Research Article
BibTex RIS Cite

Blok Zinciri Platformları, Fikir Birliği Mekanizmaları ve Ağın Güvenlik Analizi

Year 2022, Volume: 5 Issue: 1, 43 - 72, 30.03.2022
https://doi.org/10.46373/hafebid.1000108

Abstract

Finans, sağlık, sosyal medya vb ortamlardaki insanların ihtiyacı olan güven problemine blok zinciri teknolojisi, şifreli algoritmalar ile çözümler sunmaktadır. Güven problemini çözen ve verileri dağıtık olarak kayıt altına alan ve her şeyi şeffaf olarak bizlere sunan blok zinciri bir devrim niteliğindedir. Blok zinciri, akıllı sözleşmeler sayesinde kurumsal projelerde de kullanabilmektedir. Kurumların arasında yeni nesil bir ağ olarak da adlandırılan blok zinciri ile bir çok şeyin değişmesi beklenmektedir. İnternetin, mobile cihazların ve sensörlerin yaygınlaşmasıyla birlikte güven problemi her geçen gün daha da önem kazanmaktadır. Farklı amaçlara hizmet eden Ethereum, Cardano, EOS, Cosmos, Hyperledger gibi blok zincir platformları vardır. Altyapılarında Proof of Work (PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS) ve Directed Acyclic Graph (DAG) gibi farklı fikir birliği mekanizmalarını kullanmaktadırlar. Bu çalışmada blok zinciri platformları, altyapılarında kullandıkları mutabakat mekanizmaları ve blok zinciri ağının güvenliği araştırılmıştır.

Supporting Institution

İstanbul Ticaret Üniversitesi

Thanks

Bilgisayar Mühendisliği (Tezli Yüksek Lisans) sürecinde emeği geçen tüm akademisyenlerimize siz değerli hocalarıma çok teşekkür ederim.

