Research Article
BibTex RIS Cite

Determination of drying characteristics of almond dried by hot air drying

Year 2023, , 499 - 514, 27.12.2023
https://doi.org/10.29050/harranziraat.1297716

Abstract

The drying properties of almond samples were studied experimentally in a hot air drier at air temperature range of 45–60°C in in a convective hot-air dryer at an air velocity of 1 m/s-1. The Fick's diffusion model was used to characterize moisture transport from in-shell and in-hull almond samples during the decreasing rate phase, and the effective diffusivity was estimated. The relationship of Arrhenius-type equation was employed to illustrate the temperature-dependent changes in effective diffusion coefficient. In-shell and in-hull almond were found to have activation energies of 30.87 and 28.05 kJ mol-1, respectively. The five models commonly used in the literatüre were fitted to the experimentally collected almond drying data, and non-linear regression analysis was performed to estimate the constants of the five models. The drying model developed by Midilli et al. had the greatest agreement with the experimental data of all the models examined to explain the drying behavior of the almond. The water activity (aw) values of fresh and dried almond samples were evaluated at different ambient air temperatures as shelf life criteria. While the Gibbs free energy (G) rose with an increase in air temperature, the enthalpy (H) and entropy (S) of drying the almond samples decreased with an increase in temperature.

References

  • Aktas, T., & Polat, R. (2007). Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying. Journal of Food Process Engineering, 30(5), 607-624.
  • Alves, N., Arruda-Silva, T. A., Santos, S. B. D., Galle, N. B., Silva, I. D., & da Silva, M. I. (2020). Drying kinetics and thermodynamic properties of ‘baru’almond flours. Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 30-36.
  • Bilim, H. C., & Polat, R. (2008). Splitting and breaking of pistachio nuts with striking and heating. Journal of food process engineering, 31(3), 317-329.
  • Campbell, B. C., Molyneux, R. J., & Schatzki, T. F. (2003). Current research on reducing pre‐and post‐harvest aflatoxin contamination of US almond, pistachio, and walnut. Journal of Toxicology: Toxin Reviews, 22(2-3), 225-266.
  • Celik, F., Balta, M., JAVIDIPOUR, İ., & Dogan, A. (2010). Analysis of oil composition of native almonds from Turkey. Asian Journal of Chemistry, 22(1).
  • Chen, C., Weipeng, Z., Venkitasamy, C., Khir, R., McHugh, T., & Pan, Z. (2020). Walnut structure and its influence on the hydration and drying characteristics. Drying Technology, 38(8), 975-986.
  • Coates, M. (2018). Advanced processing of almonds Dehydration. Final Report.
  • Correa, P.C., Oliveira, G.H.H., Rodrigues, A.P.L., Campos, S.C., Botelho, F.M. (2010). Hygroscopic equilibrium and physical properties evaluation affected by parchment presence of coffee grain. Spanish Journal of Agricultural Research, 8, 694–702.
  • Costa, C. F., Corrêa, P. C., Vanegas, J. D., Baptestini, F. M., Campos, R. C., & Fernandes, L. S. (2016). Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 576-580.
  • Dalgıç, A. C., Pekmez, H., & Belibağlı, K. B. (2012). Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves. Journal of Food Science and Technology, 49, 439-449.
  • Daş, M., Alıç, E., & Akpinar, E. K. (2021). Numerical and experimental analysis of heat and mass transfer in the drying process of the solar drying system. Engineering Science and Technology, an International Journal, 24(1), 236-246.
