Research Article
BibTex RIS Cite

First application of two distinguishment techniques: Using Linear Discriminate Function method and Artificial Neural Networks approach according to the ovary types for some plant parasitic nematodes

Year 2022, , 1 - 14, 25.03.2022
https://doi.org/10.29050/harranziraat.1025087

Abstract

In this study mono and dual ovaries, which belonged to female individuals of different plant parasitic nematode species that were obtained from the quince (Cydonia oblonga Mill.) (Rosales: Rosaceae) cultivated areas in Sakarya Province (Turkey), were classified. The total number of 109 and 121 female nematodes, which were taken from the soil, were used in 2016, July and 2017, July, respectively. Overall body length (L), spear length (Stylet) and tail/distance from vulva to anus (T/VA) parameters belonged to these nematodes were measured and examined. The mono and dual ovary groups were distinguished by using the Linear Discriminate Function (LDF) method (Fisher’s method) and Artificial Neural Networks (ANNs) approach taking correlation between those parameters into consideration. The pair of parameters L and (T/VA) had higher accuracy percentage (as 97% for LDF method and 100% for ANNs approach) than the pair of parameters L and Stylet (as 91% for LDF method and 97% for ANNs approach) for the classification using 2017, July data set. The second approach was more successful than the first method. This research is the first study that was used these method and approach together at the nematology study area in Turkey and the World. The taxonomical studies may be improved using different statistical methods and artificial neural networks approaches together at the nematology.

Supporting Institution

-

Project Number

-

Thanks

The authors would like to thank Prof. Dr. Gündüz Horasan, Academical Staff, Sakarya University, Engineering Faculty, Geophysical Engineering Department, Sakarya, Turkey, for her encouraging motivation during the preparation of this study.

