Derleme
BibTex RIS Kaynak Göster

BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI

Yıl 2021, Cilt: 24 Sayı: 4, 921 - 940, 27.12.2021

Öz

Sağlık hizmetlerinde büyük veri; hastane, doktorlar, hasta ve tıbbi süreçlerin bir bütünüdür. Karmaşıktır ve bu verilerin geleneksel veri analitiği araçları kullanılarak analiz edilmesi oldukça zordur. Sağlık hizmetleri, finansal etüdler, sağlık teknolojileri, sosyal faktörler ve örgütsel süreçler ile ilgili çok disiplinli bir bilimsel araştırma alanı sağlamaktadır. Büyük verinin yardımıyla, büyük miktarda veri depolanabilmekte ve teşhis için etkin bir şekilde kullanılabilmektedir. Ayrıca bu gelişen teknolojilerle hastalıkların uygun tedavisi de izlenebilmektedir. Araştırmacılar sağlık hizmetlerindeki büyük hacimli veriyi inceleyerek yeni model ve eğilimleri bulmaktadırlar. Böylece sağlık hizmetleri maliyetlerini düşürme, sağlık erişimini demokratikleştirme ve insan hayatlarını kurtarma fırsatı sağlamaktadırlar. Son yıllarda, birçok araştırmacı, analitiksel doğruluğu iyileştirmek için sağlık hizmetleri verilerinde büyük veri yaklaşımlarını önermiştir. Sağlık hizmeti verilerinin etkili analizi ve tanımlanması, hastaların durumuna yeni bakış açıları sağlamakta ve en uygun tedavi fırsatlarını önermektedir. Bu makalenin amacı, sağlık kurumlarında ve hizmetlerinde büyük veri analitiğine dayalı karar mekanizmalarını araştırmak, sağlık hizmeti liderlerinin kararlarına yardımcı olabilecek temel büyük veri analizlerini belirlemek ve sağlık hizmetleri boyunca verimliliği artırmak için bazı araçlar sunmaktır.