References

  • [1] Yaga, D., Mell, P., Roby, N., & Scarfone, K. Blockchain technology overview. arXiv preprint arXiv:1906.11078, (2019, June), doi: 10.6028/NIST.IR.8202
  • [2] Seijas, P. L., Thompson, S. J., & McAdams, D. Scripting smart contracts for distributed ledger technology. IACR Cryptology ePrint Archive, (2016, December), 1156.
  • [3] Benhamouda, F., Halevi, S., & Halevi, T. Supporting private data on hyperledger fabric with secure multiparty computation. IBM Journal of Research and Development, 63(2/3), 3-1. (2019, April), doi: 10.1147/JRD.2019.2913621.
  • [4] Yermack, D. Blockchain technology’s potential in the financial system. 2019 Financial Market’s Conference. (2019, May).
  • [5] Yang, X., Chen, Y., & Chen, X. Effective scheme against 51% attack on proof-of-work blockchain with history weighted information. In 2019 IEEE International Conference on Blockchain (Blockchain) (2019, July), (pp. 261-265). IEEE, doi: 10.1109/Blockchain.2019.00041.
  • [6] Jiang, Y., & Lian, Z. High performance and scalable Byzantine fault tolerance. In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (2019, March), (pp. 1195-1202). IEEE, doi: 10.1109/ITNEC.2019.8728972.
  • [7] Cao, B., Zhang, Z., Feng, D., Zhang, S., Zhang, L., Peng, M., & Li, Y. Performance analysis and comparison of PoW, PoS and DAG based blockchains. Digital Communications and Networks, (2020, November), 6(4), 480-485, doi: 10.1016/j.dcan.2019.12.001.
  • [8] Košt’ál, K., Krupa, T., Gembec, M., Vereš, I., Ries, M., & Kotuliak, I. On transition between PoW and PoS. In 2018 International Symposium ELMAR (2018, September), (pp. 207-210). IEEE, doi: 10.23919/ELMAR.2018.8534642.
  • [9] Sagirlar, G., Carminati, B., Ferrari, E., Sheehan, J. D., & Ragnoli, E. Hybrid-iot: Hybrid blockchain architecture for internet of things-pow sub-blockchains. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (2018, July), (pp. 1007-1016). IEEE, doi: 10.1109/Cybermatics_2018.2018.00189.
  • [10] Ethereum Foundation. A country’s worth of power, no more! Ethereum Foundation Blog. https://blog.ethereum.org/2021/05/18/country-power-no-more/ , (2021, May 18), (Erişim Tarihi: 28 Ağustos 2021).
  • [11] Supreet, Y., Vasudev, P., Pavitra, H., Naravani, M., & Narayan, D. G. Performance Evaluation of Consensus Algorithms in Private Blockchain Networks. In 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM) (2020, August), (pp. 449-453). IEEE, doi: 10.1109/ICACCM50413.2020.9213019.
  • [12] Xu, G., Liu, Y., & Khan, P. W. Improvement of the DPoS consensus mechanism in Blockchain based on vague sets. IEEE Transactions on Industrial Informatics, (2019, November), 16(6), 4252-4259. doi: 10.1109/TII.2019.2955719.
  • [13] Chen, Y., & Liu, F. Improvement of DPoS Consensus Mechanism in Collaborative Governance of Network Public Opinion. In 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE) (2021, March), (pp. 483-488). IEEE, doi: 10.1109/AEMCSE51986.2021.00105.
  • [14] Bhandary, M., Parmar, M., & Ambawade, D. Securing Logs of a System-An IoTA Tangle Use Case. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) (2020, July), (pp. 697-702). IEEE, doi: 10.1109/ICESC48915.2020.9155563.
  • [15] Guo, F., Xiao, X., Hecker, A., & Dustdar, S. Characterizing IOTA Tangle with Empirical Data. In GLOBECOM 2020-2020 IEEE Global Communications Conference (2020, December), (pp. 1-6). IEEE, doi: 10.1109/GLOBECOM42002.2020.9322220.
  • [16] Wang, T., Wang, Q., Shen, Z., Jia, Z., & Shao, Z. Understanding Intrinsic Characteristics and System Implications of DAG-based Blockchain. In 2020 IEEE International Conference on Embedded Software and Systems (ICESS) (2020, December), (pp. 1-6). IEEE, doi: 10.1109/ICESS49830.2020.9301563.
  • [17] Zhao, L., & Yu, J. Evaluating DAG-based blockchains for IoT. In 2019 18th IEEE international conference on trust, security and privacy in computing and communications/13th IEEE international conference on big data science And engineering (TrustCom/BigDataSE) (2019, August), (pp. 507-513). IEEE, doi: 10.1109/TrustCom/BigDataSE.2019.00074.
  • [18] Vujičić, D., Jagodić, D., & Ranđić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH) (2018, March), (pp. 1-6). IEEE, doi: 10.1109/INFOTEH.2018.8345547.
  • [19] Tonev, I. Energy Trading Web Platform Based on the Ethereum Smart Contracts and Blockchain. In 2020 12th Electrical Engineering Faculty Conference (BulEF) (2020, September), (pp. 1-4). IEEE, doi: 10.1109/BulEF51036.2020.9326010.
  • [20] Mishra, R. A., Kalla, A., Singh, N. A., & Liyanage, M. Implementation and analysis of blockchain based dapp for secure sharing of students' credentials. In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (2020, January), (pp. 1-2). IEEE, doi: 10.1109/CCNC46108.2020.9045196.
  • [21] Aung, Y. N., & Tantidham, T. Ethereum-based emergency service for smart home system: smart contract implementation. In 2019 21st International Conference on Advanced Communication Technology (ICACT) (2019, February), (pp. 147-152). IEEE, doi: 10.23919/ICACT.2019.8701987.
  • [22] Dong, S., Yang, H., Yuan, J., Jiao, L., Yu, A., & Zhang, J. Blockchain-based cross-domain authentication strategy for trusted access to mobile devices in the IoT. In 2020 International Wireless Communications and Mobile Computing (IWCMC) (2020, June), (pp. 1610-1612). IEEE, doi: 10.1109/IWCMC48107.2020.9148358.
  • [23] Worley, C., & Skjellum, A. Blockchain tradeoffs and challenges for current and emerging applications: generalization, fragmentation, sidechains, and scalability. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (2018, July), (pp. 1582-1587). IEEE, doi: 10.1109/Cybermatics_2018.2018.00265.
  • [24] Dernayka, I., & Chehab, A. Blockchain Development Platforms: Performance Comparison. In 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS) (2021, April), (pp. 1-6). IEEE, doi: 10.1109/NTMS49979.2021.9432669.
  • [25] Nguyen, T. S. L., Jourjon, G., Potop-Butucaru, M., & Thai, K. Impact of network delays on Hyperledger Fabric. arXiv preprint arXiv:1903.08856, (2019, April), doi: 10.1109/INFCOMW.2019.8845168.
  • [26] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, (2008, October), 21260.
  • [27] Akbarzadeh, N., & Tekin, C. Gambler's ruin bandit problem. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2016, September), (pp. 1236-1243). IEEE, doi: 10.1109/ALLERTON.2016.7852376.
  • [28] Feller, W. An introduction to probability theory and its applications. (1957), Wiley.