  • Dhurve, P., Tarafdar, A., & Arora, V. K. (2021). Vibro-fluidized bed drying of pumpkin seeds: assessment of mathematical and artificial neural network models for drying kinetics. Journal of Food Quality, 2021, 1-12.
  • Doymaz, I. (2003). Drying kinetics of white mulberry. Journal of Food Engineering, 61(3), 341-346.
  • EL-Mesery, H. S., Sarpong, F., Xu, W., & Elabd, M. A. (2022). Design of low-energy consumption hybrid dryer: A case study of garlic (Allium sativum) drying process. Case Studies in Thermal Engineering, 33, 101929.
  • Eminoğlu, M. B., Yegül, U., & Sacilik, K. (2019). Drying characteristics of blackberry fruits in a convective hot-air dryer. HortScience, 54(9), 1546-1550.
  • Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349-359.
  • FAO, (2021). Crops and livestock products data. Erişim adresi: https://www.fao.org/faostat/en/#data/QCL (Erişim tarihi: 10.09.2023)
  • Ferreira Junior, W. N., Resende, O., Pinheiro, G. K., Silva, L. C. D. M., Souza, D. G., & Sousa, K. A. D. (2020). Modelagem e propriedades termodinâmicas da secagem de sementes de tamarindo (Tamarindus indica L.). Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 37-43.
  • Fontana, A. J. (2000). Understanding the importance of water activity in food. Cereal foods world, 45(1), 7-10.
  • Fu, M., Qu, Q., Yang, X., & Zhang, X. (2016). Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT-Food Science and Technology, 65, 1126-1132.
  • Gazor, H. R., Bassiri, A. R., & Minaei, S. (2009). Moisture isotherms and heat of desorption of pistachio (Kaleghochi Var.). International Journal of Food Engineering, 5(4).
  • Iglesias, H. A., Chirife, J., & Viollaz, P. (1976). Thermodynamics of water vapour sorption by sugar beet root. International Journal of Food Science & Technology, 11(1), 91-101.
  • Jia, C., Wang, L., Guo, W., & Liu, C. (2016). Effect of swing temperature and alternating airflow on drying uniformity in deep-bed wheat drying. Applied Thermal Engineering, 106, 774-783.
  • Kayran, S., & Doymaz, İ. (2021). Drying of Cataloglu apricots: The effect of sodium metabisulfite solution on drying kinetics, diffusion coefficient, and color parameters. International Journal of Fruit Science, 21(1), 270-283.
  • Kester, D. E., Gradziel, T. M., & Grasselly, C. (1991). Almonds (Prunus). Genetic Resources of Temperate Fruit and Nut Crops ,290, 701-760.
  • Khalid, W., Afzal, F., Jha, R. P., Afzal, N., Khalid, M. Z., Shoaib, T., ... & Azhar, A. (2021). Almond (Prunus Dulcis): A Nutritive Dense Dry Fruit, 5(7), 38-46.
  • Kutlu, N., & Aslı, İ. Ş. C. İ. (2016). Kurutma yöntemlerinin kiraz domatesin kurutma karakteristikleri üzerine etkisi ve matematiksel modellemesi. Gıda, 41(4), 197-204.
  • Le Lagadec, M. D. (2009). Kernel brown centres in macadamia: a review. Crop and Pasture Science, 60(12), 1117-1123.
  • Li, R., Kou, X., Hou, L., Ling, B., & Wang, S. (2018). Developing and validating radio frequency pasteurisation processes for almond kernels. Biosystems Engineering, 169, 217-225.
  • Meerasri, J., & Sothornvit, R. (2022). Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes. Case Studies in Thermal Engineering, 33, 101942.
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513.
  • Mokhtarian, M., Tavakolipour, H., & Ashtari, A. K. (2017). Effects of solar drying along with air recycling system on physicochemical and sensory properties of dehydrated pistachio nuts. LWT, 75, 202-209.
  • Monteiro, A. M., Cordeiro, V. P., & Gomes-Laranjo, J. (2003). A amendoeira. Património Nacional Transmontano, Mirandela, 186.
  • Morais, M. F. D., dos Santos, J. R., Santos, M. P. D., Santos, D. D. C., Costa, T. N. D., & Lima, J. B. (2019). Modeling and thermodynamic properties of ‘bacaba’pulp drying. Revista Brasileira de Engenharia Agrícola e Ambiental, 23, 702-708.