References

  • Akal, M., Gökçe, B., Çelik, Ş. (2020). A survey study of quince producers in Geyve country. Sakarya Üniversitesi İşletme Enstitüsü Dergisi, 2(2), 41-49.
  • Akintayo, A., Tylka, G. L., Singh, A. K., Ganapathysubramanian, B., Singh, A., Sarkar, S. (2018). A deep learning framework to discern and count microscopic nematode eggs. Nature Scientific Reports, 8, 9145.
  • Akyüz, İ. (2019). Future projection and the sales of industrial wood in Turkey: artificial neural networks. Turkish Journal of Agriculture and Forestry, 43, 368-377.
  • Altay, O., Özgen, I. (2021). Predicting the LD50 values of two different vinegars whose insecticidal effect was determined by the spraying method against Tribolium confusum Jacquelin du val (Coleoptera: Tenebrionidae) using different artificial neural networks models. Zoological and Entomological Letters, 1(2), 39-47.
  • Aragon, D., Landa, R., Saire, L. (2019). Neural-network based algorithm oriented to identifying the damage degree caused by the Meloidogyne incognita nematode in digital Images of Vegetable Roots. Congreso Internacional de Innovación y Tendencias en Ingenieria (CONIITI), (pp. 1-6). Bogota, Colombia.
  • Aygün, A. (2018). Türkiye Ayva üretim potansiyeli. Bahçe, 47, 45–49.
  • Badawy, A., Gamal, M., Farid, W., Soliman, M. S. (2019). Decontamination of earthquake catalog from quarry blast events in northern Egypt. Journal of Seismolo, 23, 1357–1372.
  • Bogale, M., Baniya, A., Di Gennaro, P. (2020). Nematode identification techniques and recent advances. Plants, 9, 1260.
  • Bolat, İ., İkinci, A. (2015). Eşme Ayva (Cydonia oblonga Miller) Çeşidinin GAP Bölgesindeki Performansı. J.Agric. Fac. HR.U., 19(1): 16-23.
  • Ceydilek, N., Horasan, G. (2019). Manisa ve çevresinde deprem ve patlatma verilerinin ayırt edilmesi. Türk Deprem Araştırma Dergisi, 1(1), 26-47.
  • Charrier, C., Lebru, G., Lezoray, O. (2007). Selection of features by a machine learning expert to design a color image quality metrics. Proceedings of the 3rd International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), (pp. 113-119), Scottsdale, Arizona, USA.
  • Çayakan, Ç. (2012). Yapay sinir ağları yöntemiyle sıvılaşma iyileştirmesi için kumlarda uygulanacak kısmi doygunluk tahmini (Yayımlanmamış yüksek lisans tezi). Istanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Çetin, M., Uğur, A., Bayzan, Ş. (2006). İleri beslemeli yapay sinir ağlarında Backpropagation algoritmasının sezgisel yaklaşımı. Procedings of the IV. Bilgelik ve Akademik Bilişim Sempozyumu, (pp. 190-197), 25-29 Nisan 2006, Denizli, Turkey.
  • De Man, J. G. Die. (1880). Die einheimischen, frei in der reinen Erde und im süßen Wasser lebenden Nematoden. Vorläufiger Bericht und deskriptiv-systematischer Theil. Tijdschrift der Nederlandsche Dierkundige Vereeniging, 5, 1-104.
  • Deniz, P. (2010). Deprem ve patlatma verilerinin birbirinden ayırt edilmesi (Yayımlanmamış yüksek lisans tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • De Oliveira, C. M. G., Monteiro, A. R., Blok, V. C. (2011). Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. Tropical Plant Pathology, 36(2), 065-073.
  • Dowla, F., Taylor, S. R., Anderson, R. W. (1990). Seismic discrimination with artificial neural networks: Preliminary results with regional spectral data. Bulletin of the Seismological Society of America, 80(5), 1346-1373.
  • Eisenback, J. D., Hunt, D. J. (2009). General Morphology. In R. N. Perry, M. Moens, J. L. Starr (Eds.), Root Knot Nematodes: (18–54 pages). Wallingford: CABI.
  • Erdal, F., Durmuş, F., Kepenekçi, İ., Ökten, M. E. (2001). Türkiye’de tahıl baklagil endüstri bitkileri sebze meyve bağ ve turunçgil alanlarında saptanan Tylenchida (Nematoda) türlerinin ilk listesi. Turkish Journal of Entomology, 25, 49-64.
  • FAOSTAT, (2021). Production data of FAOSTAT. Retrieved from: http://faostat3.fao.org/home/en/
  • Ferrèe TC, Marcotte BA, Lockery SR. (1996). Neural network models of chemotaxis in the nematode Caenorhabditis elegans. Proceedings of the Advances in Neural Information Processing Systems 9 NIPS, (pp. 55-61), (December, 3rd 1996), Denver, USA.
