Derleme
BibTex RIS Kaynak Göster

Maternal Nutrition, Microbiota and Chrononutrition

Yıl 2023, Cilt: 12 Sayı: 4, 2059 - 2067, 26.12.2023
https://doi.org/10.37989/gumussagbil.1368334

Öz

Maternal nutrition plays an important role in fetal growth and development. It has long been known that adverse nutritional conditions during pregnancy can permanently alter the structure and function of certain organs in the infant, which can lead to many adult diseases through fetal programming. Incorporating the gut microbiota into the fetal programming hypothesis will provide a better understanding of the impact of maternal nutrition on the health and disease of the infant. Maternal nutrition in pregnancy and lactation affects the mother's microbiota, thereby altering the pool of bacteria capable of being transferred to the infant during pregnancy and early life. Alterations in the composition and activity of the microbiota have an important place in the health of both mother and infant. Although evidence is beginning to emerge that the future health and disease of the infant is affected by the composition of the diet and total energy intake, it is stated that not only the composition of the diet but also the timing of the diet (chrononutrition) is important. It has been reported in the literature that mothers eating predominantly nighttime have low diet quality, high glycemic load and fat content of the diet, and low fruit and dietary fiber consumption, and as a result, it is thought that it may affect the health of both the mother and the infant. The aim of this review; to examine the relationships between maternal nutrition, microbiota and chrononutrition.