  • Moreira, R., Chenlo, F., Torres, M. D., & Vallejo, N. (2008). Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 88(4), 514-521.
  • Moura, H. V., de Figueirêdo, R. M. F., de Melo Queiroz, A. J., de Vilela Silva, E. T., Esmero, J. A. D., & Lisbôa, J. F. (2021). Mathematical modeling and thermodynamic properties of the drying kinetics of trapiá residues. Journal of Food Process Engineering, 44(8), e13768.
  • Nakariyakul, S., & Casasent, D. P. (2011). Classification of internally damaged almond nuts using hyperspectral imagery. Journal of Food Engineering, 103(1), 62-67.
  • Nguyen, T. V. L., Nguyen, M. D., Nguyen, D. C., Bach, L. G., & Lam, T. D. (2019). Model for thin layer drying of lemongrass (Cymbopogon citratus) by hot air. Processes, 7(1), 21.
  • De Oliveira, G. H. H., Corrêa, P. C., Araujo, E. F., Valente, D. S. M., & Botelho, F. M. (2010). Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.). International Journal of Food Science & Technology, 45(3), 546-554.
  • Oliveira, G.H.H., Correa, P.C., Santos, E.S., Treto P.C., Diniz, M.D.M.S. (2011). Evaluation of thermodynamic properties using GAB model to describe the desorption process of cocoa beans. International Journal of Food Science & Technology, 446, 2077-2084.
  • Ong, L. K., Kurniawan, A., Suwandi, A. C., Lin, C. X., Zhao, X. S., & Ismadji, S. (2013). Transesterification of leather tanning waste to biodiesel at supercritical condition: Kinetics and thermodynamics studies. The Journal of Supercritical Fluids, 75, 11-20.
  • Öztekin, Y. B., & Sacılık, K. (2020). Drying characteristics of'Ankara'pear slices. Italian Journal of Food Science, 32(1), 251-264
  • Pearson, T. C. (1998). Detection and treatment of almonds with concealed damage (Doctoral dissertation, University of California, Davis).
  • Polat, A., & Izli, N. (2022). Drying characteristics and quality evaluation of ‘Ankara’pear dried by electrohydrodynamic-hot air (EHD) method. Food Control, 134, 108774.
  • Reis, D. R., Brum, F. B., Soares, E. J., Magalhães, J. R., Silva, F. S., & Porto, A. G. (2018). Drying kinetics of baru flours as function of temperature. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 713-719.
  • Resende, O., De Oliveira, D.E.C., Costa, L.M., Junior, W.N.F. (2017). Thermodynamic Properties of Baru Fruits (Dipteryx alata Vogel). Journal of the Brazilian Association of Agricultural Engineering, 37(4), 739-749.
  • Rogel-Castillo, C., Boulton, R., Opastpongkarn, A., Huang, G., & Mitchell, A. E. (2016). Use of near-infrared spectroscopy and chemometrics for the nondestructive identification of concealed damage in raw almonds (Prunus dulcis). Journal of agricultural and food chemistry, 64(29), 5958-5962.
  • Rogel-Castillo, C., Luo, K., Huang, G., & Mitchell, A. E. (2017). Effect of drying moisture exposed almonds on the development of the quality defect concealed damage. Journal of agricultural and food chemistry, 65(40), 8948-8956.
  • Sacilik, K., Elicin, A.K., Unal, H.G. (2006). Drying kinetics of Üryani plum in a convective hot-air dryer. Journal of Food Engineering, 76(3), 362-368.
  • Sacilik, K., Yurtlu, Y.B., Unal, H.G. (2010). Thin layer convective drying and mathematical modeling of einkorn. Conference Proceeding - 4th International Conference, TAE 2010: Trends in Agricultural Engineering Prague; Czech Republic; 7-10 September 2010, pp. 540-548.
  • Safary, M., & Chayjan, R. A. (2016). Optimization of almond kernels drying under infrared vacuum condition with microwave pretreatment using response surface method and genetic algorithm. Jast, 18, 1543-1556.
