Research Article
BibTex RIS Cite

Yapay Zekâ ve Dijital Pazarlama Alanlarındaki Yayınların Bibliyometrik Analizi

Year 2024, Volume: 5 Issue: Special Issue/Özel Sayı-Current Issues in Marketing Research/Pazarlama Araştırmalarında Güncel Konular, 79 - 92, 30.10.2024
https://doi.org/10.54439/gupayad.1536059

Abstract

Amaç: Bu çalışmanın temel amacı yapay zekâ ve dijital pazarlama alanında yapılmış yayınların bibliyometrik analizlerle incelenmesi ve mevcut etkileşimin yansıtılmasıdır. Gereç ve Yöntem: Araştırma evreni Scopus veri tabanında yapay zekâ ve dijital pazarlama alanlarında yapılmış 485 yayından oluşmaktadır. Analiz yöntemi olarak bibliyometrik analiz uygulanmış olup veri görselleştirme için VOSviewer uygulaması kullanılmıştır. Bulgular: Yayın yıllarına göre dağılımına bakıldığında, en fazla 2023 , 2022 ve 2024 (ilk 8 ay) yıllarında yoğunlaşma olduğu; yayın türünün ağırlıklı olarak araştırma makalesi (176), bildiri (168), kitap bölümü (83) ve kitap (30) türünde olduğu; araştırma alanları açısından bilgisayar bilimi, işletme, yönetim, muhasebe, sosyal bilimler ve karar bilimi gibi çeşitli alanlarında eser verildiği; yayınların ülkelere göre dağılımı konusunda liderliğin Hindistan (119), ABD (55) ve Birleşik Krallık (40) kökenli yayıncılarda olduğu; neredeyse tamamının İngilizce eserler yayınlandığı tespit edilmiştir. Yayınlarda en sık kullanılan anahtar sözcüklerin sırasıyla; yapay zekâ, dijital pazarlama, makine öğrenmesi, büyük veri ve sosyal medya ifadeleri olduğu görülmüştür. Sonuç: Yapay zekâ ve pazarlama alanlarında yapılan çalışmaların sayısı kümülatif olarak artmaktadır. En fazla katkının Hindistan'a ait olmasına rağmen özellikle Anglosakson ülkelerin ve sonrasında kıta Avrupası’nda yer alan ülkelerin katkılarının yüksek olduğu gözlemlenmiştir. Çalışmaların önemli bir kısmında nicel araştırma yöntemlerinin yoğunluğu dikkat çekmektedir.