Kaynakça

  • 1. Chu, D.M, Meyer, K.M, Prince, A.L. and Aagaard, K.M. (2016). “Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function”. Gut Microbes, 7 (6), 459–470. https://doi.org/10.1080/19490976.2016.1241357
  • 2. Lakshmy, R. (2013). “Metabolic syndrome: Role of maternal undernutrition and fetal programming”. Reviews in Endocrine and Metabolic Disorders, 14 (3), 229–240. https://doi.org/10.1007/s11154-013-9266-4
  • 3. Moreno-Mendez, E, Quintero-Fabian, S, Fernandez-Mejia, C. and Lazo-de-la-Vega-Monroy, M.L. (2020). “Early-life programming of adipose tissue”. Nutrition Research Reviews, 33 (2), 244–259. https://doi.org/10.1017/S0954422420000037
  • 4. Macpherson, A.J, De Agüero, M.G. and Ganal-Vonarburg, S.C. (2017). “How nutrition and the maternal microbiota shape the neonatal immune system”. Nature Reviews Immunology, 17(8), 508–517. https://doi.org/10.1038/nri.2017.58
  • 5. Henry, C.J, Kaur, B. and Quek, R.Y.C. (2020). “Chrononutrition in the management of diabetes”. Nutrition and Diabetes, 10 (1), 6. https://doi.org/10.1038/s41387-020-0109-6
  • 6. Gontijo, C.A, Cabral, B.B.M, Balieiro, L.C.T, Teixeira, G.P, Fahmy, W.M, Maia, Y.C. de P. and Crispim, C.A. (2019). “Time-related eating patterns and chronotype are associated with diet quality in pregnant women”. Chronobiology International, 36 (1), 75–84. https://doi.org/10.1080/07420528.2018.1518328
  • 7. Fall, C.H.D. (2013). “Fetal Programming and the Risk of Noncommunicable Disease”. The Indian Journal of Pediatrics, 80 (S1), 13–20. https://doi.org/10.1007/s12098-012-0834-5
  • 8. Lane, R.H. (2014). “Fetal Programming, Epigenetics. and Adult Onset Disease”. Clinics in Perinatology, 41 (4), 815–831. https://doi.org/10.1016/j.clp.2014.08.006
  • 9. Wei, Y, Schatten, H. and Sun, Q.Y. (2015). “Environmental epigenetic inheritance through gametes and implications for human reproduction”. Human Reproduction Update, 21 (2), 194–208. https://doi.org/10.1093/humupd/dmu061
  • 10. Barker, D.J. (1998). “In utero programming of chronic disease”. Clinical Science (London, England : 1979), 95 (2), 115–128. http://www.ncbi.nlm.nih.gov/pubmed/9680492
  • 11. Ravelli, A.C, van der Meulen, J. H, Osmond, C, Barker, D.J. and Bleker, O.P. (1999). “Obesity at the age of 50 y in men and women exposed to famine prenatally”. The American Journal of Clinical Nutrition, 70 (5), 811–816. https://doi.org/10.1093/ajcn/70.5.811
  • 12. Roseboom, T.J. (2000). “Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45”. Heart, 84 (6), 595–598. https://doi.org/10.1136/heart.84.6.595
  • 13. Ravelli, G.P, Stein, Z.A. and Susser, M.W. (1976). “Obesity in Young Men after Famine Exposure in Utero and Early Infancy”. New England Journal of Medicine, 295 (7), 349–353. https://doi.org/10.1056/NEJM197608122950701
  • 14. Stein, Z. and Susser, M. (1975). “The Dutch Famine, 1944–1945. and the Reproductive Process. I. Effects on Six Indices at Birth”. Pediatric Research, 9 (2), 70–76. https://doi.org/10.1203/00006450-197502000-00003
  • 15. Scherrer, U, Rimoldi, S.F, Sartori, C, Messerli, F.H. and Rexhaj, E. (2015). “Fetal programming and epigenetic mechanisms in arterial hypertension”. Current Opinion in Cardiology, 30 (4), 393–397. https://doi.org/10.1097/HCO.0000000000000192
  • 16. Desai, M, Jellyman, J.K. and Ross, M.G. (2015). Epigenomics, gestational programming and risk of metabolic syndrome. International Journal of Obesity, 39 (4), 633–641. https://doi.org/10.1038/ijo.2015.13
  • 17. Bédard, A, Northstone, K, Henderson, A.J. and Shaheen, S.O. (2017). “Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes”. European Respiratory Journal, 50 (1), 1700073. https://doi.org/10.1183/13993003.00073-2017
  • 18. Hrolfsdottir, L, Halldorsson, T.I, Rytter, D, Bech, B.H, Birgisdottir, B.E, Gunnarsdottir, I, Granström, C, Henriksen, T. B, Olsen, S.F. and Maslova, E. (2017). “Maternal Macronutrient Intake and Offspring Blood Pressure 20 Years Later”. Journal of the American Heart Association, 6 (4), e005808. https://doi.org/10.1161/JAHA.117.005808
  • 19. Eshak, E.S, Okada, C, Baba, S, Kimura, T, Ikehara, S, Sato, T, Shirai, K. and Iso, H. (2020). “Maternal total energy, macronutrient and vitamin intakes during pregnancy associated with the offspring’s birth size in the Japan Environment and Children’s Study”. British Journal of Nutrition, 124 (6), 558–566. https://doi.org/10.1017/S0007114520001397
  • 20. Ikee, R, Sasaki, N, Yasuda, T. and Fukazawa, S. (2020). “Chronic Kidney Disease, Gut Dysbiosis. and Constipation: A Burdensome Triplet”. Microorganisms, 8 (12), 1862. https://doi.org/10.3390/microorganisms8121862
  • 21. Feng, W, Liu, J, Ao, H, Yue, S. and Peng, C. (2020). “Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs”. Theranostics, 10 (24), 11278–11301. https://doi.org/10.7150/thno.47289
  • 22. Röytiö, H, Mokkala, K, Vahlberg, T. and Laitinen, K. (2017). “Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women”. British Journal of Nutrition, 118 (5), 343–352. https://doi.org/10.1017/S0007114517002100