  • Sahoo, M., Titikshya, S., Aradwad, P., Kumar, V., & Naik, S. N. (2022). Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Industrial Crops and Products, 176, 114258.
  • Schade, J. E., McCreevy, K., King, A. D., Mackey, B., & Fuller, G. (1975). Incidence of aflatoxin in California almonds. Applied Microbiology, 29, 48–53.
  • Schatzki, T. F., & Ong, M. S. (2001). Dependence of aflatoxin in almonds on the type and amount of insect damage. Journal of Agricultural and Food Chemistry, 49, 4513-419.
  • Silva, D. P. D., dos Santos, S. G., Silva, I. L., Silva, H. W. D., & Rodovalho, R. S. (2020). Drying kinetics and thermodynamic properties of bitter melon (Momordica charantia L.) leaves. Revista Brasileira de Engenharia Agrícola e Ambiental, 24, 707-712.
  • Silva, N.C.B., Santos, S.G.F., Silva, D.P., Silva, I.L, Rodovalho, R.S. (2019). Drying kinetics and thermodynamic properties of boldo (Plectranthus barbatus Andrews) leaves. Científica, 47(1), 01-07.
  • Tarafdar, A., Jothi, N., & Kaur, B. P. (2021). Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa olifera leaves followed by determination of energy consumption and mass transfer parameters. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100306.
  • Taşkın, O., & Nazmi, İzli. (2017). Kızılötesi kurutucu ile hurmanın kurutulması ve matematiksel modellenmesi. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 34(Ek Sayı), 10-15.
  • Teixeira, P. C., Zuniga, A., & Ribeiro, L. (2015). Modelagem matemática e cinética da secagem da amendoa do baru (Dipteryx alata vog). Enciclopédia Biosfera, 11(21), 1309-1324.
  • TÜİK, (2021). Erişim adresi: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Erişim tarihi: 18.07.2023).
  • TÜİK, (2022). Erişim adresi: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-37249 (Erişim tarihi: 18.07.2023).
  • Venkitasamy, C., Zhu, C., Brandl, M. T., Niederholzer, F. J., Zhang, R., McHugh, T. H., & Pan, Z. (2018). Feasibility of using sequential infrared and hot air for almond drying and inactivation of Enterococcus faecium NRRL B-2354. LWT, 95, 123-128.
  • Walton, D. A., Randall, B. W., Le Lagadec, M. D., & Wallace, H. M. (2013). Maintaining high moisture content of macadamia nuts‐in‐shell during storage induces brown centres in raw kernels. Journal of the Science of Food and Agriculture, 93(12), 2953-2958.
  • Wareing, P. W., Nicolaides, L., & Twiddy, D. R. (2000). Nuts and nut products. The microbiological safety and quality of food, 1, 919-940.
  • Yang, J., Bingol, G., Pan, Z., Brandl, M. T., McHugh, T. H., & Wang, H. (2010). Infrared heating for dry-roasting and pasteurization of almonds. Journal of Food Engineering, 101(3), 273-280.
  • Yıldırım, A. (2021). Moisture diffusivity, hardness, gelatinization temperature, and thermodynamic properties of ultrasound assisted soaking process of cowpea. Journal of Food Process Engineering, 44(11), e13863.
  • Yıldırım, N. A., Koyuncu, F., Tekintaş, E., & Yıldırım, A. F. (2008). Fatty acid content and some chemical properties of selected almond (Prunus amygdalus Batsch.) genotypes in Isparta province. Journal of Adnan Menderes University Agricultural Faculty (Turkey).
  • Yurtlu, Y.B. (2011). Drying characteristics of bay laurel (Laurus nobilis L.) fruits in a convective hot-air dryer. African Journal of Biotechnology, 10(47), 9593-9599.
  • Yurtlu, Y.B., Aktaş, M., Dolgun, E.C., Bilim, H.I.C., Sacilik, K. (2022). Drying kinetics and thermodynamic properties of Uzun pistachios dried by convective drying. Journal of Food Processing and Preservation, 46(11), e17035.
  • Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253.