Blockchain Platforms, Consensus Mechanisms and Security Analysis of the Network

Year 2022, Volume: 5 Issue: 1, 43 - 72, 30.03.2022
https://doi.org/10.46373/hafebid.1000108

Abstract

Blockchain technology offers solutions with encrypted algorithms to the trust problem that people in finance, health, social media, etc. need. blockchain, which solves the problem of trust and records data in a distributed manner and presents everything to us transparently, is revolutionary. blockchain can also be used in corporate projects thanks to smart contracts. A lot of things are expected to change with Blockchain, which is also called a new generation network among institutions. With the widespread use of the Internet, mobile devices and sensors, the problem of trust is gaining more and more importance day by day. There are blockchain platforms such as Ethereum, Cardano, EOS, Cosmos, Hyperledger that serve different purposes. They use different consensus mechanisms such as Proof of Work (PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS) and Directed Acyclic Graph (DAG) in their infrastructure. In this study, Blockchain platforms were investigated by using the consensus mechanisms they use in their infrastructure and the security of the blockchain network.

References

  • [1] Yaga, D., Mell, P., Roby, N., & Scarfone, K. Blockchain technology overview. arXiv preprint arXiv:1906.11078, (2019, June), doi: 10.6028/NIST.IR.8202
  • [2] Seijas, P. L., Thompson, S. J., & McAdams, D. Scripting smart contracts for distributed ledger technology. IACR Cryptology ePrint Archive, (2016, December), 1156.
  • [3] Benhamouda, F., Halevi, S., & Halevi, T. Supporting private data on hyperledger fabric with secure multiparty computation. IBM Journal of Research and Development, 63(2/3), 3-1. (2019, April), doi: 10.1147/JRD.2019.2913621.
  • [4] Yermack, D. Blockchain technology’s potential in the financial system. 2019 Financial Market’s Conference. (2019, May).
  • [5] Yang, X., Chen, Y., & Chen, X. Effective scheme against 51% attack on proof-of-work blockchain with history weighted information. In 2019 IEEE International Conference on Blockchain (Blockchain) (2019, July), (pp. 261-265). IEEE, doi: 10.1109/Blockchain.2019.00041.
  • [6] Jiang, Y., & Lian, Z. High performance and scalable Byzantine fault tolerance. In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (2019, March), (pp. 1195-1202). IEEE, doi: 10.1109/ITNEC.2019.8728972.
  • [7] Cao, B., Zhang, Z., Feng, D., Zhang, S., Zhang, L., Peng, M., & Li, Y. Performance analysis and comparison of PoW, PoS and DAG based blockchains. Digital Communications and Networks, (2020, November), 6(4), 480-485, doi: 10.1016/j.dcan.2019.12.001.
  • [8] Košt’ál, K., Krupa, T., Gembec, M., Vereš, I., Ries, M., & Kotuliak, I. On transition between PoW and PoS. In 2018 International Symposium ELMAR (2018, September), (pp. 207-210). IEEE, doi: 10.23919/ELMAR.2018.8534642.
  • [9] Sagirlar, G., Carminati, B., Ferrari, E., Sheehan, J. D., & Ragnoli, E. Hybrid-iot: Hybrid blockchain architecture for internet of things-pow sub-blockchains. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (2018, July), (pp. 1007-1016). IEEE, doi: 10.1109/Cybermatics_2018.2018.00189.
  • [10] Ethereum Foundation. A country’s worth of power, no more! Ethereum Foundation Blog. https://blog.ethereum.org/2021/05/18/country-power-no-more/ , (2021, May 18), (Erişim Tarihi: 28 Ağustos 2021).
  • [11] Supreet, Y., Vasudev, P., Pavitra, H., Naravani, M., & Narayan, D. G. Performance Evaluation of Consensus Algorithms in Private Blockchain Networks. In 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM) (2020, August), (pp. 449-453). IEEE, doi: 10.1109/ICACCM50413.2020.9213019.
  • [12] Xu, G., Liu, Y., & Khan, P. W. Improvement of the DPoS consensus mechanism in Blockchain based on vague sets. IEEE Transactions on Industrial Informatics, (2019, November), 16(6), 4252-4259. doi: 10.1109/TII.2019.2955719.
  • [13] Chen, Y., & Liu, F. Improvement of DPoS Consensus Mechanism in Collaborative Governance of Network Public Opinion. In 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE) (2021, March), (pp. 483-488). IEEE, doi: 10.1109/AEMCSE51986.2021.00105.