References

  • Akyılmaz, B. (2022). Yapay zekâ ve tüketici davranışı alanındaki yayınların bibliyometrik analizi. İşletme Araştırmaları Dergisi, 14(1), 947-963. https://doi.org/10.20491/isarder.2022.1420
  • Alarslan, A. B. (2023). Yalın üretim tekniklerinin endüstri 4.0 ve araçları ile ilişkisi ve savunma sanayiinde bir uygulama (Yüksek lisans tezi). Ankara Hacı Bayram Veli Üniversitesi, Ankara.
  • Aytaç, M. A. (2024). Pazarlamada yapay zekâ kullanımı: vosviewer ile bibliyometrik bir analiz. R&S- Research Studies Anatolia Journal, 7(3), 327-344. https://doi.org/10.33723/rs.1518172
  • Bhagavatula, S., Mudambi, R., & Murmann, J. P. (2019). Innovation and entrepreneurship in India: An overview. Management and Organization Review, 15(3), 467-493. doi:10.1017/mor.2019.52
  • Bhardwaj, A., Garg, A., Ram, S., Gajpal, Y., & Zheng, C. (2020). Research trends in green product for environment: A bibliometric perspective. International Journal of Environmental Research and Public Health, 17(22), 8469. https://doi.org/10.3390/ijerph17228469
  • Burnette, H., Pabani, A., von Itzstein, M. S., Switzer, B., Fan, R., Ye, F., Puzanov, I., Naidoo, J., ... & Johnson, D. B. (2024). Use of artificial intelligence chatbots in clinical management of immune-related adverse events. Journal for Immunotherapy of Cancer, 12 (5), 1-5. https://doi: 10.1136/jitc-2023-008599
  • Chaffey, D., & Ellis-Chadwick, F. (2019). Digital Marketing: Strategy, Implementation and Practice. Pearson.
  • Christina, I. D., Fenni, F., & Roselina, D. (2019). Digital marketing strategy in promoting product. Management And Entrepreneurship: Trends of Development, 4(10) 58-66. https://doi: 10.26661/metod-2522-1566
  • Currim, I. S., & Schneider, L. G. (1991). A taxonomy of consumer purchase strategies in a promotion intensive environment. Marketing Science, 10(2), 91–110. https://doi.org/10.1287/mksc.10.2.91
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
  • Dirik, D., Eryılmaz, İ., & Erhan, T. (2023). Post-truth kavramı üzerine yapılan çalışmaların VOSviewer ile bibliyometrik analizi. Sosyal Mucit Academic Review, 4(2), 164-188. http:// doi: 10.54733/smar.1271369
  • Donthu, N., Kumar, S., Pandey, N., & Lim, W. (2021). How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research(133), 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Kumar, V. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management (59), 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168
  • Ekinci, G., & Özsaatcı, F. G. (2023). Yapay zekâ ve pazarlama alanındaki yayınların bibliyometrik analizi. Sosyoekonomi, 31(56), 369-388. https://doi.org/10.17233/sosyoekonomi.2023.02.17
  • Erkan, İ. (2020). Dijital pazarlamanın dünü, bugünü, geleceği: bibliyometrik bir analiz. Akademik Hassasiyetler, 7(13), 149-168.
  • Grand View Research. (2023). Artificial Intelligence (AI) in marketing market size, share & trends analysis report by component, by application, by technology, by end-user industry, by region, and segment forecasts, 2023 - 2030. Grand View Research, Inc. Retrieved from: https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-in-marketing-market Retrieved date: 08 Eylül 2024
  • Harmandaroğlu, S. F. (2024). Pazarlamada yapay zekâ nın bibliyometrik analiz yöntemi ile incelenmesi. 19 Mayıs Sosyal Bilimler Dergisi, 5(1), 97-109. https://doi.org/10.52835/19maysbd.1445578
  • Haseki, M. İ., Köklü, Y., & Çelik, O. (2023). ULAKBİM veri tabanında endüstri 4.0 ve pazarlama alanlarında yayınlanmış makalelerin bibliyometrik analizi. Mersin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(2), 71-78. https://doi.org/10.55044/meusbd.1303305
  • Hassan, A. (2021). The usage of artificial intelligence in digital marketing: a review. Applications of Artificial Intelligence in Business, Education and Healthcare(954), 357-383. https://doi.org/10.1007/978-3-030-72080-3_20
  • İnan, H. (2002). Yeni bir pazarlama aracı olarak internet ve firmalar arası pazarlamada internet kullanımını etkileyen faktörlerin sınıflandırılması. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(9), 123-135.
  • Jach, A. (2023). Artificial intelligence methods in email marketing—A survey. In: International Conference on Dependability and Complex Systems, 85-94. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37720-4_8
  • Keskin, H. D., & Kurtuldu, H. S. (2018). Üniversite öğrencilerinin dijital pazarlamaya yatkınlık düzeylerinin belirlenmesi üzerine bir araştırma. Global Journal of Economics and Business Studies, 7(14), 117-128.