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

yok

Kaynakça

  • Aceto, G., Persico, V. & Pescape, A. (2020). Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. Journal of Industrial Information Integration, 18, 1-13.
  • Agrawal, R. & Prabakaran, S. (2020). Big data in digital healthcare: lessons learnt and recommendations for general practice. Heredity, 124(4), 525–534.
  • Artho, C., Banzai, K., Gros, Q., Rousset, G., Ma, L., Kitamura, T., Hagiya, M., Tanabe, Y. & Yamamoto, M. (2019). Model-based testing of Apache ZooKeeper: Fundamental API usage and watchers. Software Testing Verification & Relıability, 30(7-8) 1-29.
  • Bagchi, S. (2015). Performance and quality assessment of similarity measures in collaborative filtering using Mahout. Procedia Computer Science, 50, 229–234.
  • Bandi, R. & Anitha, G. (2018). Machine learning based oozie workflow for hive query schedule mechanism. International Conference on Smart Systems and Inventive Technology (ICSSIT), Tamil Nadu, India.
  • Belle, A., Thiagarajan, R., Soroushmehr, S.M.R., Navidi, F., Beard, D.A. & Najarian, K. (2015). Big data analytics in healthcare. BioMed Research International, 1-16.
  • Benke, K. & Benke, G. (2018). Artificial intelligence and big data in public health. International journal of environmental research and public health, 15(12), 2796.
  • Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.Y., Kanne, C.C., Özcan, F. & Shekita, E.J. (2011). Jaql: A scripting language for large scale semistructured data analysis. PVLDB, 4(12), 1272–1283.
  • Bhubaneswar, O. (2015). A brief introduction on big data 5Vs characteristics and Hadoop technology. Procedia Computer Science, 48, 319-324.
  • Boyd, D. & Crawford, K. (2012). Critical questions for big data. Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662-679.
  • Braun, P., Cuzzocrea, A., Leung, C.K., Pazdor, A.G.M. & Tran, K. (2016). Knowledge discovery from social graph data. Procedia Computer Science, 96, 682-691.
  • Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015, August). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1721-1730).
  • Chae, S., Kwon, S. & Lee, D. (2018). Predicting infectious disease using deep learning and big data. International journal of environmental research and public health, 15(8), 1596-1616.
  • Chauhan, R., Kaur, H. & Chang, V. (2020). An optimized integrated framework of big data analytics managing security and privacy in healthcare data. Wireless Personal Communications, 117(1), 1-22.
  • Chebotko, A., Kashlev, A., & Lu, S. (2015, June). A big data modeling methodology for Apache Cassandra. In 2015 IEEE International Congress on Big Data (pp.238-245). IEEE. https://doi.org/10.1109/BigDataCongress.2015.41.
  • Chen, Y., Crespi, N., Ortiz, A.M. & Shu, L. (2016). Reality mining: A prediction algorithm for disease dynamics based on mobile big data, Information Sciences, 379, 82-93.
  • Chen, J., Li, K., Rong, H., Bilal, K., Yang, N. & Li, K. (2018). A disease diagnosis and treatment recommendation system based on big data Mining and Cloud Computing. Information Sciences, 435, 124-149.
  • Cheng, X. & Yang, L. (2017). Mobile big data: The fuel for data-driven wireless. IEEE Internet of Things Journal, 4(5), 1489- 1516.
  • Dash, S., Shakyawar, S.K., Sharma, M. & Kausnik, S. (2019). Big data in healthcare: Management, analysis and future prospects. Journal of Big Data, 6(1), 1-25.
  • Demchenko, Y., De Laat, C., & Membrey, P. (2014, May). Defining architecture components of the Big Data Ecosystem. In 2014 International conference on collaboration technologies and systems (CTS) (pp. 104-112). IEEE. https://doi.org/10.1109/CTS.2014.6867550.
  • Desai, S., Mostaghimi, A., & Nambudiri, V. E. (2020). Clinical informatics subspecialists: characterizing a novel evolving workforce. Journal of the American Medical Informatics Association, 27(11), 1711-1715.
  • Dilsizian, S.E. & Siegel, E.L. (2014). Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Current cardiology reports, 16(1), 441, 1-8.
  • Ehrenstein, V., Nielsen, H., Pedersen, A.B., Johnsen, S.P. & Pedersen, L. (2017). Clinical epidemiology in the era of big data: New opportunities, familiar challenges. Clinical Epidemiology, 9, 245-250.
  • Elezabeth, L., Mishra, V. P., & Dsouza, J. (2018, August). The Role of Big Data Mining in Healthcare Applications. In 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 256-260). IEEE.
  • Gamache, R., Kharrazi, H. & Weiner, J. P. (2018). Public and population health informatics: The bridging of big data to benefit communities. Yearbook of medical informatics, 27(1), 199–206.
  • Gandomi, A. & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.
  • Garg, V. (2015, December). Optimization of multiple queries for big data with apache Hadoop/Hive. In 2015 International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 938-941). IEEE. http://dx.doi.org/10.1109/CICN.2015.184.
  • Groves, P., Kayyali, B., Knott, D. & Van Kuiken, S. (2013). The ‘big data’ revolution in health care: Accelerating value and innovation. McKinsey & Company, New York.
  • Guo, C. & Chen, J. (2019). Big data analytics in healthcare: Data-driven methods for typical treatment pattern mining. Journal of Systems Science and Systems Engineering, 28(6), 694–714.
  • Han, Q., Liang, S. & Zhang, H. (2015). Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world, İEEE Network, 29(2), 40-45.
  • Je, K. & Kim, G.H. (2013). Potentiality of big data in the medical sector: Focus on how to reshape the healthcare system. Healthcare Informatics Reseach, 19(2), 79-85.
  • Ji, W. (2020, June). Research and Application of Information Data Retrieval System in Station Based on Lucene Technology. In 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 687-690). IEEE.