  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Human Genetics, 7(2), 179-188.
  • Gençer, S. (2011). Tokat ekolojisinde yetiştirilen “Eşme” ve “Limon” ayva [Cydonia vulgaris L.] çeşitlerinin fenolojik, morfolojik ve pomolojik özellikleri (Yayımlanmamış yüksek lisans tezi). Gaziosmanpaşa Üniversitesi Fen Bilimleri Üniversitesi, Tokat.
  • Golhani, K., Balasundram, S. K., Vadamalai, G., Pradhan, B. (2018). A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture, 5, 354–371.
  • Gradshteyn, I. S., Ryzhik, I. M. (2007). Table of integrals, series, and products. Amsterdam: Academic Press.
  • Gülbağ, A. (2006). Yapay sinir ağı ve bulanık mantık tabanlı algoritmalar ile uçucu organik bileşiklerin miktarsal tayini (Yayımlanmamış doktora tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Gülbağ, A.,  Temurtaş, F. (2007). A study on transient and steady state sensor data for identification of individual gas concentrations in their gas mixtures, Sensors and Actuators B: Chemical, 121(20), 590-599.
  • Horasan, G., Boztepe-Güney, A., Küsmezer, A., Bekler, F., Öğütçü, Z. (2006). İstanbul ve civarındaki deprem ve patlatma verilerinin birbirinden ayırt edilmesi ve kataloglanması. Proje Sonuç Raporu, Proje No: 05T202, Boğaziçi Üniversitesi Araştırma Fonu, Istanbul.
  • Horasan, G., Boztepe-Güney, A., Küsmezer, A., Bekler, F., Öğütçü, Z., Musaoğlu, N. (2009). Contamination of seismicity catalog S by quarry blasts: An example from Istanbul and its vicinity, northwestern Turkey, Journal of Asian Earth Sciences, 34, 90–99.
  • James, G., Witten, D., Hastie, T., Tibshirani, R. (2017). An introduction to statistical learning with application. New York: Printing Edition, Springer Publication.
  • Kaftan, I., Şalk, M., Şenol, Y. (2017). Processing of earthquake catalog data of Western Turkey with artificial neural networks and adaptive neuro-fuzzy inference system. Arabian Geophysical Geosciences, 10, 243.
  • Kareem, K.H., Ahmed, N. H., Gürkan, T., Akbay, N. G., Salai, S. A. F.,  Çetintaş, R. (2017). Diagnosis of Nematode Populations Found in Chard, Barley and Onion Grown in North of Iraq and South of Turkey. KSU J. Nat. Sci., 20(1), 28-34.
  • Karssen, G.,  van Aelst, A. C. (2001). Root-knot nematode perineal pattern development: A reconsideration. Nematology, 3, 95–111.
  • Kartal, Ö. F. (2010). Trabzon ve çevresindeki deprem ve patlatma verilerinin birbirinden ayırt edilmesi (Yayımlanmamış yüksek lisans tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Kekovalı, K., Kalafat, D., Deniz, P., Kara, M., Yılmazer, M., Küsmezer, A., Altuncu, S., Çomoğlu, M., Kılıç, K. (2010). Detection of potential mining and quarry areas in Turkey using seismic catalog. 19th International Geophysics Congress and Exhibition, 23-26 November 2010, Ankara, Turkey.
  • Kekovalı, K., Kalafat, D., Deniz, P. (2012). Spectral discrimination between mining blasts and natural earthquakes: Application to the vicinity of Tunçbilek mining area, Western Turkey. International Journal Physical Sciences, 7(35), 5339-5352.
  • Kepenekçi, İ. (2014). Plant parasitic nematodes (Tylenchida: Nematoda) in Turkey. Pakistan Journal of Nematology, 32(1), 11-31.
  • Kermani, B. G., Schiffman, S. S., Nagle, H. G. (2005). Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Science Direct, Sensors and Actuators B: Chemical, 110(1),13-22.
  • Kundu, A., Bhadauria, Y. S., Roy, F. (2012). Discrimination between earthquakes and chemical explosions using artificial neural networks. Scientific Information Resource Division, BHABHA Atomic Research Centre Technical Report BARC/2012/E/004, Mumbai.
  • Küyük, H. S., Yıldırım, E., Horasan, G. Doğan E. (2009). Deprem ve taş ocağı patlatma verilerinin tepki yüzeyi, çok değişkenli regresyon ve öğrenmeli vektör niceleme yöntemleri ile incelenmesi. International Earthquake Symposium Sakarya, (pp. 1-10), 3-5 October 2009, Kocaeli, Turkey.
  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quartet Applied Mathematics, 2, 164-168.
