Research Article
BibTex RIS Cite

Tane heterojenitesine göre sınıflanan Cabernet-Sauvignon (Vitis vinifera L.) üzüm çeşidi salkımlarının bazı morfolojik özellikleri

Year 2023, , 444 - 457, 27.12.2023
https://doi.org/10.29050/harranziraat.1319416

Abstract

Organik sertifikalı Cabernet-Sauvignon/1103P aşı kombinasyonu ve Konvansiyonel yetiştiriciliğe sahip Cabernet Sauvignon/5BB aşı kombinasyonundaki omcalardan oluşan iki bağda deneme yürütülmüştür. Stres düzeylerine göre Bölünmüş Parseller Deneme Deseninde Ψşö-şafak öncesi yaprak su potansiyeli değerlerine göre <-0.8 MPa ve >-0.8 MPa olan omcalar belirlenmiştir. Bu omcalar ayrıca kıraç arazi-yüzlek toprak ve taban arazi-derin toprak olarak gruplandırılmış ve her arazi-toprak tipinde Kontrol, Stres 1, Stres 2 düzeyi oluşturulmuştur. Hasatta salkımlardaki taneler çaplarına göre 4 gruba ayrılmıştır. Bu gruplar; 10mm-12mm, 12mm-14mm, 14mm-16mm ve 16-18mm çapa sahiptir. Üzümler boyut gruplarına ve stres düzeylerine göre Kontrol (K), Stres 1 (S1> -0.8 MPa) ve Stres 2 (S2 < -0.8 MPa) olarak gruplandırılmış; bu gruplara göre salkımın bazı morfolojik özellikleri incelenmiştir. Salkım eni ve boyu arazi-toprak tipinden fazla etkilenmemiş; salkım ağırlığı, salkım hacmi ve salkımdaki tane sayısı kriterleri stresten etkilenmiştir. Stresin yoğun olduğu Organik Bağ omcalarında Konvansiyonel Bağ omcalarına oranla daha az sayıda salkım olduğu belirlenmiştir. Omcaların salkımlardaki tane sayıları; arazi konumu, su stresi seviyeleri ve tane boyutlarına göre önemli ölçüde farklılıklar göstermiştir. Sonuç olarak, Tekirdağ ilinde Cabernet-Sauvignon üzüm çeşidinden yüksek kalitede üzüm elde etmek için; olgunluk döneminde Ψşö -0,8MPa’a kadar düşebildiği kıraç arazi-yüzlek toprak koşullarında ve 10mm-12mm boyuta sahip tanelerin kullanılmasının uygun olacağı düşünülmüştür.

Thanks

Bağlarında deneme yürütmemizi sağlayan Chateau Nuzun ve Umurbey Vineyards'a teşekkür ederiz.