  • Jia, B., Wlodarczyk, T. W., & Rong, C. (2010, November). Performance considerations of data acquisition in hadoop system. In 2010 IEEE Second International Conference on Cloud Computing Technology and Science (pp. 545-549). IEEE.
  • Jose, A. S., & Binu, A. (2014, August). Automatic detection and rectification of dns reflection amplification attacks with hadoop mapreduce and chukwa. In 2014 Fourth International Conference on Advances in Computing and Communications (pp. 195-198). IEEE.
  • Kobayashi, L., Oyalowo, A., Agrawal, U., Chen, S. L., Asaad, W., Hu, X., ... & Merck, D. L. (2018). Development and deployment of an open, modular, near-real-time patient monitor datastream conduit toolkit to enable healthcare multimodal data fusion in a live emergency department setting for experimental bedside clinical informatics research. IEEE Sensors Letters, 3(1), 1-4.
  • Lakhara, S., & Mishra, N. (2017). Desktop full-text searching based on Lucene: A review. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 2434-2438). IEEE.
  • Liang, Y., Zheng, X. & Zeng, D.D. (2019). A survey on big data-driven digital phenotyping of mental health. Information Fusion, 52, 290–307.
  • Liu, W., Zhang, T., Shen, Y. & Wang, P. (2019). Fast correlation coefficient estimation algorithm for HBase-based massive time series data. Frontiers of Computer Science, 13(4), 864–878.
  • Luo J., Wu, M., Gopukumar, D. & Zhao, Y. (2016). Big data application in biomedical research and health care: A literature review. Biomedical Informatics Insights, 8, 1–10
  • Manogaran, G., Lopez, D., Thot, C., Abbas, K.M., Pyne, S. & Sundarasekar, R. (2017). Big Data Analytics in Healthcare Internet of Things, in Innovative Healthcare Systems for the 21st Century, Eds. Qudrat-Ullah, H. and Tsasis, P., New York: Springer International Publishing.
  • Martinez-Martin, N. (2020). Big data, corporate surveillance and public health, The American Journal of Bioethics, 20(10), 79-81.
  • Mezghani, E., Exposito, E., Drira, K., Da Silveira, M., & Pruski, C. (2015). A semantic big data platform for integrating heterogeneous wearable data in healthcare. Journal of medical systems, 39(12), 1-8.
  • Mooney, S.J. & Pejaver, V. (2018). Big data in public health: Terminology, machine learning, and privacy. Annual Review of Public Health, 39, 95-112.
  • McFarlane, T.D., Dixon, B.E., Grannis, S.J. & Gibson, P.J. (2019). Public health informatics in local and state health agencies: An update from the public health workforce interests and needs survey. Journal of Public Health Management and Practice, 25(2), s67-s77.
  • Molinari, A., & Nollo, G. (2020, June). The quality concerns in health care Big Data. In 2020 IEEE 20th Mediterranean Electrotechnical Conference (pp. 302-305). IEEE. https://ieeexplore.ieee.org/document/9140534
  • Morris, M.A., Babak, S., Brian, B., Jackson, G. & Elliot L., S. (2018). Reinventing radiology: Big Data and the future of medical imaging. Journal of Thoracic Imaging, 33(1), 4-16.
  • Moussa, R. (2012, June). Tpc-h benchmarking of pig latin on a hadoop cluster. In 2012 International Conference on Communications and Information Technology (pp. 85-90). IEEE.
  • Mun, S., Park, J., Dritschilo, A., Collins, S., Suy, S., Choi, I. & Rho, M. (2018). The prostate clinical outlook (PCO) classifier application for predicting biochemical recurrences in patients treated by stereotactic body radiation therapy (SBRT). Applied Sciences, 8(9), 1620. MDPI AG. http://dx.doi.org/10.3390/app8091620.
  • Naoui, M.A., Lejdel, B., Ayad, M., Belkeiri, R. & Khaouazm, A.S. (2020). Integrating deep learning, social networks, and big data for healthcare system. Bio-Algorithms and Med-Systems, 16(1), 1-14.
  • Naslund, J. A., Gonsalves, P. P., Gruebner, O., Pendse, S. R., Smith, S. L., Sharma, A., & Raviola, G. (2019). Digital innovations for global mental health: opportunities for data science, task sharing, and early intervention. Current treatment options in psychiatry, 6(4), 337-351.
  • Ocaña, K., Galheigo, M., Osthoff, C., Gadelha Jr., L.M.R., Porto, F., Gomes, A.T.A., Oliveira, D. & Vasconcelos, A.T. (2020). BioinfoPortal: A scientific gateway for integrating bioinformatics applications on the Brazilian national high-performance computing network. Future Generation Computer Systems, 107, 192–214.
  • Onyemachi, N. C., & Nonyelum, O. F. (2019). Big Data Analytics in Healthcare: A Review. In 2019 15th International Conference on Electronics, Computer and Computation (pp. 1-5). IEEE. https://doi.org/10.1109/ICECCO48375.2019.9043183.
  • Palanisamy, V., & Thirunavukarasu, R. (2019). Implications of big data analytics in developing healthcare frameworks–A review. Journal of King Saud University-Computer and Information Sciences, 31(4), 415-425.
  • Parmar, C., Barry, J. D., Hosny, A., Quackenbush, J., & Aerts, H. J. (2018). Data analysis strategies in medical imaging. Clinical cancer research, 24(15), 3492-3499.
  • Pastorino, R., De Vito, C., Migliara, G., Glocker, K., Binenbaum, I., Ricciardi, W., & Boccia, S. (2019). Benefits and challenges of Big Data in healthcare: an overview of the European initiatives. European journal of public health, 29(3), 23-27.
  • Pastur-Romay, L. A., Cedrón, F., Pazos, A., & Porto-Pazos, A. B. (2016). Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications. International journal of molecular sciences, 17(8), 1313.
  • Patil, S., Patil, K. R., Patil, C. R., & Patil, S. S. (2020). Performance overview of an artificial intelligence in biomedics: a systematic approach. International Journal of Information Technology, 12(3), 963-973.
  • Plase, D., Niedrite, L., & Taranovs, R. (2016). Accelerating data queries on Hadoop framework by using compact data formats. In 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (pp. 1-7). IEEE. https://doi.org/10.1109/AIEEE.2016.7821807.
  • Pramanik, M. I., Lau, R. Y., Azad, M. A. K., Hossain, M. S., Chowdhury, M. K. H., & Karmaker, B. K. (2020). Healthcare informatics and analytics in big data. Expert Systems with Applications, 152, 113388.