Sıcak havayla kurutulan bademin kurutma karakteristiklerinin belirlenmesi

Year 2023, , 499 - 514, 27.12.2023
https://doi.org/10.29050/harranziraat.1297716

Abstract

Yeşil dış kabuklu ve sert kabuklu badem örneklerinin konvektif sıcak hava kurutucuda 1 m s-1 hava hızında ve 45-60°C hava sıcaklığında kurutma özelliklerinin belirlenmesi amacıyla deneysel bir çalışma yapılmıştır. Azalan hız periyodunda yeşil dış kabuklu ve sert kabuklu badem örneklerinden nem transferi, Fick difüzyon modeli uygulanarak tanımlanmış ve efektif difüzyon katsayıları hesaplanmıştır. Efektif difüzyon katsayısının sıcaklığa olan bağımlılığı Arrhenius tip ilişki ile tanımlanmıştır. Yeşil dış kabuklu ve sert kabuklu badem örneklerinin aktivasyon enerjisi sırasıyla 30.87 ve 28.05 kJ mol-1 olarak bulunmuştur. Örneklerin deneysel kurutma verileri için Page, Logarithmic, Two-term, Approximation of diffusion ve Midilli ve ark. modelleri kullanılmıştır. Test edilen modellerin kuruma hızı sabitleri ve katsayıları doğrusal olmayan regresyon analizi ile belirlenmiştir. Yeşil dış kabuklu ve sert kabuklu badem örneklerinin kuruma karakteristiklerini belirlemek için test edilen beş model arasından Midilli ve ark. kurutma modeli, elde edilen deneysel verilere en iyi uyumu sağlamıştır. Taze ve kurutulmuş badem örneklerinin su aktivitesi (aw) değerleri, raf ömrü kriteri olarak farklı ortam hava sıcaklıklarında değerlendirilmiştir. Yeşil dış kabuklu ve sert kabuklu badem örneklerinin kurutma entalpisi (H) ve entropisi (S) değerleri, hava sıcaklığının artmasıyla azalırken, Gibbs serbest enerjisi (G) hava sıcaklığındaki artışla artmıştır.