  • Kopalle, P. K., Gangwar, M., Kaplan, A., Ramachandran, D., Reinartz, W., & Rindfleisch, A. (2022). Examining artificial intelligence (AI) technologies in marketing via a global lens: Current trends and future research opportunities. International Journal of Research in Marketing, 39(2), 522-540. https://doi.org/10.1016/j.ijresmar.2021.11.002
  • Kotler, P. T., & Armstrong, G. (2017). Principles of marketing, eBook, Global Edition: Principles of Marketing. Pearson Higher Ed.
  • Kotler, P., Kartajaya, H., & Setiawan, I. (2020). Pazarlama 4.0: gelenekselden dijitale geçiş. İstanbul: Optimsit. Kumar, N., Singh, A., Gupta, S., Kaswan, M. S., & Singh, M. (2024). Integration of lean manufacturing and industry 4.0: a bibliometric analysis. The TQM Journal, 36(1), 224-264. https://doi.org/10.1108/TQM-07-2022-0243
  • Kuşçu, E. (2015). Çeviride yapay zekâ uygulamaları. Kazım Karabekir Eğitim Fakültesi Dergisi(30), 45-58.
  • Li, S., Li, J. Z., & Hong, H. (2010). A Web-enabled intelligent approach towards digital marketing planning: the integrated system and its effectiveness. Proceedings of the 9th WSEAS International Conference on Applied Computer and Applied Computational Science (ACACOS '10). (s. 17-22). Hangzhou, China: WSEAS.
  • Ma, L., & Sun, B. (2020). Machine learning and AI in marketing–connecting computing power to human insights. Journal of Research in Marketing, 37(3), 481-504. https://doi.org/10.1016/j.ijresmar.2020.04.005
  • Martínez-Lopez, F. J., Merigo, J. M., Valenzuela-Fernández, L., & Nicolás, C. (2017). Fifty years of the european journal of marketing: a bibliometric analysis. European Journal of Marketing, 52(1/2), 439-468. https://doi.org/10.1108/EJM-11-2017-0853
  • Moncey, A., & Baskaran, K. (2020). Digital marketing analytics: Building brand awareness and loyalty in UAE. IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD) (s. 1-8). IEEE.
  • Oğuz, Ş. E. (2021). Bir E-Hizmet Yardımcısı Olarak Sohbet Robotlarının Müşteri Tatminine Etkisi. (Yüksek Lisans Tezi). Hacettepe Üniversitesi, Ankara.
  • Pirim, H. (2006). Yapay Zekâ . Journal of Yaşar Unıversty, 1(1), 81-92.
  • Prabha, C. & Kumari, S. (2024). AI in marketing: AI-powered chatbot. In S. Saluja, V. Nayyar, K. Rojhe, & S. Sharma (Eds.), Ethical AI and Data Management Strategies in Marketing. 11-25. IGI Global. https://doi.org/10.4018/979-8-3693-6660-8.ch002
  • Pricopoaia, O., Micu, A., & Susanu, I. O. (2022). The implications of digital marketing on business performance. Annals of the University Dunarea de Jos of Galati: Fascicle: I, Economics & Applied Informatics, 28(3), 1-16. https://doi.org/10.35219/eai15840409282
  • Raghav, Y. Y., Tipu, R. K., Bhakhar, R., Gupta, T., & Sharma, K. (2023). The future of digital marketing: Leveraging artificial intelligence for competitive strategies and tactics. The Use of Artificial Intelligence in Digital Marketing: Competitive Strategies and Tactics (s. 249 - 274). içinde IGI Global. https://doi.org/10.4018/978-1-6684-9324-3.ch011
  • Saura, J. R., Ribeiro-Soriano, D., & Palacios-Marqués, D. (2021). Setting B2B digital marketing in artificial intelligence-based CRMs: a review and directions for future research. Industrial Marketing Management(98), 161-178. https://doi.org/10.1016/j.indmarman.2021.08.006
  • Schwert, G. W. (1993). The journal of financial economics: a retrospective evaluation. Journal of Financial Economics, 33(91), 369-424. https://doi.org/10.1016/0304-405x(93)90012-z
  • Shaw, E. H., & Jones, D. B. (2005). A history of schools of marketing thought. Marketing theory, 5(3), 239-281. https:// 10.1177/1470593105054898
  • Todor, R. D. (2016). Blending traditional and digital marketing. Bulletin of the Transilvania University of Brasov. Series V: Economic Sciences, 9(58), 51-56.
  • Trejo, J. (2018). Designing a digital marketing model innovation to increase competitiveness. first insights in Mexico. Nova scientia, 10(20), 569-591. https://doi.org/10.21640/ns.v10i20.1160
  • VanEck, N. J., & Waltman, L. (2019). Manual for VOSviwer version 1.6. 10. CWTS Meaningful Metrics.
  • Wilkie, W. L., & Moore, E. S. (2003). Scholarly research in marketing: exploring the “4 eras” of thought development. Journal of Public Policy & Marketing, 22(2), 116-146. https://10.1509/jppm.22.2.116.17639
  • Yasmin, A., Tasneem, S., & Fatema, K. (2015). Effectiveness of digital marketing in the challenging age: an empirical study. International Journal of Management Science and Business Administration, 1(5), 69-80. https://10.18775/ijmsba.1849-5664-5419.2014.15.1006
  • Zhang, B. (2024). Artificial intelligence in marketing. Transactions on Social Science, Education and Humanities Research (9), 181-187. https://doi.org/10.62051/s4y73e41