  • Pouyanfar, S., Yang, Y., Chen, S. C., Shyu, M. L., & Iyengar, S. S. (2018). Multimedia big data analytics: A survey. ACM computing surveys, 51(1), 1-34.
  • Purswani, J. M., Dicker, A. P., Champ, C. E., Cantor, M., & Ohri, N. (2019). Big data from small devices: the future of smartphones in oncology. In Seminars in radiation oncology (pp. 338-347). WB Saunders. https://doi.org/10.1016/j.semradonc.2019.05.008.
  • Devi, R. R., & Chamundeeswari, V. V. (2020). Triple DES: privacy preserving in big data healthcare. International Journal of Parallel Programming, 48(3), 515-533.
  • Roy, A.K. (2016). Impact of big data analytics on healthcare and society. Journal of Biometrics & Biostatistics, 7(3), 300-307. Saroha, M., & Sharma, A. (2019). Big Data and Hadoop Ecosystem: A Review. In 2019 International Conference on Smart Systems and Inventive Technology (pp. 1-5). IEEE. https://doi.org/10.1109/ICSSIT46314.2019.8987848.
  • Sasubilli, G., & Kumar, A. (2020). Machine Learning and Big Data Implementation on Health Care data. In 2020 4th International Conference on Intelligent Computing and Control Systems (pp. 859-864). IEEE. https://doi.org/10.1109/ICICCS48265.2020.9120906.
  • Shah, G., Shah, A., & Shah, M. (2019a). Panacea of challenges in real-world application of big data analytics in healthcare sector. Journal of Data, Information and Management, 1(3), 107-116.
  • Shah, G. H., & Rogers, V. N. (2019b). Publishing on topics in public health informatics for a quarter century. Journal of Public Health Management and Practice, 25(1), 27-29. Shaikh, T. A., & Ali, R. (2019). Big data for better Indian healthcare. International Journal of Information Technology, 11(4), 735-741.
  • Shafqat, S., Kishwer, S., Rasool, R. U., Qadir, J., Amjad, T., & Ahmad, H. F. (2020). Big data analytics enhanced healthcare systems: a review. The Journal of Supercomputing, 76(3), 1754-1799.
  • Shi, M., Jiang, R., Hu, X. & Shang, J. (2020). A privacy protection method for health care big data management based on risk access control. Health Care Management Science, 23(3), 427–442.
  • Shilo, S., Rossman, H. & Segal, E. (2020). Axes of a revolution: Challenges and promises of big data in healthcare. Nature medicine, 26(1), 29–38.
  • Silverman, H.D., Steen, E.B., Carpenito, J.N., Ondrula, C.J., Williamson, J.J. & Fridsma, D.B. (2019). Domains, tasks, and knowledge for clinical informatics subspecialty practice: results of a practice analysis. Journal of the American Medical Informatics Association, 26(7), 586–593.
  • Siuly, S. & Zhang, Y. (2016). Medical big data: Neurological diseases diagnosis through medical data analysis. Data Science and Engineering, 1(2), 54–64.
  • Strang, K.D. & Sun, Z. (2020). Hidden big data analytics issues in the healthcare industry. Health Informatics Journal, 26(2), 981-998. Suneetha, V., Suresh, S., & Jhananie, V. (2020). A novel framework using apache spark for privacy preservation of healthcare big data. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (pp. 743-749). IEEE. https://doi.org/10.1109/ICIMIA48430.2020.9074867.
  • Syed, L., Jabeen, S., Manimala, S. & Alsaeedi, A. (2019). Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques. Future Generation Computer Systems, 101, 136-151.
  • Tawalbeh, T.A., Mehmood, R., Benkhlifa, E. & Song, H. (2016). Mobile cloud computing model and big data analysis for healthcare applications. IEEE Access, 4, 6171-6180. Trivedi, K., Kumari, S. & Jain, S. (2019). Big data processing with hadoop. International Journal of Business & Engineering Research, 10, 1-5.
  • Turer, R.W., Arribas, M., Balgord, S.M., Brooks, S., Hopson, L.R., Bassin, B.S. & Medlin, R. (2020). Clinical informatics training during emergency medicine residency: The university of Michigan experince. AEM Education and Training, 1-8. https://doi.org/10.1002/aet2.10518
  • Vasuki, N. & Rajiv-Kannan, A. (2020). Big healthcare data for trivial client having Novel Smart Attire (NSA). Soft Computing, 24, 18367-18378.
  • Viceconti, M., Hunter, P. & Hose, R. (2015). Big data, big knowledge: Big data for personalized healthcare. IEEE Journal of Biomedical and Health Informatics, 19(4), 1209-1215.
  • Vuppalapati, C., Ilapakurti, A., & Kedari, S. (2016). The role of big data in creating sense ehr, an integrated approach to create next generation mobile sensor and wearable data driven electronic health record (ehr). In 2016 IEEE second international conference on big data computing service and applications (BigDataService) (pp. 293-296). IEEE. https://doi.org/10.1109/BigDataService.2016.18.
  • Young, S.D. & Zhang, Q. (2018) Using search engine big data for predicting new HIV diagnoses. PLoS ONE, 13(7), 1-8.
  • Yaoxue, Z., Ju, R., Jiagang, L., Chugui, X., Hui, G. & Yaping, L. (2017). A survey on emerging computing paradigms for big data. Chinese Journal of Electronics, 26(1), 1-12.
  • Xhafa, F., Bogza, A. & Caballe, S. (2017). Performance evaluation of mahout clustering algorithms using a twitter streaming dataset. IEEE 31st International Conference on Advanced Information Networking and Applications, Taipei, Taiwan.
  • Xiang, Z., Jinghua, C. & Tao, W. (2020). Review of machine learning algorithms for health-care management medical big data system. International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India. https://doi.org/10.1109/ICICT48043.2020.9112458.
  • Zhao, Y., Liu, L., Qi, Y., Lou, F., Zhang, J. & Ma, W. (2020). Evaluation and design of public health information managementsystem for primary health care units based on medical and health information. Journal of Infection and Public Health, 13(4), 491-496.
  • Wang, Y., Kung, L.A., Chung Wang, W.Y. & Cegielski, C.G. (2018). An integrated big data analytics-enabled transformation model: Application to health care. Information& Management, 55(1), 64-79.