  • Li, M., Deng, X., Wang, J., Chen, Q., Tang, Y. (2016). Modeling the thermotaxis behavior of C. elegans based on the artificial neural network. Bioengineered, 7(4), 53-260.
  • MATLAB, (2011). Release, The Neural Network toolbox The MathWorks, Increments, Natick Massachusetts, United States.
  • Marquardt, D. W. (1963). An algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441.
  • Monteiro, R. L. S., Carneiro, T. K. G., Fontoura, J. R. A., Silva, V., Moret, M. A.,  De Barros, P. H. B. (2016). A model for improving the learning curves of artificial neural networks. PLOS One, 11(2), e0149874.
  • Muminjanov, H.,  Karagöz, A. (2019). Türkiye’nin Biyoçeşitliliği: Genetik Kaynakların Sürdürülebilir Tarım ve Gıda Sistemlerine Katkısı. 1st ed. Ankara: FAO press.
  • Öğütçü, Z., Horasan, G., Kalafat, D. (2010). Investigation of microseismic activity sources in Konya and its vicinity, central Turkey. Natural Hazards, 58(1), 497-509.
  • Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning Internal Representations by Error Propagation. In D. E. Rumelhart, J. L. Mc Clelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition (318-362 pages). Cambridge, Massachusetts: 1. MIT Press.
  • Saberi-Bosari, S., Flores, K. B., San-Miguel, A. (2020). Deep learning-enabled phenotyping reveals distinct patterns of neurodegeneration induced by aging and cold-shock. BMC Biology, 1-25.
  • SPSS (2005). SPSS V.17.0, SPSS for Windows. SPSS Increments (Statistical Package for the Social Sciences).
  • Sundararaju, R., Devi, R. L., Manikemalai, M. (2002). Analysis of best treatment and variety based on nematode population on banana using artificial neural networks. Indian J. Nematology, 32(1), 78-101.
  • Tan, A. (2021). Türkiye’nin farklı bölgelerinde deprem ve patlatma verilerinin ayırt edilmesi (Yayımlanmamış doktora tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Tan, A., Horasan, G., Kalafat, D., Gülbağ, A. (2021a). Discrimination of earthquakes and quarries in Kula District Manisa, Turkey) and its vicinity by using linear discriminate function method and artificial neural networks. Bulletin of the Mineral Research and Exploration, 164, 75-92.
  • Tan, A., Horasan, G., Kalafat, D., Gülbağ, A. (2021b). Discrimination of earthquakes and quarries in the Edirne district (Turkey) and its vicinity by using a linear discriminate function method and artificial neural networks. Acta Geophysica, 69(1), 27-17.
  • TUIK, (2021). Production data of TUIK. Retrieved from: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr/
  • Uhlemann, J., Cawley, O., Kakouli-Duarte, T. (2020). Nematode identification using artificial neural networks. 1st International Conference on Deep Learning Theory and Applications, (pp. 13-22), Portugal.
  • Ursino, A., Langer, H., Scarfì, L., Grazia, G. D., Gresta, S. (2001). Discrimination of quarry blasts from tectonic earthquakes in the Iblean platform (Southeastern Sicily). Annali di Geofisica, 44(4), 703-722.
  • Yakut, H., Tabar, E., Zenginerler, Z., Demirci, N., Ertuğral, F. (2013). Measurement of 222 Rn concentration in drinking water in Sakarya, Turkey. Radiation Protection Dosimetry, 157(3), 397–406.
  • Yıldırım, E. (2013). Sismik dalgaların sönüm karakterinden zemin özelliklerinin belirlenerek sınıflandırılması (Yayımlanmamış doktora tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Yıldırım, E., Gülbağ, A., Horasan, G., Doğan, E. (2011). Discrimination of quarry blasts and earthquakes in the vicinity of Istanbul using soft computing techniques. Computers and Geosciences, 37, 1209-1217.
  • Yıldız, V., Gözel, U. (2015). Ödemiş (İzmir) ilçesi sert ve yumuşak çekirdekli meyve fidanlıklarında bulunan bitki paraziti nematod faunası. Türkiye Entomoloji Bülteni, 5(4), 185-194.
  • Yıldız, Ş., Mamay, M. (2012). Şanlıurfa ili nar bahçelerinde bitki paraziti nematodların belirlenmesi. J.Agric. Fac. HR.U., 16(2): 19-23.
  • Yılmaz, Ş., Bayrak, Y., Çınar, H. (2013). Discrimination of earthquakes and quarry blasts in the eastern Black Sea Region of Turkey. Journal of Seismology, 17(2), 721-734.