  • 23. Collado, M.C, Rautava, S, Aakko, J, Isolauri, E. and Salminen, S. (2016). “Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid”. Scientific Reports, 6 (1), 23129. https://doi.org/10.1038/srep23129
  • 24. Voigt, R.M, Forsyth, C.B, Green, S.J, Engen, P.A. and Keshavarzian, A. (2016). “Circadian Rhythm and the Gut Microbiome (pp. 193–205)”. https://doi.org/10.1016/bs.irn.2016.07.002
  • 25. Papakonstantinou, E, Oikonomou, C, Nychas, G. and Dimitriadis, G.D. (2022). “Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance”. Nutrients, 14 (4), 823. https://doi.org/10.3390/nu14040823
  • 26. Loy, S.L, Loo, R.S.X, Godfrey, K.M, Chong, Y.S, Shek, L.P.C, Tan, K.H, Chong, M.F.F, Chan, J.K.Y. and Yap, F. (2020). “Chrononutrition during Pregnancy: A Review on Maternal Night-Time Eating”. Nutrients, 12 (9), 2783. https://doi.org/10.3390/nu12092783
  • 27. Guerrero-Vargas, N.N, Espitia-Bautista, E, Buijs, R.M. and Escobar, C. (2018). “Shift-work: is time of eating determining metabolic health? Evidence from animal models”. Proceedings of the Nutrition Society, 77 (3), 199–215. https://doi.org/10.1017/S0029665117004128
  • 28. Hammer, P, Flachs, E, Specht, I, Pinborg, A, Petersen, S, Larsen, A, Hougaard, K, Hansen, J, Hansen, Å, Kolstad, H, Garde, A. and Bonde, J.P. (2018). “Night work and hypertensive disorders of pregnancy: a national register-based cohort study”. Scandinavian Journal of Work, Environment and Health, 44 (4), 403–413. https://doi.org/10.5271/sjweh.3728
  • 29. Kanerva, N, Kronholm, E, Partonen, T, Ovaskainen, M.L, Kaartinen, N.E, Konttinen, H, Broms, U. and Männistö, S. (2012). “Tendency Toward Eveningness Is Associated With Unhealthy Dietary Habits”. Chronobiology International, 29 (7), 920–927. https://doi.org/10.3109/07420528.2012.699128
  • 30. Maukonen, M, Kanerva, N, Partonen, T, Kronholm, E, Tapanainen, H, Kontto, J. and Männistö, S. (2017). “Chronotype differences in timing of energy and macronutrient intakes: A population-based study in adults”. Obesity, 25 (3), 608–615. https://doi.org/10.1002/oby.21747
  • 31. Lotti, S, Dinu, M, Colombini, B, Amedei, A. and Sofi, F. (2023). “Circadian rhythms, gut microbiota. and diet: Possible implications for health”. Nutrition, Metabolism and Cardiovascular Diseases, 33 (8), 1490–1500. https://doi.org/10.1016/j.numecd.2023.05.009
  • 32. Gamble, K.L, Berry, R, Frank, S.J. and Young, M.E. (2014). “Circadian clock control of endocrine factors”. Nature Reviews Endocrinology, 10 (8), 466–475. https://doi.org/10.1038/nrendo.2014.78
  • 33. Thaiss, C.A, Zeevi, D, Levy, M, Zilberman-Schapira, G, Suez, J, Tengeler, A.C, Abramson, L, Katz, M.N, Korem, T, Zmora, N, Kuperman, Y, Biton, I, Gilad, S, Harmelin, A, Shapiro, H, Halpern, Z, Segal, E. and Elinav, E. (2014). “Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis”. Cell, 159 (3), 514–529. https://doi.org/10.1016/j.cell.2014.09.048
  • 34. Voigt, Robin M, Forsyth, C.B, Green, S.J, Mutlu, E, Engen, P, Vitaterna, M.H, Turek, F.W. and Keshavarzian, A. (2014). “Circadian Disorganization Alters Intestinal Microbiota”. PLoS ONE, 9 (5), e97500. https://doi.org/10.1371/journal.pone.0097500
  • 35. Mortaş, H, Bilici, S. and Karakan, T. (2020). “The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology”. Chronobiology International, 37 (7), 1067–1081. https://doi.org/10.1080/07420528.2020.1778717
  • 36. Leone, V, Gibbons, S.M, Martinez, K, Hutchison, A.L, Huang, E.Y, Cham, C.M, Pierre, J.F, Heneghan, A.F, Nadimpalli, A, Hubert, N, Zale, E, Wang, Y, Huang, Y, Theriault, B, Dinner, A. R, Musch, M.W, Kudsk, K.A, Prendergast, B.J, Gilbert, J.A. and Chang, E.B. (2015). “Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism”. Cell Host and Microbe, 17 (5), 681–689. https://doi.org/10.1016/j.chom.2015.03.006
  • 37. Carasso, S, Fishman, B, Lask, L.S, Shochat, T, Geva‐Zatorsky, N. and Tauber, E. (2021). “Metagenomic analysis reveals the signature of gut microbiota associated with human chronotypes”. The FASEB Journal, 35 (11), e22011. https://doi.org/10.1096/fj.202100857RR
  • 38. Smolensky, M.H, Hermida, R.C, Reinberg, A, Sackett-Lundeen, L. and Portaluppi, F. (2016). “Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention”. Chronobiology International, 33 (8), 1101–1119. https://doi.org/10.1080/07420528.2016.1184678
  • 39. Hatori, M, Vollmers, C, Zarrinpar, A, DiTacchio, L, Bushong, E. A, Gill, S, Leblanc, M, Chaix, A, Joens, M, Fitzpatrick, J.A.J, Ellisman, M.H. and Panda, S. (2012). “Time-Restricted Feeding without Reducing Caloric Intake Prevents Metabolic Diseases in Mice Fed a High-Fat Diet”. Cell Metabolism, 15 (6), 848–860. https://doi.org/10.1016/j.cmet.2012.04.019
  • 40. Ye, Y, Xu, H, Xie, Z, Wang, L, Sun, Y, Yang, H, Hu, D. and Mao, Y. (2020). “Time-Restricted Feeding Reduces the Detrimental Effects of a High-Fat Diet, Possibly by Modulating the Circadian Rhythm of Hepatic Lipid Metabolism and Gut Microbiota”. Frontiers in Nutrition, 7, 596285. https://doi.org/10.3389/fnut.2020.596285
  • 41. Zarrinpar, A, Chaix, A, Yooseph, S. and Panda, S. (2014). “Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome”. Cell Metabolism, 20 (6), 1006–1017. https://doi.org/10.1016/j.cmet.2014.11.008