BIG DATA AND HEALTHCARE BIG DATA PROCESSING TOOLS

Yıl 2021, Cilt: 24 Sayı: 4, 921 - 940, 27.12.2021

Öz

Healthcare big data is the whole of record of hospital, doctors, patient and medical processes and it is so complex and this data is quite hard to analyze using some traditional data analytics tools. Healthcare services ensures a multi-disciplinary field of scientific investigation in relation to organizational progresses, social factors, health technologies and financial studies. Thanks to big data, the huge volume of data can be processed and stored effectively for diagnosis. Also suitable treatment of diseases can be observed with these emerging technologies. In this way for researchers, there is a chance in healthcare data to find models and tendencies inside of data and ensure a resolution for developing healthcare, thereby decreasing costs, democratizing health access, and rescuing human lives. Recently, many researchers have suggested some big data approaches on healthcare data to develop the accuracy of analytics. Definition of health care data and effective analysis ensures new perspectives of patients status and propose the most proper treatment opportunities. The purpose of this article is to investigate the decision mechanisms based on big data analytics in healthcare institutions and services, to determine essential big data analytics able to help healthcare leaders’ decisions and to present some tools to raise efficiency along the healthcare services

Proje Numarası

yok

Kaynakça

  • Aceto, G., Persico, V. & Pescape, A. (2020). Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. Journal of Industrial Information Integration, 18, 1-13.
  • Agrawal, R. & Prabakaran, S. (2020). Big data in digital healthcare: lessons learnt and recommendations for general practice. Heredity, 124(4), 525–534.
  • Artho, C., Banzai, K., Gros, Q., Rousset, G., Ma, L., Kitamura, T., Hagiya, M., Tanabe, Y. & Yamamoto, M. (2019). Model-based testing of Apache ZooKeeper: Fundamental API usage and watchers. Software Testing Verification & Relıability, 30(7-8) 1-29.
  • Bagchi, S. (2015). Performance and quality assessment of similarity measures in collaborative filtering using Mahout. Procedia Computer Science, 50, 229–234.
  • Bandi, R. & Anitha, G. (2018). Machine learning based oozie workflow for hive query schedule mechanism. International Conference on Smart Systems and Inventive Technology (ICSSIT), Tamil Nadu, India.
  • Belle, A., Thiagarajan, R., Soroushmehr, S.M.R., Navidi, F., Beard, D.A. & Najarian, K. (2015). Big data analytics in healthcare. BioMed Research International, 1-16.
  • Benke, K. & Benke, G. (2018). Artificial intelligence and big data in public health. International journal of environmental research and public health, 15(12), 2796.
  • Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.Y., Kanne, C.C., Özcan, F. & Shekita, E.J. (2011). Jaql: A scripting language for large scale semistructured data analysis. PVLDB, 4(12), 1272–1283.
  • Bhubaneswar, O. (2015). A brief introduction on big data 5Vs characteristics and Hadoop technology. Procedia Computer Science, 48, 319-324.
  • Boyd, D. & Crawford, K. (2012). Critical questions for big data. Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662-679.
  • Braun, P., Cuzzocrea, A., Leung, C.K., Pazdor, A.G.M. & Tran, K. (2016). Knowledge discovery from social graph data. Procedia Computer Science, 96, 682-691.
  • Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015, August). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1721-1730).
  • Chae, S., Kwon, S. & Lee, D. (2018). Predicting infectious disease using deep learning and big data. International journal of environmental research and public health, 15(8), 1596-1616.
  • Chauhan, R., Kaur, H. & Chang, V. (2020). An optimized integrated framework of big data analytics managing security and privacy in healthcare data. Wireless Personal Communications, 117(1), 1-22.
  • Chebotko, A., Kashlev, A., & Lu, S. (2015, June). A big data modeling methodology for Apache Cassandra. In 2015 IEEE International Congress on Big Data (pp.238-245). IEEE. https://doi.org/10.1109/BigDataCongress.2015.41.
  • Chen, Y., Crespi, N., Ortiz, A.M. & Shu, L. (2016). Reality mining: A prediction algorithm for disease dynamics based on mobile big data, Information Sciences, 379, 82-93.
  • Chen, J., Li, K., Rong, H., Bilal, K., Yang, N. & Li, K. (2018). A disease diagnosis and treatment recommendation system based on big data Mining and Cloud Computing. Information Sciences, 435, 124-149.
  • Cheng, X. & Yang, L. (2017). Mobile big data: The fuel for data-driven wireless. IEEE Internet of Things Journal, 4(5), 1489- 1516.
  • Dash, S., Shakyawar, S.K., Sharma, M. & Kausnik, S. (2019). Big data in healthcare: Management, analysis and future prospects. Journal of Big Data, 6(1), 1-25.
  • Demchenko, Y., De Laat, C., & Membrey, P. (2014, May). Defining architecture components of the Big Data Ecosystem. In 2014 International conference on collaboration technologies and systems (CTS) (pp. 104-112). IEEE. https://doi.org/10.1109/CTS.2014.6867550.
  • Desai, S., Mostaghimi, A., & Nambudiri, V. E. (2020). Clinical informatics subspecialists: characterizing a novel evolving workforce. Journal of the American Medical Informatics Association, 27(11), 1711-1715.
  • Dilsizian, S.E. & Siegel, E.L. (2014). Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Current cardiology reports, 16(1), 441, 1-8.
  • Ehrenstein, V., Nielsen, H., Pedersen, A.B., Johnsen, S.P. & Pedersen, L. (2017). Clinical epidemiology in the era of big data: New opportunities, familiar challenges. Clinical Epidemiology, 9, 245-250.
  • Elezabeth, L., Mishra, V. P., & Dsouza, J. (2018, August). The Role of Big Data Mining in Healthcare Applications. In 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 256-260). IEEE.
  • Gamache, R., Kharrazi, H. & Weiner, J. P. (2018). Public and population health informatics: The bridging of big data to benefit communities. Yearbook of medical informatics, 27(1), 199–206.
  • Gandomi, A. & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.
  • Garg, V. (2015, December). Optimization of multiple queries for big data with apache Hadoop/Hive. In 2015 International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 938-941). IEEE. http://dx.doi.org/10.1109/CICN.2015.184.
