Walker AW, Duncan SH, Holtrop G, Flint HJ. Selective colonization of insoluble substrates by human faecal bacteria. Environmental microbiology. 2007; 9:667-79.
  • Scott KP, Martin JC, Chassard C, Clerget M, Potrykus J, Campbell G, et al. Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proceedings of the National Academy of Sciences. 2011; 108:4672-9.
  • Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2012:gutjnl-2012-303304.
  • Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging.1-14.
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences. 2010; 107:14691-6.
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences. 2008; 105:16731-6.
  • Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, et al. A survey of modulation of gut microbiota by dietary polyphenols. BioMed research international. 2015; 2015.
Year 2017, Volume: 6 Issue: 4, 290 - 302, 31.12.2017

Abstract

References

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102:11070-5.
  • Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual review of nutrition. 2002; 22:283-307.
  • Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486:207-14.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. nature. 2010; 464:59-65.
  • Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences. 2007; 104:979-84.
  • Çelebi G, Uygun A. İntestinal Mikrobiyota ve Fekal Transplantasyon. Güncel gastroenteroloji. 2013:17/2.
  • Cabreiro F, Au C, Leung K-Y, Vergara-Irigaray N, Cochemé HM, Noori T, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013; 153:228-39.
  • Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Annals of the New York Academy of Sciences. 2016; 1372:53-64.
  • Walker W. Protective nutrients and bacterial colonization in the immature human gut. Advances in pediatrics. 1998; 46:353-82.
  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489:220-30.
  • Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microbial cell factories. 2013; 12:1.
  • Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences. 2007; 104:13780-5.
  • Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome research. 2009; 19:1141-52.
  • Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014; 7:17-44.
  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World Journal of Gastroenterology: WJG. 2015; 21:8787. Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. The role of diet on gut microbiota composition. European Review for Medical and Pharmacological Sciences. 2016; 20:4742-9.
  • Guarner F, Malagelada J-R. Gut flora in health and disease. The Lancet. 2003; 361:512-9.
  • Ramnani P, Chitarrari R, Tuohy K, Grant J, Hotchkiss S, Philp K, et al. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe. 2012; 18:1-6.
  • Li D, Wang P, Wang P, Hu X, Chen F. The gut microbiota: a treasure for human health. Biotechnology Advances. 2016; 34:1210-24.
  • Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature communications. 2012; 3:1245.
  • Lyra A, Rinttilä T, Nikkilä J, Krogius-Kurikka L, Kajander K, Malinen E, et al. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol. 2009; 15:5936-45.
  • Jeffery IB, O'Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EM, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012; 61:997-1006.
  • DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE, editors. Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings; 2008: Elsevier.
  • Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society. 2003; 62:67-72.
  • Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome biology. 2012; 13:1.
  • Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates1’2. fuel. 1987; 9:11.
  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences. 2008; 105:16767-72.
  • Bourriaud C, Akoka S, Goupry S, Robins R, Cherbut C, Michel C. Butyrate production from lactate by human colonic microflora. REPRODUCTION NUTRITION DEVELOPMENT. 2002; 42:S55-S.
  • Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PloS one. 2012; 7:e28742.
  • Magwira C, Kullin B, Lewandowski S, Rodgers A, Reid S, Abratt V. Diversity of faecal oxalate‐degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. Journal of applied microbiology. 2012; 113:418-28.
  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001; 291:881-4.
  • Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. Journal of gastroenterology and hepatology. 2013; 28:9-17.
  • Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014; 146:1449-58.
  • O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. International journal of food microbiology. 2012; 152:189-205.
  • Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed research international. 2015; 2015.
  • Feitoza AB, Pereira AF, da Costa NF, Ribeiro BG. Conjugated linoleic acid (CLA): effect modulation of body composition and lipid profile. Nutr Hosp. 2009; 24:422-8.
  • Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. Journal of lipid research. 2010; 51:1101-12.
  • LeBlanc JG, Milani C, de Giori GS, Sesma F, Van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current opinion in biotechnology. 2013; 24:160-8.
  • Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011; 3:118-34.
  • Gu BQ, Li P. Biosynthesis of Vitamins by Probiotic Bacteria. In: Rao V, Rao LG, editors. Probiotics and Prebiotics in Human Nutrition and Health 2016.
  • Kerns JC, Arundel C, Chawla LS. Thiamin deficiency in people with obesity. Advances in Nutrition: An International Review Journal. 2015; 6:147-53.
  • Du Q, Wang H, Xie J. Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets. Int J Biol Sci. 2011; 7:41-52.
  • Champagne CP, Tompkins TA, Buckley ND, Green-Johnson JM. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food microbiology. 2010; 27:968-72.
  • Hill M. Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention. 1997; 6:S43-S5.
  • Bacher A, Eberhardt S, Fischer M, Kis K, Richter G. Biosynthesis of vitamin B2 (riboflavin). Annual review of nutrition. 2000; 20:153-67.
  • Sonenshein AL, Hoch JA, Losick R. Bacillus subtilis and its closest relatives: from genes to cells: Asm Press; 2002.
  • LeBlanc J, Laiño J, del Valle MJ, Vannini V, Van Sinderen D, Taranto M, et al. B‐Group vitamin production by lactic acid bacteria–current knowledge and potential applications. Journal of applied microbiology. 2011; 111:1297-309.
  • Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in genetics. 2015; 6:148.
  • M. A. Beslenme Biyokimyası. Ankara: Hatiboğlu Basım 2011.
  • Degnan PH, Taga ME, Goodman AL. Vitamin B 12 as a modulator of gut microbial ecology. Cell metabolism. 2014; 20:769-78.
  • Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, et al. β-Carotene is an important vitamin A source for humans. The Journal of nutrition. 2010; 140:2268S-85S.
  • Culligan E, Sleator R, Marchesi J, Hill C, Friedberg I. Metagenomic Identification of a Novel Salt Tolerance Gene from the Human Gut Microbiome Which. 2014.
  • Konieczna P, Ferstl R, Ziegler M, Frei R, Nehrbass D, Lauener RP, et al. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PloS one. 2013; 8:e62617.
  • Cross HS, Nittke T, Peterlik M. Modulation of vitamin D synthesis and catabolism in colorectal mucosa: a new target for cancer prevention. Anticancer research. 2009; 29:3705-12.
  • Lucas RM, Gorman S, Geldenhuys S, Hart PH. Vitamin D and immunity. F1000Prime Rep. 2014; 6:118.
  • Zeeuwen PL, Kleerebezem M, Timmerman HM, Schalkwijk J. Microbiome and skin diseases. Current opinion in allergy and clinical immunology. 2013; 13:514-20.
  • Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, De Simone C. Pretreatment with the probiotic VSL# 3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2011; 301:G1004-G13.
  • McCullough F, Northrop-Clewes C, Thurnham D. The effect of vitamin A on epithelial integrity. Proceedings of the Nutrition Society. 1999; 58:289-93.
  • Balamurugan R, Mary RR, Chittaranjan S, Jancy H, Devi RS, Ramakrishna BS. Low levels of faecal lactobacilli in women with iron-deficiency anaemia in south India. British journal of nutrition. 2010; 104:931-4.
  • Dostal A, Lacroix C, Bircher L, Pham VT, Follador R, Zimmermann MB, et al. Iron Modulates Butyrate Production by a Child Gut Microbiota In Vitro. mBio. 2015; 6:e01453-15.
  • Scholz-Ahrens KE, Schrezenmeir J. Inulin and oligofructose and mineral metabolism: the evidence from animal trials. The Journal of nutrition. 2007; 137:2513S-23S.
  • Dostal A, Lacroix C, Pham VT, Zimmermann MB, Del'homme C, Bernalier-Donadille A, et al. Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. British Journal of Nutrition. 2014; 111:2135-45.
  • Dostal A, Fehlbaum S, Chassard C, Zimmermann MB, Lacroix C. Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS microbiology ecology. 2013; 83:161-75.
  • Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences. 2013; 18:144-57.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nature reviews Microbiology. 2014; 12:661-72.
  • Davenport ER, Mizrahi-Man O, Michelini K, Barreiro LB, Ober C, Gilad Y. Seasonal variation in human gut microbiome composition. PloS one. 2014; 9:e90731.
  • Chan YK, Estaki M, Gibson DL. Clinical consequences of diet-induced dysbiosis. Annals of Nutrition and Metabolism. 2013; 63:28-40.
  • Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature genetics. 2013; 45:450-5.
  • Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014; 146:1564-72.
  • Groer MW, Luciano AA, Dishaw LJ, Ashmeade TL, Miller E, Gilbert JA. Development of the preterm infant gut microbiome: a research priority. Microbiome. 2014; 2:1.
  • Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nature immunology. 2013; 14:660-7.
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME journal. 2011; 5:220-30.
  • Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacological research. 2013; 69:52-60.
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut microbes. 2012; 3:289-306.
  • Leitch E, Walker AW, Duncan SH, Holtrop G, Flint HJ. Selective colonization of insoluble substrates by human faecal bacteria. Environmental microbiology. 2007; 9:667-79.
  • Scott KP, Martin JC, Chassard C, Clerget M, Potrykus J, Campbell G, et al. Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proceedings of the National Academy of Sciences. 2011; 108:4672-9.
  • Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2012:gutjnl-2012-303304.
  • Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging.1-14.
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences. 2010; 107:14691-6.
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences. 2008; 105:16731-6.
  • Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, et al. A survey of modulation of gut microbiota by dietary polyphenols. BioMed research international. 2015; 2015.
There are 80 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Tevfik Koçak