İki ayırt etme tekniğinin ilk kez uygulanması: Bazı bitki paraziti nematodların ovary tiplerine göre Doğrusal Ayırt Etme Fonksiyonu Yönteminin ve Yapay Sinir Ağları Yaklaşımının kullanımı

Year 2022, , 1 - 14, 25.03.2022
https://doi.org/10.29050/harranziraat.1025087

Abstract

Bu çalışmada Sakarya ilindeki (Türkiye) ayva (Cydonia oblonga Mill.) (Rosales: Rosaceae) ekiliş alanlarından elde edilen farklı bitki paraziti nematod türlerinin dişi bireylerine ait olan tek ve çift ovarileri sınıflandırılmıştır. Sırasıyla, 2016 Temmuz ve 2017 Temmuz’ da topraktan alınan toplam 109 ve 121 adet dişi nematod kullanılmıştır. Bu nematodlara ait olan tüm vücut uzunluğu (L), stylet uzunluğu (Stylet) ve kuyruk/vulvadan anüse olan mesafe (T/VA) parametreleri ölçülmüş ve incelenmiştir. Tek ve çift ovary grupları, bu parametreler arasındaki ilişki dikkate alınarak Doğrusal Ayırt Etme Fonksiyonu Yöntemi (Fisher Yöntemi) ve Yapay Sinir Ağları Yaklaşımı kullanılarak ayırt edilmiştir. Temmuz 2017 veri seti kullanılarak yapılan sınıflandırmada L ve (T/VA) parametre ikilisi (LDF yöntemi için %97 ve YSA yaklaşımı için %100 olarak), L ve Stylet parametre ikilisinden (LDF yöntemi için %91 ve YSA yaklaşımı için %97 olarak) daha yüksek doğruluk yüzdesine sahiptir. İkinci yaklaşım, birinci yöntemden daha başarılıdır. Bu araştırma Türkiye’de ve Dünya’daki nematoloji çalışma alanında bu yöntemin ve yaklaşımın birlikte kullanıldığı ilk çalışmadır. Taksonomi çalışmaları nematolojide farklı istatistiksel yöntemler ve yapay sinir ağları yaklaşımları birlikte kullanılarak geliştirilebilir.