Bibliometric Analysis of Publications in Artificial Intelligence and Dijital Marketing

Year 2024, Volume: 5 Issue: Special Issue/Özel Sayı-Current Issues in Marketing Research/Pazarlama Araştırmalarında Güncel Konular, 79 - 92, 30.10.2024
https://doi.org/10.54439/gupayad.1536059

Abstract

Purpose: The primary purpose of this study is to examine the publications in artificial intelligence and digital marketing through bibliometric analysis and to reflect on the current interaction. Material and Method: The research universe consists of 485 publications in the Scopus database in artificial intelligence and digital marketing. Bibliometric analysis was applied as the analysis method, and the VOSviewer application was used for data visualization. Findings: When the distribution by publication year is examined, it is determined that there is the highest concentration in 2023, 2022 and 2024 (first eight months); the publication type is predominantly research article (176), notification (168), book chapter (83) and book (30); in terms of research fields, works are published in various fields such as computer science, business, management, accounting, social sciences and decision science; in terms of distribution of publications by country, the leaders are publishers from India (119), USA (55) and UK (40); almost all of them are published in English. It was observed that the most frequently used keywords in the publications were artificial intelligence, digital marketing, machine learning, big data and social media, respectively. Result: The number of studies in the fields of artificial intelligence and marketing is increasing cumulatively. Although the largest contribution was from India, it was observed that the contributions of the Anglo-Saxon countries and then the countries in continental Europe were exceptionally high. The intensity of quantitative research methods in a significant part of the studies is striking.