Maternal Beslenme, Mikrobiyota ve Krononütrisyon

Yıl 2023, Cilt: 12 Sayı: 4, 2059 - 2067, 26.12.2023
https://doi.org/10.37989/gumussagbil.1368334

Öz

Maternal beslenme, fetal büyüme ve gelişmede önemli bir rol oynar. Gebelik sırasındaki olumsuz beslenme koşullarının, bebekteki belirli organların yapısını ve işlevini kalıcı olarak değiştirebilmekte ve bunun da fetal programlanma aracılığıyla birçok yetişkin hastalığına yol açabileceği uzun zamandır bilinmektedir. Bağırsak mikrobiyotasının fetal programlanma hipotezine dahil edilmesi, maternal beslenmenin bebeğin sağlığı ve hastalığı üzerindeki etkisinin daha iyi anlaşılmasını sağlayacaktır. Gebelik ve emziklilik dönemindeki maternal beslenme, annenin mikrobiyotasını etkilemekte, böylece gebelik ve erken yaşam sırasında bebeğe aktarılabilen bakteri havuzunu değiştirmektedir. Mikrobiyotanın bileşimi ve aktivitesinin değişmesi ise hem anne hem de bebeğin sağlığında önemli bir yere sahiptir. Diyetin kompozisyonu ve total enerji alımı ile bebeğin gelecekteki sağlığı ve hastalığının etkilendiğine dair kanıtlar oluşmaya başlamakla birlikte, sadece diyetin kompozisyonunun değil aynı zamanda diyetin zamanının (krononütrisyon) da önemli olduğu belirtilmektedir. Literatürde gece ağırlıklı beslenen annelerin diyet kalitesinin düşük, diyetin glisemik yükünün ve yağ içeriğinin yüksek, meyve-posa tüketiminin düşük olduğu bildirilmiştir ve bunun sonucunda hem anne hem de bebeğin sağlığını etkileyebileceği düşünülmektedir. Bu derlemenin amacı; maternal beslenme, mikrobiyota ve krononütrisyon arasındaki ilişkileri incelemektir.