Supporting Institution

Ankara Üniversitesi

References

  • Aktas, T., & Polat, R. (2007). Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying. Journal of Food Process Engineering, 30(5), 607-624.
  • Alves, N., Arruda-Silva, T. A., Santos, S. B. D., Galle, N. B., Silva, I. D., & da Silva, M. I. (2020). Drying kinetics and thermodynamic properties of ‘baru’almond flours. Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 30-36.
  • Bilim, H. C., & Polat, R. (2008). Splitting and breaking of pistachio nuts with striking and heating. Journal of food process engineering, 31(3), 317-329.
  • Campbell, B. C., Molyneux, R. J., & Schatzki, T. F. (2003). Current research on reducing pre‐and post‐harvest aflatoxin contamination of US almond, pistachio, and walnut. Journal of Toxicology: Toxin Reviews, 22(2-3), 225-266.
  • Celik, F., Balta, M., JAVIDIPOUR, İ., & Dogan, A. (2010). Analysis of oil composition of native almonds from Turkey. Asian Journal of Chemistry, 22(1).
  • Chen, C., Weipeng, Z., Venkitasamy, C., Khir, R., McHugh, T., & Pan, Z. (2020). Walnut structure and its influence on the hydration and drying characteristics. Drying Technology, 38(8), 975-986.
  • Coates, M. (2018). Advanced processing of almonds Dehydration. Final Report.
  • Correa, P.C., Oliveira, G.H.H., Rodrigues, A.P.L., Campos, S.C., Botelho, F.M. (2010). Hygroscopic equilibrium and physical properties evaluation affected by parchment presence of coffee grain. Spanish Journal of Agricultural Research, 8, 694–702.
  • Costa, C. F., Corrêa, P. C., Vanegas, J. D., Baptestini, F. M., Campos, R. C., & Fernandes, L. S. (2016). Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 576-580.
  • Dalgıç, A. C., Pekmez, H., & Belibağlı, K. B. (2012). Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves. Journal of Food Science and Technology, 49, 439-449.
  • Daş, M., Alıç, E., & Akpinar, E. K. (2021). Numerical and experimental analysis of heat and mass transfer in the drying process of the solar drying system. Engineering Science and Technology, an International Journal, 24(1), 236-246.
  • Dhurve, P., Tarafdar, A., & Arora, V. K. (2021). Vibro-fluidized bed drying of pumpkin seeds: assessment of mathematical and artificial neural network models for drying kinetics. Journal of Food Quality, 2021, 1-12.
  • Doymaz, I. (2003). Drying kinetics of white mulberry. Journal of Food Engineering, 61(3), 341-346.
  • EL-Mesery, H. S., Sarpong, F., Xu, W., & Elabd, M. A. (2022). Design of low-energy consumption hybrid dryer: A case study of garlic (Allium sativum) drying process. Case Studies in Thermal Engineering, 33, 101929.
  • Eminoğlu, M. B., Yegül, U., & Sacilik, K. (2019). Drying characteristics of blackberry fruits in a convective hot-air dryer. HortScience, 54(9), 1546-1550.
  • Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349-359.
  • FAO, (2021). Crops and livestock products data. Erişim adresi: https://www.fao.org/faostat/en/#data/QCL (Erişim tarihi: 10.09.2023)
  • Ferreira Junior, W. N., Resende, O., Pinheiro, G. K., Silva, L. C. D. M., Souza, D. G., & Sousa, K. A. D. (2020). Modelagem e propriedades termodinâmicas da secagem de sementes de tamarindo (Tamarindus indica L.). Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 37-43.
  • Fontana, A. J. (2000). Understanding the importance of water activity in food. Cereal foods world, 45(1), 7-10.
  • Fu, M., Qu, Q., Yang, X., & Zhang, X. (2016). Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT-Food Science and Technology, 65, 1126-1132.
  • Gazor, H. R., Bassiri, A. R., & Minaei, S. (2009). Moisture isotherms and heat of desorption of pistachio (Kaleghochi Var.). International Journal of Food Engineering, 5(4).
  • Iglesias, H. A., Chirife, J., & Viollaz, P. (1976). Thermodynamics of water vapour sorption by sugar beet root. International Journal of Food Science & Technology, 11(1), 91-101.
  • Jia, C., Wang, L., Guo, W., & Liu, C. (2016). Effect of swing temperature and alternating airflow on drying uniformity in deep-bed wheat drying. Applied Thermal Engineering, 106, 774-783.
  • Kayran, S., & Doymaz, İ. (2021). Drying of Cataloglu apricots: The effect of sodium metabisulfite solution on drying kinetics, diffusion coefficient, and color parameters. International Journal of Fruit Science, 21(1), 270-283.
  • Kester, D. E., Gradziel, T. M., & Grasselly, C. (1991). Almonds (Prunus). Genetic Resources of Temperate Fruit and Nut Crops ,290, 701-760.
  • Khalid, W., Afzal, F., Jha, R. P., Afzal, N., Khalid, M. Z., Shoaib, T., ... & Azhar, A. (2021). Almond (Prunus Dulcis): A Nutritive Dense Dry Fruit, 5(7), 38-46.