References

  • Akyılmaz, B. (2022). Yapay zekâ ve tüketici davranışı alanındaki yayınların bibliyometrik analizi. İşletme Araştırmaları Dergisi, 14(1), 947-963. https://doi.org/10.20491/isarder.2022.1420
  • Alarslan, A. B. (2023). Yalın üretim tekniklerinin endüstri 4.0 ve araçları ile ilişkisi ve savunma sanayiinde bir uygulama (Yüksek lisans tezi). Ankara Hacı Bayram Veli Üniversitesi, Ankara.
  • Aytaç, M. A. (2024). Pazarlamada yapay zekâ kullanımı: vosviewer ile bibliyometrik bir analiz. R&S- Research Studies Anatolia Journal, 7(3), 327-344. https://doi.org/10.33723/rs.1518172
  • Bhagavatula, S., Mudambi, R., & Murmann, J. P. (2019). Innovation and entrepreneurship in India: An overview. Management and Organization Review, 15(3), 467-493. doi:10.1017/mor.2019.52
  • Bhardwaj, A., Garg, A., Ram, S., Gajpal, Y., & Zheng, C. (2020). Research trends in green product for environment: A bibliometric perspective. International Journal of Environmental Research and Public Health, 17(22), 8469. https://doi.org/10.3390/ijerph17228469
  • Burnette, H., Pabani, A., von Itzstein, M. S., Switzer, B., Fan, R., Ye, F., Puzanov, I., Naidoo, J., ... & Johnson, D. B. (2024). Use of artificial intelligence chatbots in clinical management of immune-related adverse events. Journal for Immunotherapy of Cancer, 12 (5), 1-5. https://doi: 10.1136/jitc-2023-008599
  • Chaffey, D., & Ellis-Chadwick, F. (2019). Digital Marketing: Strategy, Implementation and Practice. Pearson.
  • Christina, I. D., Fenni, F., & Roselina, D. (2019). Digital marketing strategy in promoting product. Management And Entrepreneurship: Trends of Development, 4(10) 58-66. https://doi: 10.26661/metod-2522-1566
  • Currim, I. S., & Schneider, L. G. (1991). A taxonomy of consumer purchase strategies in a promotion intensive environment. Marketing Science, 10(2), 91–110. https://doi.org/10.1287/mksc.10.2.91
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
  • Dirik, D., Eryılmaz, İ., & Erhan, T. (2023). Post-truth kavramı üzerine yapılan çalışmaların VOSviewer ile bibliyometrik analizi. Sosyal Mucit Academic Review, 4(2), 164-188. http:// doi: 10.54733/smar.1271369
  • Donthu, N., Kumar, S., Pandey, N., & Lim, W. (2021). How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research(133), 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Kumar, V. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management (59), 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168
  • Ekinci, G., & Özsaatcı, F. G. (2023). Yapay zekâ ve pazarlama alanındaki yayınların bibliyometrik analizi. Sosyoekonomi, 31(56), 369-388. https://doi.org/10.17233/sosyoekonomi.2023.02.17
  • Erkan, İ. (2020). Dijital pazarlamanın dünü, bugünü, geleceği: bibliyometrik bir analiz. Akademik Hassasiyetler, 7(13), 149-168.
  • Grand View Research. (2023). Artificial Intelligence (AI) in marketing market size, share & trends analysis report by component, by application, by technology, by end-user industry, by region, and segment forecasts, 2023 - 2030. Grand View Research, Inc. Retrieved from: https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-in-marketing-market Retrieved date: 08 Eylül 2024
  • Harmandaroğlu, S. F. (2024). Pazarlamada yapay zekâ nın bibliyometrik analiz yöntemi ile incelenmesi. 19 Mayıs Sosyal Bilimler Dergisi, 5(1), 97-109. https://doi.org/10.52835/19maysbd.1445578
  • Haseki, M. İ., Köklü, Y., & Çelik, O. (2023). ULAKBİM veri tabanında endüstri 4.0 ve pazarlama alanlarında yayınlanmış makalelerin bibliyometrik analizi. Mersin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(2), 71-78. https://doi.org/10.55044/meusbd.1303305
  • Hassan, A. (2021). The usage of artificial intelligence in digital marketing: a review. Applications of Artificial Intelligence in Business, Education and Healthcare(954), 357-383. https://doi.org/10.1007/978-3-030-72080-3_20
  • İnan, H. (2002). Yeni bir pazarlama aracı olarak internet ve firmalar arası pazarlamada internet kullanımını etkileyen faktörlerin sınıflandırılması. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(9), 123-135.
  • Jach, A. (2023). Artificial intelligence methods in email marketing—A survey. In: International Conference on Dependability and Complex Systems, 85-94. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37720-4_8
  • Keskin, H. D., & Kurtuldu, H. S. (2018). Üniversite öğrencilerinin dijital pazarlamaya yatkınlık düzeylerinin belirlenmesi üzerine bir araştırma. Global Journal of Economics and Business Studies, 7(14), 117-128.
  • Kopalle, P. K., Gangwar, M., Kaplan, A., Ramachandran, D., Reinartz, W., & Rindfleisch, A. (2022). Examining artificial intelligence (AI) technologies in marketing via a global lens: Current trends and future research opportunities. International Journal of Research in Marketing, 39(2), 522-540. https://doi.org/10.1016/j.ijresmar.2021.11.002
  • Kotler, P. T., & Armstrong, G. (2017). Principles of marketing, eBook, Global Edition: Principles of Marketing. Pearson Higher Ed.