Kaynakça

  • 1. Chu, D.M, Meyer, K.M, Prince, A.L. and Aagaard, K.M. (2016). “Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function”. Gut Microbes, 7 (6), 459–470. https://doi.org/10.1080/19490976.2016.1241357
  • 2. Lakshmy, R. (2013). “Metabolic syndrome: Role of maternal undernutrition and fetal programming”. Reviews in Endocrine and Metabolic Disorders, 14 (3), 229–240. https://doi.org/10.1007/s11154-013-9266-4
  • 3. Moreno-Mendez, E, Quintero-Fabian, S, Fernandez-Mejia, C. and Lazo-de-la-Vega-Monroy, M.L. (2020). “Early-life programming of adipose tissue”. Nutrition Research Reviews, 33 (2), 244–259. https://doi.org/10.1017/S0954422420000037
  • 4. Macpherson, A.J, De Agüero, M.G. and Ganal-Vonarburg, S.C. (2017). “How nutrition and the maternal microbiota shape the neonatal immune system”. Nature Reviews Immunology, 17(8), 508–517. https://doi.org/10.1038/nri.2017.58
  • 5. Henry, C.J, Kaur, B. and Quek, R.Y.C. (2020). “Chrononutrition in the management of diabetes”. Nutrition and Diabetes, 10 (1), 6. https://doi.org/10.1038/s41387-020-0109-6
  • 6. Gontijo, C.A, Cabral, B.B.M, Balieiro, L.C.T, Teixeira, G.P, Fahmy, W.M, Maia, Y.C. de P. and Crispim, C.A. (2019). “Time-related eating patterns and chronotype are associated with diet quality in pregnant women”. Chronobiology International, 36 (1), 75–84. https://doi.org/10.1080/07420528.2018.1518328
  • 7. Fall, C.H.D. (2013). “Fetal Programming and the Risk of Noncommunicable Disease”. The Indian Journal of Pediatrics, 80 (S1), 13–20. https://doi.org/10.1007/s12098-012-0834-5
  • 8. Lane, R.H. (2014). “Fetal Programming, Epigenetics. and Adult Onset Disease”. Clinics in Perinatology, 41 (4), 815–831. https://doi.org/10.1016/j.clp.2014.08.006
  • 9. Wei, Y, Schatten, H. and Sun, Q.Y. (2015). “Environmental epigenetic inheritance through gametes and implications for human reproduction”. Human Reproduction Update, 21 (2), 194–208. https://doi.org/10.1093/humupd/dmu061
  • 10. Barker, D.J. (1998). “In utero programming of chronic disease”. Clinical Science (London, England : 1979), 95 (2), 115–128. http://www.ncbi.nlm.nih.gov/pubmed/9680492
  • 11. Ravelli, A.C, van der Meulen, J. H, Osmond, C, Barker, D.J. and Bleker, O.P. (1999). “Obesity at the age of 50 y in men and women exposed to famine prenatally”. The American Journal of Clinical Nutrition, 70 (5), 811–816. https://doi.org/10.1093/ajcn/70.5.811
  • 12. Roseboom, T.J. (2000). “Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45”. Heart, 84 (6), 595–598. https://doi.org/10.1136/heart.84.6.595
  • 13. Ravelli, G.P, Stein, Z.A. and Susser, M.W. (1976). “Obesity in Young Men after Famine Exposure in Utero and Early Infancy”. New England Journal of Medicine, 295 (7), 349–353. https://doi.org/10.1056/NEJM197608122950701
  • 14. Stein, Z. and Susser, M. (1975). “The Dutch Famine, 1944–1945. and the Reproductive Process. I. Effects on Six Indices at Birth”. Pediatric Research, 9 (2), 70–76. https://doi.org/10.1203/00006450-197502000-00003
  • 15. Scherrer, U, Rimoldi, S.F, Sartori, C, Messerli, F.H. and Rexhaj, E. (2015). “Fetal programming and epigenetic mechanisms in arterial hypertension”. Current Opinion in Cardiology, 30 (4), 393–397. https://doi.org/10.1097/HCO.0000000000000192
  • 16. Desai, M, Jellyman, J.K. and Ross, M.G. (2015). Epigenomics, gestational programming and risk of metabolic syndrome. International Journal of Obesity, 39 (4), 633–641. https://doi.org/10.1038/ijo.2015.13