  • [14] Bhandary, M., Parmar, M., & Ambawade, D. Securing Logs of a System-An IoTA Tangle Use Case. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) (2020, July), (pp. 697-702). IEEE, doi: 10.1109/ICESC48915.2020.9155563.
  • [15] Guo, F., Xiao, X., Hecker, A., & Dustdar, S. Characterizing IOTA Tangle with Empirical Data. In GLOBECOM 2020-2020 IEEE Global Communications Conference (2020, December), (pp. 1-6). IEEE, doi: 10.1109/GLOBECOM42002.2020.9322220.
  • [16] Wang, T., Wang, Q., Shen, Z., Jia, Z., & Shao, Z. Understanding Intrinsic Characteristics and System Implications of DAG-based Blockchain. In 2020 IEEE International Conference on Embedded Software and Systems (ICESS) (2020, December), (pp. 1-6). IEEE, doi: 10.1109/ICESS49830.2020.9301563.
  • [17] Zhao, L., & Yu, J. Evaluating DAG-based blockchains for IoT. In 2019 18th IEEE international conference on trust, security and privacy in computing and communications/13th IEEE international conference on big data science And engineering (TrustCom/BigDataSE) (2019, August), (pp. 507-513). IEEE, doi: 10.1109/TrustCom/BigDataSE.2019.00074.
  • [18] Vujičić, D., Jagodić, D., & Ranđić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH) (2018, March), (pp. 1-6). IEEE, doi: 10.1109/INFOTEH.2018.8345547.
  • [19] Tonev, I. Energy Trading Web Platform Based on the Ethereum Smart Contracts and Blockchain. In 2020 12th Electrical Engineering Faculty Conference (BulEF) (2020, September), (pp. 1-4). IEEE, doi: 10.1109/BulEF51036.2020.9326010.
  • [20] Mishra, R. A., Kalla, A., Singh, N. A., & Liyanage, M. Implementation and analysis of blockchain based dapp for secure sharing of students' credentials. In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (2020, January), (pp. 1-2). IEEE, doi: 10.1109/CCNC46108.2020.9045196.
  • [21] Aung, Y. N., & Tantidham, T. Ethereum-based emergency service for smart home system: smart contract implementation. In 2019 21st International Conference on Advanced Communication Technology (ICACT) (2019, February), (pp. 147-152). IEEE, doi: 10.23919/ICACT.2019.8701987.
  • [22] Dong, S., Yang, H., Yuan, J., Jiao, L., Yu, A., & Zhang, J. Blockchain-based cross-domain authentication strategy for trusted access to mobile devices in the IoT. In 2020 International Wireless Communications and Mobile Computing (IWCMC) (2020, June), (pp. 1610-1612). IEEE, doi: 10.1109/IWCMC48107.2020.9148358.
  • [23] Worley, C., & Skjellum, A. Blockchain tradeoffs and challenges for current and emerging applications: generalization, fragmentation, sidechains, and scalability. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (2018, July), (pp. 1582-1587). IEEE, doi: 10.1109/Cybermatics_2018.2018.00265.
  • [24] Dernayka, I., & Chehab, A. Blockchain Development Platforms: Performance Comparison. In 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS) (2021, April), (pp. 1-6). IEEE, doi: 10.1109/NTMS49979.2021.9432669.
  • [25] Nguyen, T. S. L., Jourjon, G., Potop-Butucaru, M., & Thai, K. Impact of network delays on Hyperledger Fabric. arXiv preprint arXiv:1903.08856, (2019, April), doi: 10.1109/INFCOMW.2019.8845168.
  • [26] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, (2008, October), 21260.
  • [27] Akbarzadeh, N., & Tekin, C. Gambler's ruin bandit problem. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2016, September), (pp. 1236-1243). IEEE, doi: 10.1109/ALLERTON.2016.7852376.
  • [28] Feller, W. An introduction to probability theory and its applications. (1957), Wiley.
There are 28 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mimar Aslan 0000-0002-9001-6510

Mustafa Cem Kasapbaşı 0000-0001-6444-6659

Publication Date March 30, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Aslan, M., & Kasapbaşı, M. C. (2022). Blok Zinciri Platformları, Fikir Birliği Mekanizmaları ve Ağın Güvenlik Analizi. Haliç Üniversitesi Fen Bilimleri Dergisi, 5(1), 43-72. https://doi.org/10.46373/hafebid.1000108

Cited By

T. C. Haliç University Journal of Science