Project Number

-

References

  • Akal, M., Gökçe, B., Çelik, Ş. (2020). A survey study of quince producers in Geyve country. Sakarya Üniversitesi İşletme Enstitüsü Dergisi, 2(2), 41-49.
  • Akintayo, A., Tylka, G. L., Singh, A. K., Ganapathysubramanian, B., Singh, A., Sarkar, S. (2018). A deep learning framework to discern and count microscopic nematode eggs. Nature Scientific Reports, 8, 9145.
  • Akyüz, İ. (2019). Future projection and the sales of industrial wood in Turkey: artificial neural networks. Turkish Journal of Agriculture and Forestry, 43, 368-377.
  • Altay, O., Özgen, I. (2021). Predicting the LD50 values of two different vinegars whose insecticidal effect was determined by the spraying method against Tribolium confusum Jacquelin du val (Coleoptera: Tenebrionidae) using different artificial neural networks models. Zoological and Entomological Letters, 1(2), 39-47.
  • Aragon, D., Landa, R., Saire, L. (2019). Neural-network based algorithm oriented to identifying the damage degree caused by the Meloidogyne incognita nematode in digital Images of Vegetable Roots. Congreso Internacional de Innovación y Tendencias en Ingenieria (CONIITI), (pp. 1-6). Bogota, Colombia.
  • Aygün, A. (2018). Türkiye Ayva üretim potansiyeli. Bahçe, 47, 45–49.
  • Badawy, A., Gamal, M., Farid, W., Soliman, M. S. (2019). Decontamination of earthquake catalog from quarry blast events in northern Egypt. Journal of Seismolo, 23, 1357–1372.
  • Bogale, M., Baniya, A., Di Gennaro, P. (2020). Nematode identification techniques and recent advances. Plants, 9, 1260.
  • Bolat, İ., İkinci, A. (2015). Eşme Ayva (Cydonia oblonga Miller) Çeşidinin GAP Bölgesindeki Performansı. J.Agric. Fac. HR.U., 19(1): 16-23.
  • Ceydilek, N., Horasan, G. (2019). Manisa ve çevresinde deprem ve patlatma verilerinin ayırt edilmesi. Türk Deprem Araştırma Dergisi, 1(1), 26-47.
  • Charrier, C., Lebru, G., Lezoray, O. (2007). Selection of features by a machine learning expert to design a color image quality metrics. Proceedings of the 3rd International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), (pp. 113-119), Scottsdale, Arizona, USA.
  • Çayakan, Ç. (2012). Yapay sinir ağları yöntemiyle sıvılaşma iyileştirmesi için kumlarda uygulanacak kısmi doygunluk tahmini (Yayımlanmamış yüksek lisans tezi). Istanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Çetin, M., Uğur, A., Bayzan, Ş. (2006). İleri beslemeli yapay sinir ağlarında Backpropagation algoritmasının sezgisel yaklaşımı. Procedings of the IV. Bilgelik ve Akademik Bilişim Sempozyumu, (pp. 190-197), 25-29 Nisan 2006, Denizli, Turkey.
  • De Man, J. G. Die. (1880). Die einheimischen, frei in der reinen Erde und im süßen Wasser lebenden Nematoden. Vorläufiger Bericht und deskriptiv-systematischer Theil. Tijdschrift der Nederlandsche Dierkundige Vereeniging, 5, 1-104.
  • Deniz, P. (2010). Deprem ve patlatma verilerinin birbirinden ayırt edilmesi (Yayımlanmamış yüksek lisans tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • De Oliveira, C. M. G., Monteiro, A. R., Blok, V. C. (2011). Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. Tropical Plant Pathology, 36(2), 065-073.
  • Dowla, F., Taylor, S. R., Anderson, R. W. (1990). Seismic discrimination with artificial neural networks: Preliminary results with regional spectral data. Bulletin of the Seismological Society of America, 80(5), 1346-1373.
  • Eisenback, J. D., Hunt, D. J. (2009). General Morphology. In R. N. Perry, M. Moens, J. L. Starr (Eds.), Root Knot Nematodes: (18–54 pages). Wallingford: CABI.
  • Erdal, F., Durmuş, F., Kepenekçi, İ., Ökten, M. E. (2001). Türkiye’de tahıl baklagil endüstri bitkileri sebze meyve bağ ve turunçgil alanlarında saptanan Tylenchida (Nematoda) türlerinin ilk listesi. Turkish Journal of Entomology, 25, 49-64.
  • FAOSTAT, (2021). Production data of FAOSTAT. Retrieved from: http://faostat3.fao.org/home/en/
  • Ferrèe TC, Marcotte BA, Lockery SR. (1996). Neural network models of chemotaxis in the nematode Caenorhabditis elegans. Proceedings of the Advances in Neural Information Processing Systems 9 NIPS, (pp. 55-61), (December, 3rd 1996), Denver, USA.
  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Human Genetics, 7(2), 179-188.