  • Groves, P., Kayyali, B., Knott, D. & Van Kuiken, S. (2013). The ‘big data’ revolution in health care: Accelerating value and innovation. McKinsey & Company, New York.
  • Guo, C. & Chen, J. (2019). Big data analytics in healthcare: Data-driven methods for typical treatment pattern mining. Journal of Systems Science and Systems Engineering, 28(6), 694–714.
  • Han, Q., Liang, S. & Zhang, H. (2015). Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world, İEEE Network, 29(2), 40-45.
  • Je, K. & Kim, G.H. (2013). Potentiality of big data in the medical sector: Focus on how to reshape the healthcare system. Healthcare Informatics Reseach, 19(2), 79-85.
  • Ji, W. (2020, June). Research and Application of Information Data Retrieval System in Station Based on Lucene Technology. In 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 687-690). IEEE.
  • Jia, B., Wlodarczyk, T. W., & Rong, C. (2010, November). Performance considerations of data acquisition in hadoop system. In 2010 IEEE Second International Conference on Cloud Computing Technology and Science (pp. 545-549). IEEE.
  • Jose, A. S., & Binu, A. (2014, August). Automatic detection and rectification of dns reflection amplification attacks with hadoop mapreduce and chukwa. In 2014 Fourth International Conference on Advances in Computing and Communications (pp. 195-198). IEEE.
  • Kobayashi, L., Oyalowo, A., Agrawal, U., Chen, S. L., Asaad, W., Hu, X., ... & Merck, D. L. (2018). Development and deployment of an open, modular, near-real-time patient monitor datastream conduit toolkit to enable healthcare multimodal data fusion in a live emergency department setting for experimental bedside clinical informatics research. IEEE Sensors Letters, 3(1), 1-4.
  • Lakhara, S., & Mishra, N. (2017). Desktop full-text searching based on Lucene: A review. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 2434-2438). IEEE.
  • Liang, Y., Zheng, X. & Zeng, D.D. (2019). A survey on big data-driven digital phenotyping of mental health. Information Fusion, 52, 290–307.
  • Liu, W., Zhang, T., Shen, Y. & Wang, P. (2019). Fast correlation coefficient estimation algorithm for HBase-based massive time series data. Frontiers of Computer Science, 13(4), 864–878.
  • Luo J., Wu, M., Gopukumar, D. & Zhao, Y. (2016). Big data application in biomedical research and health care: A literature review. Biomedical Informatics Insights, 8, 1–10
  • Manogaran, G., Lopez, D., Thot, C., Abbas, K.M., Pyne, S. & Sundarasekar, R. (2017). Big Data Analytics in Healthcare Internet of Things, in Innovative Healthcare Systems for the 21st Century, Eds. Qudrat-Ullah, H. and Tsasis, P., New York: Springer International Publishing.
  • Martinez-Martin, N. (2020). Big data, corporate surveillance and public health, The American Journal of Bioethics, 20(10), 79-81.
  • Mezghani, E., Exposito, E., Drira, K., Da Silveira, M., & Pruski, C. (2015). A semantic big data platform for integrating heterogeneous wearable data in healthcare. Journal of medical systems, 39(12), 1-8.
  • Mooney, S.J. & Pejaver, V. (2018). Big data in public health: Terminology, machine learning, and privacy. Annual Review of Public Health, 39, 95-112.
  • McFarlane, T.D., Dixon, B.E., Grannis, S.J. & Gibson, P.J. (2019). Public health informatics in local and state health agencies: An update from the public health workforce interests and needs survey. Journal of Public Health Management and Practice, 25(2), s67-s77.
  • Molinari, A., & Nollo, G. (2020, June). The quality concerns in health care Big Data. In 2020 IEEE 20th Mediterranean Electrotechnical Conference (pp. 302-305). IEEE. https://ieeexplore.ieee.org/document/9140534
  • Morris, M.A., Babak, S., Brian, B., Jackson, G. & Elliot L., S. (2018). Reinventing radiology: Big Data and the future of medical imaging. Journal of Thoracic Imaging, 33(1), 4-16.
  • Moussa, R. (2012, June). Tpc-h benchmarking of pig latin on a hadoop cluster. In 2012 International Conference on Communications and Information Technology (pp. 85-90). IEEE.
  • Mun, S., Park, J., Dritschilo, A., Collins, S., Suy, S., Choi, I. & Rho, M. (2018). The prostate clinical outlook (PCO) classifier application for predicting biochemical recurrences in patients treated by stereotactic body radiation therapy (SBRT). Applied Sciences, 8(9), 1620. MDPI AG. http://dx.doi.org/10.3390/app8091620.
  • Naoui, M.A., Lejdel, B., Ayad, M., Belkeiri, R. & Khaouazm, A.S. (2020). Integrating deep learning, social networks, and big data for healthcare system. Bio-Algorithms and Med-Systems, 16(1), 1-14.
  • Naslund, J. A., Gonsalves, P. P., Gruebner, O., Pendse, S. R., Smith, S. L., Sharma, A., & Raviola, G. (2019). Digital innovations for global mental health: opportunities for data science, task sharing, and early intervention. Current treatment options in psychiatry, 6(4), 337-351.
  • Ocaña, K., Galheigo, M., Osthoff, C., Gadelha Jr., L.M.R., Porto, F., Gomes, A.T.A., Oliveira, D. & Vasconcelos, A.T. (2020). BioinfoPortal: A scientific gateway for integrating bioinformatics applications on the Brazilian national high-performance computing network. Future Generation Computer Systems, 107, 192–214.
  • Onyemachi, N. C., & Nonyelum, O. F. (2019). Big Data Analytics in Healthcare: A Review. In 2019 15th International Conference on Electronics, Computer and Computation (pp. 1-5). IEEE. https://doi.org/10.1109/ICECCO48375.2019.9043183.
  • Palanisamy, V., & Thirunavukarasu, R. (2019). Implications of big data analytics in developing healthcare frameworks–A review. Journal of King Saud University-Computer and Information Sciences, 31(4), 415-425.
  • Parmar, C., Barry, J. D., Hosny, A., Quackenbush, J., & Aerts, H. J. (2018). Data analysis strategies in medical imaging. Clinical cancer research, 24(15), 3492-3499.
  • Pastorino, R., De Vito, C., Migliara, G., Glocker, K., Binenbaum, I., Ricciardi, W., & Boccia, S. (2019). Benefits and challenges of Big Data in healthcare: an overview of the European initiatives. European journal of public health, 29(3), 23-27.
  • Pastur-Romay, L. A., Cedrón, F., Pazos, A., & Porto-Pazos, A. B. (2016). Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications. International journal of molecular sciences, 17(8), 1313.
  • Patil, S., Patil, K. R., Patil, C. R., & Patil, S. S. (2020). Performance overview of an artificial intelligence in biomedics: a systematic approach. International Journal of Information Technology, 12(3), 963-973.