  • 17. Bédard, A, Northstone, K, Henderson, A.J. and Shaheen, S.O. (2017). “Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes”. European Respiratory Journal, 50 (1), 1700073. https://doi.org/10.1183/13993003.00073-2017
  • 18. Hrolfsdottir, L, Halldorsson, T.I, Rytter, D, Bech, B.H, Birgisdottir, B.E, Gunnarsdottir, I, Granström, C, Henriksen, T. B, Olsen, S.F. and Maslova, E. (2017). “Maternal Macronutrient Intake and Offspring Blood Pressure 20 Years Later”. Journal of the American Heart Association, 6 (4), e005808. https://doi.org/10.1161/JAHA.117.005808
  • 19. Eshak, E.S, Okada, C, Baba, S, Kimura, T, Ikehara, S, Sato, T, Shirai, K. and Iso, H. (2020). “Maternal total energy, macronutrient and vitamin intakes during pregnancy associated with the offspring’s birth size in the Japan Environment and Children’s Study”. British Journal of Nutrition, 124 (6), 558–566. https://doi.org/10.1017/S0007114520001397
  • 20. Ikee, R, Sasaki, N, Yasuda, T. and Fukazawa, S. (2020). “Chronic Kidney Disease, Gut Dysbiosis. and Constipation: A Burdensome Triplet”. Microorganisms, 8 (12), 1862. https://doi.org/10.3390/microorganisms8121862
  • 21. Feng, W, Liu, J, Ao, H, Yue, S. and Peng, C. (2020). “Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs”. Theranostics, 10 (24), 11278–11301. https://doi.org/10.7150/thno.47289
  • 22. Röytiö, H, Mokkala, K, Vahlberg, T. and Laitinen, K. (2017). “Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women”. British Journal of Nutrition, 118 (5), 343–352. https://doi.org/10.1017/S0007114517002100
  • 23. Collado, M.C, Rautava, S, Aakko, J, Isolauri, E. and Salminen, S. (2016). “Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid”. Scientific Reports, 6 (1), 23129. https://doi.org/10.1038/srep23129
  • 24. Voigt, R.M, Forsyth, C.B, Green, S.J, Engen, P.A. and Keshavarzian, A. (2016). “Circadian Rhythm and the Gut Microbiome (pp. 193–205)”. https://doi.org/10.1016/bs.irn.2016.07.002
  • 25. Papakonstantinou, E, Oikonomou, C, Nychas, G. and Dimitriadis, G.D. (2022). “Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance”. Nutrients, 14 (4), 823. https://doi.org/10.3390/nu14040823
  • 26. Loy, S.L, Loo, R.S.X, Godfrey, K.M, Chong, Y.S, Shek, L.P.C, Tan, K.H, Chong, M.F.F, Chan, J.K.Y. and Yap, F. (2020). “Chrononutrition during Pregnancy: A Review on Maternal Night-Time Eating”. Nutrients, 12 (9), 2783. https://doi.org/10.3390/nu12092783
  • 27. Guerrero-Vargas, N.N, Espitia-Bautista, E, Buijs, R.M. and Escobar, C. (2018). “Shift-work: is time of eating determining metabolic health? Evidence from animal models”. Proceedings of the Nutrition Society, 77 (3), 199–215. https://doi.org/10.1017/S0029665117004128
  • 28. Hammer, P, Flachs, E, Specht, I, Pinborg, A, Petersen, S, Larsen, A, Hougaard, K, Hansen, J, Hansen, Å, Kolstad, H, Garde, A. and Bonde, J.P. (2018). “Night work and hypertensive disorders of pregnancy: a national register-based cohort study”. Scandinavian Journal of Work, Environment and Health, 44 (4), 403–413. https://doi.org/10.5271/sjweh.3728
  • 29. Kanerva, N, Kronholm, E, Partonen, T, Ovaskainen, M.L, Kaartinen, N.E, Konttinen, H, Broms, U. and Männistö, S. (2012). “Tendency Toward Eveningness Is Associated With Unhealthy Dietary Habits”. Chronobiology International, 29 (7), 920–927. https://doi.org/10.3109/07420528.2012.699128