Nevin Şanlıer This is me

Publication Date December 31, 2017
Acceptance Date February 2, 2017
Published in Issue Year 2017 Volume: 6 Issue: 4

Cite

APA Koçak, T., & Şanlıer, N. (2017). Mikrobesin Öğeleri ve Mikrobiyota Etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 6(4), 290-302.
AMA Koçak T, Şanlıer N. Mikrobesin Öğeleri ve Mikrobiyota Etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. December 2017;6(4):290-302.
Chicago Koçak, Tevfik, and Nevin Şanlıer. “Mikrobesin Öğeleri Ve Mikrobiyota Etkileşimi”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 6, no. 4 (December 2017): 290-302.
EndNote Koçak T, Şanlıer N (December 1, 2017) Mikrobesin Öğeleri ve Mikrobiyota Etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 6 4 290–302.
IEEE T. Koçak and N. Şanlıer, “Mikrobesin Öğeleri ve Mikrobiyota Etkileşimi”, Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, vol. 6, no. 4, pp. 290–302, 2017.
ISNAD Koçak, Tevfik - Şanlıer, Nevin. “Mikrobesin Öğeleri Ve Mikrobiyota Etkileşimi”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 6/4 (December 2017), 290-302.
JAMA Koçak T, Şanlıer N. Mikrobesin Öğeleri ve Mikrobiyota Etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2017;6:290–302.
MLA Koçak, Tevfik and Nevin Şanlıer. “Mikrobesin Öğeleri Ve Mikrobiyota Etkileşimi”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, vol. 6, no. 4, 2017, pp. 290-02.
Vancouver Koçak T, Şanlıer N. Mikrobesin Öğeleri ve Mikrobiyota Etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2017;6(4):290-302.