  • Plase, D., Niedrite, L., & Taranovs, R. (2016). Accelerating data queries on Hadoop framework by using compact data formats. In 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (pp. 1-7). IEEE. https://doi.org/10.1109/AIEEE.2016.7821807.
  • Pramanik, M. I., Lau, R. Y., Azad, M. A. K., Hossain, M. S., Chowdhury, M. K. H., & Karmaker, B. K. (2020). Healthcare informatics and analytics in big data. Expert Systems with Applications, 152, 113388.
  • Pouyanfar, S., Yang, Y., Chen, S. C., Shyu, M. L., & Iyengar, S. S. (2018). Multimedia big data analytics: A survey. ACM computing surveys, 51(1), 1-34.
  • Purswani, J. M., Dicker, A. P., Champ, C. E., Cantor, M., & Ohri, N. (2019). Big data from small devices: the future of smartphones in oncology. In Seminars in radiation oncology (pp. 338-347). WB Saunders. https://doi.org/10.1016/j.semradonc.2019.05.008.
  • Devi, R. R., & Chamundeeswari, V. V. (2020). Triple DES: privacy preserving in big data healthcare. International Journal of Parallel Programming, 48(3), 515-533.
  • Roy, A.K. (2016). Impact of big data analytics on healthcare and society. Journal of Biometrics & Biostatistics, 7(3), 300-307. Saroha, M., & Sharma, A. (2019). Big Data and Hadoop Ecosystem: A Review. In 2019 International Conference on Smart Systems and Inventive Technology (pp. 1-5). IEEE. https://doi.org/10.1109/ICSSIT46314.2019.8987848.
  • Sasubilli, G., & Kumar, A. (2020). Machine Learning and Big Data Implementation on Health Care data. In 2020 4th International Conference on Intelligent Computing and Control Systems (pp. 859-864). IEEE. https://doi.org/10.1109/ICICCS48265.2020.9120906.
  • Shah, G., Shah, A., & Shah, M. (2019a). Panacea of challenges in real-world application of big data analytics in healthcare sector. Journal of Data, Information and Management, 1(3), 107-116.
  • Shah, G. H., & Rogers, V. N. (2019b). Publishing on topics in public health informatics for a quarter century. Journal of Public Health Management and Practice, 25(1), 27-29. Shaikh, T. A., & Ali, R. (2019). Big data for better Indian healthcare. International Journal of Information Technology, 11(4), 735-741.
  • Shafqat, S., Kishwer, S., Rasool, R. U., Qadir, J., Amjad, T., & Ahmad, H. F. (2020). Big data analytics enhanced healthcare systems: a review. The Journal of Supercomputing, 76(3), 1754-1799.
  • Shi, M., Jiang, R., Hu, X. & Shang, J. (2020). A privacy protection method for health care big data management based on risk access control. Health Care Management Science, 23(3), 427–442.
  • Shilo, S., Rossman, H. & Segal, E. (2020). Axes of a revolution: Challenges and promises of big data in healthcare. Nature medicine, 26(1), 29–38.
  • Silverman, H.D., Steen, E.B., Carpenito, J.N., Ondrula, C.J., Williamson, J.J. & Fridsma, D.B. (2019). Domains, tasks, and knowledge for clinical informatics subspecialty practice: results of a practice analysis. Journal of the American Medical Informatics Association, 26(7), 586–593.
  • Siuly, S. & Zhang, Y. (2016). Medical big data: Neurological diseases diagnosis through medical data analysis. Data Science and Engineering, 1(2), 54–64.
  • Strang, K.D. & Sun, Z. (2020). Hidden big data analytics issues in the healthcare industry. Health Informatics Journal, 26(2), 981-998. Suneetha, V., Suresh, S., & Jhananie, V. (2020). A novel framework using apache spark for privacy preservation of healthcare big data. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (pp. 743-749). IEEE. https://doi.org/10.1109/ICIMIA48430.2020.9074867.
  • Syed, L., Jabeen, S., Manimala, S. & Alsaeedi, A. (2019). Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques. Future Generation Computer Systems, 101, 136-151.
  • Tawalbeh, T.A., Mehmood, R., Benkhlifa, E. & Song, H. (2016). Mobile cloud computing model and big data analysis for healthcare applications. IEEE Access, 4, 6171-6180. Trivedi, K., Kumari, S. & Jain, S. (2019). Big data processing with hadoop. International Journal of Business & Engineering Research, 10, 1-5.
  • Turer, R.W., Arribas, M., Balgord, S.M., Brooks, S., Hopson, L.R., Bassin, B.S. & Medlin, R. (2020). Clinical informatics training during emergency medicine residency: The university of Michigan experince. AEM Education and Training, 1-8. https://doi.org/10.1002/aet2.10518
  • Vasuki, N. & Rajiv-Kannan, A. (2020). Big healthcare data for trivial client having Novel Smart Attire (NSA). Soft Computing, 24, 18367-18378.
  • Viceconti, M., Hunter, P. & Hose, R. (2015). Big data, big knowledge: Big data for personalized healthcare. IEEE Journal of Biomedical and Health Informatics, 19(4), 1209-1215.
  • Vuppalapati, C., Ilapakurti, A., & Kedari, S. (2016). The role of big data in creating sense ehr, an integrated approach to create next generation mobile sensor and wearable data driven electronic health record (ehr). In 2016 IEEE second international conference on big data computing service and applications (BigDataService) (pp. 293-296). IEEE. https://doi.org/10.1109/BigDataService.2016.18.
  • Young, S.D. & Zhang, Q. (2018) Using search engine big data for predicting new HIV diagnoses. PLoS ONE, 13(7), 1-8.
  • Yaoxue, Z., Ju, R., Jiagang, L., Chugui, X., Hui, G. & Yaping, L. (2017). A survey on emerging computing paradigms for big data. Chinese Journal of Electronics, 26(1), 1-12.
  • Xhafa, F., Bogza, A. & Caballe, S. (2017). Performance evaluation of mahout clustering algorithms using a twitter streaming dataset. IEEE 31st International Conference on Advanced Information Networking and Applications, Taipei, Taiwan.
  • Xiang, Z., Jinghua, C. & Tao, W. (2020). Review of machine learning algorithms for health-care management medical big data system. International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India. https://doi.org/10.1109/ICICT48043.2020.9112458.
  • Zhao, Y., Liu, L., Qi, Y., Lou, F., Zhang, J. & Ma, W. (2020). Evaluation and design of public health information managementsystem for primary health care units based on medical and health information. Journal of Infection and Public Health, 13(4), 491-496.
  • Wang, Y., Kung, L.A., Chung Wang, W.Y. & Cegielski, C.G. (2018). An integrated big data analytics-enabled transformation model: Application to health care. Information& Management, 55(1), 64-79.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Arzu Kurşun 0000-0001-9560-7689