  • 30. Maukonen, M, Kanerva, N, Partonen, T, Kronholm, E, Tapanainen, H, Kontto, J. and Männistö, S. (2017). “Chronotype differences in timing of energy and macronutrient intakes: A population-based study in adults”. Obesity, 25 (3), 608–615. https://doi.org/10.1002/oby.21747
  • 31. Lotti, S, Dinu, M, Colombini, B, Amedei, A. and Sofi, F. (2023). “Circadian rhythms, gut microbiota. and diet: Possible implications for health”. Nutrition, Metabolism and Cardiovascular Diseases, 33 (8), 1490–1500. https://doi.org/10.1016/j.numecd.2023.05.009
  • 32. Gamble, K.L, Berry, R, Frank, S.J. and Young, M.E. (2014). “Circadian clock control of endocrine factors”. Nature Reviews Endocrinology, 10 (8), 466–475. https://doi.org/10.1038/nrendo.2014.78
  • 33. Thaiss, C.A, Zeevi, D, Levy, M, Zilberman-Schapira, G, Suez, J, Tengeler, A.C, Abramson, L, Katz, M.N, Korem, T, Zmora, N, Kuperman, Y, Biton, I, Gilad, S, Harmelin, A, Shapiro, H, Halpern, Z, Segal, E. and Elinav, E. (2014). “Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis”. Cell, 159 (3), 514–529. https://doi.org/10.1016/j.cell.2014.09.048
  • 34. Voigt, Robin M, Forsyth, C.B, Green, S.J, Mutlu, E, Engen, P, Vitaterna, M.H, Turek, F.W. and Keshavarzian, A. (2014). “Circadian Disorganization Alters Intestinal Microbiota”. PLoS ONE, 9 (5), e97500. https://doi.org/10.1371/journal.pone.0097500
  • 35. Mortaş, H, Bilici, S. and Karakan, T. (2020). “The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology”. Chronobiology International, 37 (7), 1067–1081. https://doi.org/10.1080/07420528.2020.1778717
  • 36. Leone, V, Gibbons, S.M, Martinez, K, Hutchison, A.L, Huang, E.Y, Cham, C.M, Pierre, J.F, Heneghan, A.F, Nadimpalli, A, Hubert, N, Zale, E, Wang, Y, Huang, Y, Theriault, B, Dinner, A. R, Musch, M.W, Kudsk, K.A, Prendergast, B.J, Gilbert, J.A. and Chang, E.B. (2015). “Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism”. Cell Host and Microbe, 17 (5), 681–689. https://doi.org/10.1016/j.chom.2015.03.006
  • 37. Carasso, S, Fishman, B, Lask, L.S, Shochat, T, Geva‐Zatorsky, N. and Tauber, E. (2021). “Metagenomic analysis reveals the signature of gut microbiota associated with human chronotypes”. The FASEB Journal, 35 (11), e22011. https://doi.org/10.1096/fj.202100857RR
  • 38. Smolensky, M.H, Hermida, R.C, Reinberg, A, Sackett-Lundeen, L. and Portaluppi, F. (2016). “Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention”. Chronobiology International, 33 (8), 1101–1119. https://doi.org/10.1080/07420528.2016.1184678
  • 39. Hatori, M, Vollmers, C, Zarrinpar, A, DiTacchio, L, Bushong, E. A, Gill, S, Leblanc, M, Chaix, A, Joens, M, Fitzpatrick, J.A.J, Ellisman, M.H. and Panda, S. (2012). “Time-Restricted Feeding without Reducing Caloric Intake Prevents Metabolic Diseases in Mice Fed a High-Fat Diet”. Cell Metabolism, 15 (6), 848–860. https://doi.org/10.1016/j.cmet.2012.04.019
  • 40. Ye, Y, Xu, H, Xie, Z, Wang, L, Sun, Y, Yang, H, Hu, D. and Mao, Y. (2020). “Time-Restricted Feeding Reduces the Detrimental Effects of a High-Fat Diet, Possibly by Modulating the Circadian Rhythm of Hepatic Lipid Metabolism and Gut Microbiota”. Frontiers in Nutrition, 7, 596285. https://doi.org/10.3389/fnut.2020.596285
  • 41. Zarrinpar, A, Chaix, A, Yooseph, S. and Panda, S. (2014). “Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome”. Cell Metabolism, 20 (6), 1006–1017. https://doi.org/10.1016/j.cmet.2014.11.008
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beslenme Bilimi
Bölüm Derlemeler
Yazarlar

