Purpose: The aim of this study is to forecast automobile demand using the NARX (Non-Linear Autoregressive External Input) ANN (Artificial Neural Networks) model, with the rapid change in technology today and the increasing importance of artificial intelligence in society. Material and Method: In the study, using the MATLAB (Matrix Laboratory) program, the data of the six companies that produce and sell automobiles in Turkey (OYAK Renault, Tofaş, Toyota, Ford, Honda and Hyundai) were published by the Automotive Distributors and Mobility Association (ADMA) between 2014 and 2024. Sales prediction was made with the NARX ANN model from monthly automobile sales data. In the development of the forecast model, the independent variables that are thought to have an impact on automobile demand from the annual activity reports published by the Ministry of Industry and Technology are Brent oil price, dollar exchange rate, vehicle loan interest, CPI, vehicle purchase level, automobile production quantity, and the dependent variable, that is, the output value, is the total of six companies. determined as automobile sales volume. Findings: NARX ANN consists of six inputs, ten hidden neurons and one output. The performance of the proposed model at the test level is MSE = 0.0654, MAPE = % 12.23. These results show that the NARX ANN model generally exhibits good performance. Results: After the training and testing phase of the systematic model, automobile sales demand for the 12 months of 2024 is predicted. Accurate prediction of demand with artificial neural networks allows timetables generated in automobiles to be quickly marketed, which can help increase reliability.
Artificial ıntelligence NARX artificial neural networks model automobile demand forecasting.
Amaç: Bu çalışmanın amacı, günümüzde teknoloji alanında yaşanan hızlı değişim ve yapay zekânın da toplum içerisindeki öneminin giderek artmasıyla NARX (Doğrusal Olmayan Otoregresif Dışsal Girdili) YSA (Yapay Sinir Ağları) modelini kullanarak otomobil talep tahmini yapmaktır. Gereç ve Yöntem: Çalışmada, MATLAB (Matris Laboratuvarı) programı kullanılarak Türkiye’de otomobil üretip en çok satış yapan altı firmanın (OYAK Renault, Tofaş, Toyota, Ford, Honda ve Hyundai) Otomotiv Distribütörleri ve Mobilite Derneği (ODMD)’nin 2014–2024 yılları arasında yayınlamış olduğu aylık otomobil satış verilerinden NARX YSA modeli ile satış tahmini yapılmıştır. Tahmin modelinin geliştirilmesinde Sanayi ve Teknoloji Bakanlığının yıllık yayınlamış olduğu faaliyet raporlarından otomobil talebi üzerine etkisi olduğu düşünülen bağımsız değişkenler Brent petrol fiyatı, dolar kuru, taşıt kredi faizleri, TÜFE, araç alım düzeyi, otomobil üretim âdeti, bağımlı değişken ise yani çıktı değeri altı firmanın toplam otomobil satış âdeti olarak belirlenmiştir. Bulgular: NARX YSA, altı girdi, on gizli nöron ve bir çıktıdan oluşmaktadır. Önerilen modelin, test seviyesindeki performansı MSE=0,0654, MAPE=%12,23’dür. Bu sonuçlar, NARX YSA modelinin genel olarak iyi performansı sergilediğini göstermektedir. Sonuç: Önerilen modelin eğitim ve test aşamasından sonra 2024 yılının 12 aylık otomobil satışı talep tahmini yapılmıştır. Yapay sinir ağları ile talebin doğru tahmin edilmesi, otomobil üreten firmaların gelecekte tarifelerini hızlı bir şekilde pazar planlamasına olanak tanır, bu da güvenilirliğinin artmasına yardımcı olabilecektir.
Araştırmada kurum, kuruluş ve organizasyonlar tarafından yayınlanan ikincil veriler kullanıldığı için bilimsel araştırma ve yayın etiği kurulu onayı gerektirmemektedir.
Bu çalışma için herhangi bir kurumdan destek alınmamıştır. Çalışma için gereken harcamalar yazarlar tarafından karşılanmıştır.
Primary Language | Turkish |
---|---|
Subjects | Modelling and Simulation |
Journal Section | Research Articles |
Authors | |
Early Pub Date | July 21, 2024 |
Publication Date | July 30, 2024 |
Submission Date | May 20, 2024 |
Acceptance Date | July 9, 2024 |
Published in Issue | Year 2024 |