  • Gençer, S. (2011). Tokat ekolojisinde yetiştirilen “Eşme” ve “Limon” ayva [Cydonia vulgaris L.] çeşitlerinin fenolojik, morfolojik ve pomolojik özellikleri (Yayımlanmamış yüksek lisans tezi). Gaziosmanpaşa Üniversitesi Fen Bilimleri Üniversitesi, Tokat.
  • Golhani, K., Balasundram, S. K., Vadamalai, G., Pradhan, B. (2018). A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture, 5, 354–371.
  • Gradshteyn, I. S., Ryzhik, I. M. (2007). Table of integrals, series, and products. Amsterdam: Academic Press.
  • Gülbağ, A. (2006). Yapay sinir ağı ve bulanık mantık tabanlı algoritmalar ile uçucu organik bileşiklerin miktarsal tayini (Yayımlanmamış doktora tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Gülbağ, A.,  Temurtaş, F. (2007). A study on transient and steady state sensor data for identification of individual gas concentrations in their gas mixtures, Sensors and Actuators B: Chemical, 121(20), 590-599.
  • Horasan, G., Boztepe-Güney, A., Küsmezer, A., Bekler, F., Öğütçü, Z. (2006). İstanbul ve civarındaki deprem ve patlatma verilerinin birbirinden ayırt edilmesi ve kataloglanması. Proje Sonuç Raporu, Proje No: 05T202, Boğaziçi Üniversitesi Araştırma Fonu, Istanbul.
  • Horasan, G., Boztepe-Güney, A., Küsmezer, A., Bekler, F., Öğütçü, Z., Musaoğlu, N. (2009). Contamination of seismicity catalog S by quarry blasts: An example from Istanbul and its vicinity, northwestern Turkey, Journal of Asian Earth Sciences, 34, 90–99.
  • James, G., Witten, D., Hastie, T., Tibshirani, R. (2017). An introduction to statistical learning with application. New York: Printing Edition, Springer Publication.
  • Kaftan, I., Şalk, M., Şenol, Y. (2017). Processing of earthquake catalog data of Western Turkey with artificial neural networks and adaptive neuro-fuzzy inference system. Arabian Geophysical Geosciences, 10, 243.
  • Kareem, K.H., Ahmed, N. H., Gürkan, T., Akbay, N. G., Salai, S. A. F.,  Çetintaş, R. (2017). Diagnosis of Nematode Populations Found in Chard, Barley and Onion Grown in North of Iraq and South of Turkey. KSU J. Nat. Sci., 20(1), 28-34.
  • Karssen, G.,  van Aelst, A. C. (2001). Root-knot nematode perineal pattern development: A reconsideration. Nematology, 3, 95–111.
  • Kartal, Ö. F. (2010). Trabzon ve çevresindeki deprem ve patlatma verilerinin birbirinden ayırt edilmesi (Yayımlanmamış yüksek lisans tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Kekovalı, K., Kalafat, D., Deniz, P., Kara, M., Yılmazer, M., Küsmezer, A., Altuncu, S., Çomoğlu, M., Kılıç, K. (2010). Detection of potential mining and quarry areas in Turkey using seismic catalog. 19th International Geophysics Congress and Exhibition, 23-26 November 2010, Ankara, Turkey.
  • Kekovalı, K., Kalafat, D., Deniz, P. (2012). Spectral discrimination between mining blasts and natural earthquakes: Application to the vicinity of Tunçbilek mining area, Western Turkey. International Journal Physical Sciences, 7(35), 5339-5352.
  • Kepenekçi, İ. (2014). Plant parasitic nematodes (Tylenchida: Nematoda) in Turkey. Pakistan Journal of Nematology, 32(1), 11-31.
  • Kermani, B. G., Schiffman, S. S., Nagle, H. G. (2005). Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Science Direct, Sensors and Actuators B: Chemical, 110(1),13-22.
  • Kundu, A., Bhadauria, Y. S., Roy, F. (2012). Discrimination between earthquakes and chemical explosions using artificial neural networks. Scientific Information Resource Division, BHABHA Atomic Research Centre Technical Report BARC/2012/E/004, Mumbai.
  • Küyük, H. S., Yıldırım, E., Horasan, G. Doğan E. (2009). Deprem ve taş ocağı patlatma verilerinin tepki yüzeyi, çok değişkenli regresyon ve öğrenmeli vektör niceleme yöntemleri ile incelenmesi. International Earthquake Symposium Sakarya, (pp. 1-10), 3-5 October 2009, Kocaeli, Turkey.
  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quartet Applied Mathematics, 2, 164-168.
  • Li, M., Deng, X., Wang, J., Chen, Q., Tang, Y. (2016). Modeling the thermotaxis behavior of C. elegans based on the artificial neural network. Bioengineered, 7(4), 53-260.
  • MATLAB, (2011). Release, The Neural Network toolbox The MathWorks, Increments, Natick Massachusetts, United States.
  • Marquardt, D. W. (1963). An algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441.
  • Monteiro, R. L. S., Carneiro, T. K. G., Fontoura, J. R. A., Silva, V., Moret, M. A.,  De Barros, P. H. B. (2016). A model for improving the learning curves of artificial neural networks. PLOS One, 11(2), e0149874.