  • Kotler, P., Kartajaya, H., & Setiawan, I. (2020). Pazarlama 4.0: gelenekselden dijitale geçiş. İstanbul: Optimsit. Kumar, N., Singh, A., Gupta, S., Kaswan, M. S., & Singh, M. (2024). Integration of lean manufacturing and industry 4.0: a bibliometric analysis. The TQM Journal, 36(1), 224-264. https://doi.org/10.1108/TQM-07-2022-0243
  • Kuşçu, E. (2015). Çeviride yapay zekâ uygulamaları. Kazım Karabekir Eğitim Fakültesi Dergisi(30), 45-58.
  • Li, S., Li, J. Z., & Hong, H. (2010). A Web-enabled intelligent approach towards digital marketing planning: the integrated system and its effectiveness. Proceedings of the 9th WSEAS International Conference on Applied Computer and Applied Computational Science (ACACOS '10). (s. 17-22). Hangzhou, China: WSEAS.
  • Ma, L., & Sun, B. (2020). Machine learning and AI in marketing–connecting computing power to human insights. Journal of Research in Marketing, 37(3), 481-504. https://doi.org/10.1016/j.ijresmar.2020.04.005
  • Martínez-Lopez, F. J., Merigo, J. M., Valenzuela-Fernández, L., & Nicolás, C. (2017). Fifty years of the european journal of marketing: a bibliometric analysis. European Journal of Marketing, 52(1/2), 439-468. https://doi.org/10.1108/EJM-11-2017-0853
  • Moncey, A., & Baskaran, K. (2020). Digital marketing analytics: Building brand awareness and loyalty in UAE. IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD) (s. 1-8). IEEE.
  • Oğuz, Ş. E. (2021). Bir E-Hizmet Yardımcısı Olarak Sohbet Robotlarının Müşteri Tatminine Etkisi. (Yüksek Lisans Tezi). Hacettepe Üniversitesi, Ankara.
  • Pirim, H. (2006). Yapay Zekâ . Journal of Yaşar Unıversty, 1(1), 81-92.
  • Prabha, C. & Kumari, S. (2024). AI in marketing: AI-powered chatbot. In S. Saluja, V. Nayyar, K. Rojhe, & S. Sharma (Eds.), Ethical AI and Data Management Strategies in Marketing. 11-25. IGI Global. https://doi.org/10.4018/979-8-3693-6660-8.ch002
  • Pricopoaia, O., Micu, A., & Susanu, I. O. (2022). The implications of digital marketing on business performance. Annals of the University Dunarea de Jos of Galati: Fascicle: I, Economics & Applied Informatics, 28(3), 1-16. https://doi.org/10.35219/eai15840409282
  • Raghav, Y. Y., Tipu, R. K., Bhakhar, R., Gupta, T., & Sharma, K. (2023). The future of digital marketing: Leveraging artificial intelligence for competitive strategies and tactics. The Use of Artificial Intelligence in Digital Marketing: Competitive Strategies and Tactics (s. 249 - 274). içinde IGI Global. https://doi.org/10.4018/978-1-6684-9324-3.ch011
  • Saura, J. R., Ribeiro-Soriano, D., & Palacios-Marqués, D. (2021). Setting B2B digital marketing in artificial intelligence-based CRMs: a review and directions for future research. Industrial Marketing Management(98), 161-178. https://doi.org/10.1016/j.indmarman.2021.08.006
  • Schwert, G. W. (1993). The journal of financial economics: a retrospective evaluation. Journal of Financial Economics, 33(91), 369-424. https://doi.org/10.1016/0304-405x(93)90012-z
  • Shaw, E. H., & Jones, D. B. (2005). A history of schools of marketing thought. Marketing theory, 5(3), 239-281. https:// 10.1177/1470593105054898
  • Todor, R. D. (2016). Blending traditional and digital marketing. Bulletin of the Transilvania University of Brasov. Series V: Economic Sciences, 9(58), 51-56.
  • Trejo, J. (2018). Designing a digital marketing model innovation to increase competitiveness. first insights in Mexico. Nova scientia, 10(20), 569-591. https://doi.org/10.21640/ns.v10i20.1160
  • VanEck, N. J., & Waltman, L. (2019). Manual for VOSviwer version 1.6. 10. CWTS Meaningful Metrics.
  • Wilkie, W. L., & Moore, E. S. (2003). Scholarly research in marketing: exploring the “4 eras” of thought development. Journal of Public Policy & Marketing, 22(2), 116-146. https://10.1509/jppm.22.2.116.17639
  • Yasmin, A., Tasneem, S., & Fatema, K. (2015). Effectiveness of digital marketing in the challenging age: an empirical study. International Journal of Management Science and Business Administration, 1(5), 69-80. https://10.18775/ijmsba.1849-5664-5419.2014.15.1006
  • Zhang, B. (2024). Artificial intelligence in marketing. Transactions on Social Science, Education and Humanities Research (9), 181-187. https://doi.org/10.62051/s4y73e41
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Digital Marketing
Journal Section Research Articles
Authors

Hasan Teyfik Şenli 0000-0001-6583-6691

Early Pub Date October 17, 2024
Publication Date October 30, 2024
Submission Date August 20, 2024
Acceptance Date October 8, 2024
Published in Issue Year 2024 Volume: 5 Issue: Special Issue/Özel Sayı-Current Issues in Marketing Research/Pazarlama Araştırmalarında Güncel Konular

Cite

APA Şenli, H. T. (2024). Yapay Zekâ ve Dijital Pazarlama Alanlarındaki Yayınların Bibliyometrik Analizi. Güncel Pazarlama Yaklaşımları Ve Araştırmaları Dergisi, 5(Special Issue/Özel Sayı-Current Issues in Marketing Research/Pazarlama Araştırmalarında Güncel Konular), 79-92. https://doi.org/10.54439/gupayad.1536059

Dizinler (Indexing)

31143 21387  3122531320257993114421388  21386  24076 28325 28331 28684