  • Kutlu, N., & Aslı, İ. Ş. C. İ. (2016). Kurutma yöntemlerinin kiraz domatesin kurutma karakteristikleri üzerine etkisi ve matematiksel modellemesi. Gıda, 41(4), 197-204.
  • Le Lagadec, M. D. (2009). Kernel brown centres in macadamia: a review. Crop and Pasture Science, 60(12), 1117-1123.
  • Li, R., Kou, X., Hou, L., Ling, B., & Wang, S. (2018). Developing and validating radio frequency pasteurisation processes for almond kernels. Biosystems Engineering, 169, 217-225.
  • Meerasri, J., & Sothornvit, R. (2022). Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes. Case Studies in Thermal Engineering, 33, 101942.
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513.
  • Mokhtarian, M., Tavakolipour, H., & Ashtari, A. K. (2017). Effects of solar drying along with air recycling system on physicochemical and sensory properties of dehydrated pistachio nuts. LWT, 75, 202-209.
  • Monteiro, A. M., Cordeiro, V. P., & Gomes-Laranjo, J. (2003). A amendoeira. Património Nacional Transmontano, Mirandela, 186.
  • Morais, M. F. D., dos Santos, J. R., Santos, M. P. D., Santos, D. D. C., Costa, T. N. D., & Lima, J. B. (2019). Modeling and thermodynamic properties of ‘bacaba’pulp drying. Revista Brasileira de Engenharia Agrícola e Ambiental, 23, 702-708.
  • Moreira, R., Chenlo, F., Torres, M. D., & Vallejo, N. (2008). Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 88(4), 514-521.
  • Moura, H. V., de Figueirêdo, R. M. F., de Melo Queiroz, A. J., de Vilela Silva, E. T., Esmero, J. A. D., & Lisbôa, J. F. (2021). Mathematical modeling and thermodynamic properties of the drying kinetics of trapiá residues. Journal of Food Process Engineering, 44(8), e13768.
  • Nakariyakul, S., & Casasent, D. P. (2011). Classification of internally damaged almond nuts using hyperspectral imagery. Journal of Food Engineering, 103(1), 62-67.
  • Nguyen, T. V. L., Nguyen, M. D., Nguyen, D. C., Bach, L. G., & Lam, T. D. (2019). Model for thin layer drying of lemongrass (Cymbopogon citratus) by hot air. Processes, 7(1), 21.
  • De Oliveira, G. H. H., Corrêa, P. C., Araujo, E. F., Valente, D. S. M., & Botelho, F. M. (2010). Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.). International Journal of Food Science & Technology, 45(3), 546-554.
  • Oliveira, G.H.H., Correa, P.C., Santos, E.S., Treto P.C., Diniz, M.D.M.S. (2011). Evaluation of thermodynamic properties using GAB model to describe the desorption process of cocoa beans. International Journal of Food Science & Technology, 446, 2077-2084.
  • Ong, L. K., Kurniawan, A., Suwandi, A. C., Lin, C. X., Zhao, X. S., & Ismadji, S. (2013). Transesterification of leather tanning waste to biodiesel at supercritical condition: Kinetics and thermodynamics studies. The Journal of Supercritical Fluids, 75, 11-20.
  • Öztekin, Y. B., & Sacılık, K. (2020). Drying characteristics of'Ankara'pear slices. Italian Journal of Food Science, 32(1), 251-264
  • Pearson, T. C. (1998). Detection and treatment of almonds with concealed damage (Doctoral dissertation, University of California, Davis).
  • Polat, A., & Izli, N. (2022). Drying characteristics and quality evaluation of ‘Ankara’pear dried by electrohydrodynamic-hot air (EHD) method. Food Control, 134, 108774.
  • Reis, D. R., Brum, F. B., Soares, E. J., Magalhães, J. R., Silva, F. S., & Porto, A. G. (2018). Drying kinetics of baru flours as function of temperature. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 713-719.
  • Resende, O., De Oliveira, D.E.C., Costa, L.M., Junior, W.N.F. (2017). Thermodynamic Properties of Baru Fruits (Dipteryx alata Vogel). Journal of the Brazilian Association of Agricultural Engineering, 37(4), 739-749.
  • Rogel-Castillo, C., Boulton, R., Opastpongkarn, A., Huang, G., & Mitchell, A. E. (2016). Use of near-infrared spectroscopy and chemometrics for the nondestructive identification of concealed damage in raw almonds (Prunus dulcis). Journal of agricultural and food chemistry, 64(29), 5958-5962.
  • Rogel-Castillo, C., Luo, K., Huang, G., & Mitchell, A. E. (2017). Effect of drying moisture exposed almonds on the development of the quality defect concealed damage. Journal of agricultural and food chemistry, 65(40), 8948-8956.
  • Sacilik, K., Elicin, A.K., Unal, H.G. (2006). Drying kinetics of Üryani plum in a convective hot-air dryer. Journal of Food Engineering, 76(3), 362-368.
  • Sacilik, K., Yurtlu, Y.B., Unal, H.G. (2010). Thin layer convective drying and mathematical modeling of einkorn. Conference Proceeding - 4th International Conference, TAE 2010: Trends in Agricultural Engineering Prague; Czech Republic; 7-10 September 2010, pp. 540-548.