Proje Numarası yok
Yayımlanma Tarihi 27 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 24 Sayı: 4

Kaynak Göster

APA Kurşun, A. (2021). BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI. Hacettepe Sağlık İdaresi Dergisi, 24(4), 921-940.
AMA Kurşun A. BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI. HSİD. Aralık 2021;24(4):921-940.
Chicago Kurşun, Arzu. “BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI”. Hacettepe Sağlık İdaresi Dergisi 24, sy. 4 (Aralık 2021): 921-40.
EndNote Kurşun A (01 Aralık 2021) BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI. Hacettepe Sağlık İdaresi Dergisi 24 4 921–940.
IEEE A. Kurşun, “BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI”, HSİD, c. 24, sy. 4, ss. 921–940, 2021.
ISNAD Kurşun, Arzu. “BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI”. Hacettepe Sağlık İdaresi Dergisi 24/4 (Aralık 2021), 921-940.
JAMA Kurşun A. BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI. HSİD. 2021;24:921–940.
MLA Kurşun, Arzu. “BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI”. Hacettepe Sağlık İdaresi Dergisi, c. 24, sy. 4, 2021, ss. 921-40.
Vancouver Kurşun A. BÜYÜK VERİ VE SAĞLIK HİZMETLERİNDE BÜYÜK VERİ İŞLEME ARAÇLARI. HSİD. 2021;24(4):921-40.