  • Muminjanov, H.,  Karagöz, A. (2019). Türkiye’nin Biyoçeşitliliği: Genetik Kaynakların Sürdürülebilir Tarım ve Gıda Sistemlerine Katkısı. 1st ed. Ankara: FAO press.
  • Öğütçü, Z., Horasan, G., Kalafat, D. (2010). Investigation of microseismic activity sources in Konya and its vicinity, central Turkey. Natural Hazards, 58(1), 497-509.
  • Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning Internal Representations by Error Propagation. In D. E. Rumelhart, J. L. Mc Clelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition (318-362 pages). Cambridge, Massachusetts: 1. MIT Press.
  • Saberi-Bosari, S., Flores, K. B., San-Miguel, A. (2020). Deep learning-enabled phenotyping reveals distinct patterns of neurodegeneration induced by aging and cold-shock. BMC Biology, 1-25.
  • SPSS (2005). SPSS V.17.0, SPSS for Windows. SPSS Increments (Statistical Package for the Social Sciences).
  • Sundararaju, R., Devi, R. L., Manikemalai, M. (2002). Analysis of best treatment and variety based on nematode population on banana using artificial neural networks. Indian J. Nematology, 32(1), 78-101.
  • Tan, A. (2021). Türkiye’nin farklı bölgelerinde deprem ve patlatma verilerinin ayırt edilmesi (Yayımlanmamış doktora tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Tan, A., Horasan, G., Kalafat, D., Gülbağ, A. (2021a). Discrimination of earthquakes and quarries in Kula District Manisa, Turkey) and its vicinity by using linear discriminate function method and artificial neural networks. Bulletin of the Mineral Research and Exploration, 164, 75-92.
  • Tan, A., Horasan, G., Kalafat, D., Gülbağ, A. (2021b). Discrimination of earthquakes and quarries in the Edirne district (Turkey) and its vicinity by using a linear discriminate function method and artificial neural networks. Acta Geophysica, 69(1), 27-17.
  • TUIK, (2021). Production data of TUIK. Retrieved from: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr/
  • Uhlemann, J., Cawley, O., Kakouli-Duarte, T. (2020). Nematode identification using artificial neural networks. 1st International Conference on Deep Learning Theory and Applications, (pp. 13-22), Portugal.
  • Ursino, A., Langer, H., Scarfì, L., Grazia, G. D., Gresta, S. (2001). Discrimination of quarry blasts from tectonic earthquakes in the Iblean platform (Southeastern Sicily). Annali di Geofisica, 44(4), 703-722.
  • Yakut, H., Tabar, E., Zenginerler, Z., Demirci, N., Ertuğral, F. (2013). Measurement of 222 Rn concentration in drinking water in Sakarya, Turkey. Radiation Protection Dosimetry, 157(3), 397–406.
  • Yıldırım, E. (2013). Sismik dalgaların sönüm karakterinden zemin özelliklerinin belirlenerek sınıflandırılması (Yayımlanmamış doktora tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • Yıldırım, E., Gülbağ, A., Horasan, G., Doğan, E. (2011). Discrimination of quarry blasts and earthquakes in the vicinity of Istanbul using soft computing techniques. Computers and Geosciences, 37, 1209-1217.
  • Yıldız, V., Gözel, U. (2015). Ödemiş (İzmir) ilçesi sert ve yumuşak çekirdekli meyve fidanlıklarında bulunan bitki paraziti nematod faunası. Türkiye Entomoloji Bülteni, 5(4), 185-194.
  • Yıldız, Ş., Mamay, M. (2012). Şanlıurfa ili nar bahçelerinde bitki paraziti nematodların belirlenmesi. J.Agric. Fac. HR.U., 16(2): 19-23.
  • Yılmaz, Ş., Bayrak, Y., Çınar, H. (2013). Discrimination of earthquakes and quarry blasts in the eastern Black Sea Region of Turkey. Journal of Seismology, 17(2), 721-734.
There are 63 citations in total.

Details

Primary Language English
Subjects Botany, Agricultural Engineering, Agricultural Engineering (Other), Agricultural, Veterinary and Food Sciences
Journal Section Araştırma Makaleleri
Authors

Ayşe Nur Tan 0000-0001-9092-5768

Aylin Tan 0000-0003-0174-5146

Hilal Susurluk This is me 0000-0002-8329-8855

Project Number -
Publication Date March 25, 2022
Submission Date November 17, 2021
Published in Issue Year 2022

Cite

APA Tan, A. N., Tan, A., & Susurluk, H. (2022). First application of two distinguishment techniques: Using Linear Discriminate Function method and Artificial Neural Networks approach according to the ovary types for some plant parasitic nematodes. Harran Tarım Ve Gıda Bilimleri Dergisi, 26(1), 1-14. https://doi.org/10.29050/harranziraat.1025087

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.