  • Safary, M., & Chayjan, R. A. (2016). Optimization of almond kernels drying under infrared vacuum condition with microwave pretreatment using response surface method and genetic algorithm. Jast, 18, 1543-1556.
  • Sahoo, M., Titikshya, S., Aradwad, P., Kumar, V., & Naik, S. N. (2022). Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Industrial Crops and Products, 176, 114258.
  • Schade, J. E., McCreevy, K., King, A. D., Mackey, B., & Fuller, G. (1975). Incidence of aflatoxin in California almonds. Applied Microbiology, 29, 48–53.
  • Schatzki, T. F., & Ong, M. S. (2001). Dependence of aflatoxin in almonds on the type and amount of insect damage. Journal of Agricultural and Food Chemistry, 49, 4513-419.
  • Silva, D. P. D., dos Santos, S. G., Silva, I. L., Silva, H. W. D., & Rodovalho, R. S. (2020). Drying kinetics and thermodynamic properties of bitter melon (Momordica charantia L.) leaves. Revista Brasileira de Engenharia Agrícola e Ambiental, 24, 707-712.
  • Silva, N.C.B., Santos, S.G.F., Silva, D.P., Silva, I.L, Rodovalho, R.S. (2019). Drying kinetics and thermodynamic properties of boldo (Plectranthus barbatus Andrews) leaves. Científica, 47(1), 01-07.
  • Tarafdar, A., Jothi, N., & Kaur, B. P. (2021). Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa olifera leaves followed by determination of energy consumption and mass transfer parameters. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100306.
  • Taşkın, O., & Nazmi, İzli. (2017). Kızılötesi kurutucu ile hurmanın kurutulması ve matematiksel modellenmesi. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 34(Ek Sayı), 10-15.
  • Teixeira, P. C., Zuniga, A., & Ribeiro, L. (2015). Modelagem matemática e cinética da secagem da amendoa do baru (Dipteryx alata vog). Enciclopédia Biosfera, 11(21), 1309-1324.
  • TÜİK, (2021). Erişim adresi: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Erişim tarihi: 18.07.2023).
  • TÜİK, (2022). Erişim adresi: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-37249 (Erişim tarihi: 18.07.2023).
  • Venkitasamy, C., Zhu, C., Brandl, M. T., Niederholzer, F. J., Zhang, R., McHugh, T. H., & Pan, Z. (2018). Feasibility of using sequential infrared and hot air for almond drying and inactivation of Enterococcus faecium NRRL B-2354. LWT, 95, 123-128.
  • Walton, D. A., Randall, B. W., Le Lagadec, M. D., & Wallace, H. M. (2013). Maintaining high moisture content of macadamia nuts‐in‐shell during storage induces brown centres in raw kernels. Journal of the Science of Food and Agriculture, 93(12), 2953-2958.
  • Wareing, P. W., Nicolaides, L., & Twiddy, D. R. (2000). Nuts and nut products. The microbiological safety and quality of food, 1, 919-940.
  • Yang, J., Bingol, G., Pan, Z., Brandl, M. T., McHugh, T. H., & Wang, H. (2010). Infrared heating for dry-roasting and pasteurization of almonds. Journal of Food Engineering, 101(3), 273-280.
  • Yıldırım, A. (2021). Moisture diffusivity, hardness, gelatinization temperature, and thermodynamic properties of ultrasound assisted soaking process of cowpea. Journal of Food Process Engineering, 44(11), e13863.
  • Yıldırım, N. A., Koyuncu, F., Tekintaş, E., & Yıldırım, A. F. (2008). Fatty acid content and some chemical properties of selected almond (Prunus amygdalus Batsch.) genotypes in Isparta province. Journal of Adnan Menderes University Agricultural Faculty (Turkey).
  • Yurtlu, Y.B. (2011). Drying characteristics of bay laurel (Laurus nobilis L.) fruits in a convective hot-air dryer. African Journal of Biotechnology, 10(47), 9593-9599.
  • Yurtlu, Y.B., Aktaş, M., Dolgun, E.C., Bilim, H.I.C., Sacilik, K. (2022). Drying kinetics and thermodynamic properties of Uzun pistachios dried by convective drying. Journal of Food Processing and Preservation, 46(11), e17035.
  • Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253.
There are 70 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering, Agricultural Engineering, Drying Technologies
Journal Section dp
Authors

Gizem Battal 0000-0003-2822-9379

Kamil Saçılık 0000-0001-5353-7328

Early Pub Date December 26, 2023
Publication Date December 27, 2023
Submission Date May 16, 2023
Published in Issue Year 2023

Cite

APA Battal, G., & Saçılık, K. (2023). Sıcak havayla kurutulan bademin kurutma karakteristiklerinin belirlenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(4), 499-514. https://doi.org/10.29050/harranziraat.1297716

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.