Emine Kurtbeyoglu 0000-0003-0980-4868

Zeynep Caferoğlu Akın 0000-0002-7226-5636

Yayımlanma Tarihi 26 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 4

Kaynak Göster

APA Kurtbeyoglu, E., & Caferoğlu Akın, Z. (2023). Maternal Beslenme, Mikrobiyota ve Krononütrisyon. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 12(4), 2059-2067. https://doi.org/10.37989/gumussagbil.1368334
AMA Kurtbeyoglu E, Caferoğlu Akın Z. Maternal Beslenme, Mikrobiyota ve Krononütrisyon. Gümüşhane Sağlık Bilimleri Dergisi. Aralık 2023;12(4):2059-2067. doi:10.37989/gumussagbil.1368334
Chicago Kurtbeyoglu, Emine, ve Zeynep Caferoğlu Akın. “Maternal Beslenme, Mikrobiyota Ve Krononütrisyon”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12, sy. 4 (Aralık 2023): 2059-67. https://doi.org/10.37989/gumussagbil.1368334.
EndNote Kurtbeyoglu E, Caferoğlu Akın Z (01 Aralık 2023) Maternal Beslenme, Mikrobiyota ve Krononütrisyon. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12 4 2059–2067.
IEEE E. Kurtbeyoglu ve Z. Caferoğlu Akın, “Maternal Beslenme, Mikrobiyota ve Krononütrisyon”, Gümüşhane Sağlık Bilimleri Dergisi, c. 12, sy. 4, ss. 2059–2067, 2023, doi: 10.37989/gumussagbil.1368334.
ISNAD Kurtbeyoglu, Emine - Caferoğlu Akın, Zeynep. “Maternal Beslenme, Mikrobiyota Ve Krononütrisyon”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12/4 (Aralık 2023), 2059-2067. https://doi.org/10.37989/gumussagbil.1368334.
JAMA Kurtbeyoglu E, Caferoğlu Akın Z. Maternal Beslenme, Mikrobiyota ve Krononütrisyon. Gümüşhane Sağlık Bilimleri Dergisi. 2023;12:2059–2067.
MLA Kurtbeyoglu, Emine ve Zeynep Caferoğlu Akın. “Maternal Beslenme, Mikrobiyota Ve Krononütrisyon”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, c. 12, sy. 4, 2023, ss. 2059-67, doi:10.37989/gumussagbil.1368334.
Vancouver Kurtbeyoglu E, Caferoğlu Akın Z. Maternal Beslenme, Mikrobiyota ve Krononütrisyon. Gümüşhane Sağlık Bilimleri Dergisi. 2023;12(4):2059-67.