References

  • Bahar, E., & Öner, H. (2016). Cabernet-Sauvignon üzüm çeşidinde farklı kültürel işlemlerin verim özellikleri üzerine etkileri. Bahçe, 45 (Özel Sayı): 591-598.
  • Bahar, E., Korkutal, I., & Kabatas, I. E. (2017). Sangiovese üzüm çeşidinde dönemsel yaprak su potansiyeli (ψyaprak) değişimleri ve salkım seyreltme uygulamalarına bağlı olarak düzenlenen sulama oranlarının verim, sürgün ve gelişme özellikleri üzerine etkileri. Mediterranean Agricultural Sciences, 30 (2): 85-90.
  • Bellvert, J., Mata, M., Vallverdú, X., Paris, C., & Marsal, J. (2021). Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precision Agriculture, 22: 319-341. DOI: https://doi.org/10.1007/s11119-020-09718-2
  • Bota, J., Tomás, M., Flexas, J., Medrano, H., & Escalona, J.M., 2016. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agricultural Water Management, 164, 91-99. http://dx.doi.org/10.1016/j.agwat.2015.07.016.
  • Calderon-Orellana, A., Bambach, N., Aburto, F., & Calderón, M. (2019). Water deficit synchronizes berry color development in Crimson Seedless table grapes. American Journal of Enology and Viticulture, 1: 60-67. DOI: http://dx.doi.org/10.5344/ajev.2018.17070.
  • Carbonneau, A. (1998). Aspects Qualitatifs. 258-276. In: Tiercelin, JR (Ed.), Traite d’irrigation. Tec. & Doc. Lavosier Ed., Paris, p.1011.
  • Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., Rodrigues, M. L., & Lopes, C. M., (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105, 661-676. DOI: http://dx.doi.org/10.1093/aob/mcq030.
  • Chen, W. K., He, F., Wang, Y. X., Liu, X., Duan, C.Q., & Wang, J. (2018). Influences of berry size on fruit composition and wine quality of Vitis vinifera L. cv. Cabernet Sauvignon grapes. South African Journal for Enology and Viticulture, 39. DOI: http://dx.doi.org/10.21548/39-1-2439.
  • Cheng, G., Yan-Nan, H., Yue, T., Wang, J., & Zhang, Z. (2014). Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules, 19 (9): 13683-13703. DOI: http://dx.doi.org/10.3390/molecules190913683
  • Cogato, A., Jewan, S. Y. Y., Wu, L., Marinello, F., Meggio, F., Sivilotti, P., Sozzi, M., & Pagay, V. (2022). Water stress impacts on grapevines (Vitis vinifera L.) in hot environments: physiological and spectral responses. Agronomy, 12 (8): 1819. DOI: http://dx.doi.org/10.3390/agronomy 12081819
  • Cole, J., & Pagay, V. (2015). Usefullness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Scientia Horticulturae, 191: 10-14. DOI: http://dx.doi.org/10.1016/j.scienta.2015.04.034
  • Coombe, B. G. (1995). Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1: 104-110. DOI: http://dx.doi.org/10.1111/j.1755-0238.1995.tb00086.x.
  • Deloire, A., & Heyns, D. (2011). The leaf water potentials: Principles, method and thresholds. WineLand Technical Year Book, September 2011, 128-131.
  • Deloire, A., & Rogiers, S. (2015). Monitoring vine water status Part 2: A detailed example using the pressure chamber. Grapevine Management Guide 2014-15. NSW DPI Management Guide. 16-19.
  • Deloire A., Pellegrino A., & Rogiers S. (2020). A few words on grapevine leaf water potential. Ives Technical Reviews Vine & Wine. DOI: http://dx.doi.org/10.20870/IVES-TR.2020.3620
  • Deloire, A., & Pellegrino, A. (2021). Review of vine water deficit. What levers for the vineyard in the short and medium term? Ives Technical Reviews Vine and Wine. DOI: http://dx.doi.org/10.20870/IVES-TR.2021.4842
  • Echeverria, G., Ferrer, M., & Miras-Avalos, J. (2017). Effects of soil type on vineyard performance and berry composition in the Río de la Plata Coast (Uruguay). OENO One, 51. DOI: http://dx.doi.org/10.20870/oeno-one.2017.51.2.1829.
  • Ferrandino, A., & Lovisolo, C. (2014). Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environmental and Experimental Botany, 103: 138-147. DOI: http://dx.doi.org/10.1016/j.envexpbot.2013.10.012
  • Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant Journal, 61: 1041-1052. DOI: http://dx.doi.org/10.1111/j.1365-313X.2010.04124.x
  • Intrigliolo, D.S., Pérez, D., Risco, D., Yeves, A., & Castel, J. R. (2012). Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science, 30: 339-349. DOI: http://dx.doi.org/10.1007/s00271-012-0354-0.
  • Kontoudakis, N., Esteruelas, M., Fort, F., Canals, J. M., De Freitas, V., & Zamora, F. (2011). Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 124 (3): 767-774. DOI: http://dx.doi.org/10.1016/j.foodchem.2010.06.093.
  • Korkutal, I., Bahar, E., & Carbonneau, A. (2022). How Grenache N (Vitis vinifera L.) physiology responses drought stress in early developmental stages? Chapters on Viticulture (pp. 25-44). In: Kunter, B. ve Keskin, N. (Ed.). İksad Publishing House, Ankara.
  • Korkutal, I., Bahar, E., & Uzun, M. (2023). Effect of berry heterogeneity and water deficit in organic and conventional vineyards on grape berry characteristics. Turkish Jounal of Agricultural and Natural Sciences, 10 (3): 510-519.
  • Levin, A. D., Deloire, A., & Gambetta, G. A. (2020). Does water deficit negatively impact wine grape yield over the long term? IVES Technical Reviews. DOI: https://doi.org/10.20870/IVES-TR.2019.4029
  • Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier, U., & Weber, E. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1: 100-110.
  • Matthews, M. A., & Anderson, M. M. (1988). Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. American Journal of Enology and Viticulture, 39: 313-320.
  • Melo, M. S., Schultz, H. R., Volschenk, C., & Hunter, J. J. (2015). Berry size variation of Vitis vinifera L. cv. Syrah: Morphological dimensions, berry composition and wine quality. South African Journal for Enology and Viticulture, 36: 1-10. DOI: http://dx.doi.org/10.21548/36-1-931
  • Munitz, S., Netzer, Y., & Schwartz, A. (2016). Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Australian Journal of Grape and Wine Research, 23: 87-94. DOI: http://dx.doi.org/10.1111/ajgw.12241
  • Nadal, M. (2010). Phenolic Maturity in Red Grapes. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. DOI: http://dx.doi.org/10.1007/978-90-481-9283-0_28
  • OIV (2009). 2nd Edition of the OIV descriptor list for grape varieties and Vitis species. 178 p.
  • Ojeda, H., Deloire, A., & Carbonneau, A. (2001). Influence of water deficits on grape berry growth. Vitis, 40: 141-145
  • Poni, S., Gatti, M., Palliotti, A., Dai, Z., Duchêne, E., Truong, T. T., Ferrara, G., Matarrese, A. M. S., Gallotta, A., Bellincontro, A., Mencarelli, F., & Tombesi, S. (2018). Grapevine quality: A multiple choice issue. Scientia Horticulturae, 234: 445-462. DOI: http://dx.doi.org/10.1016/j.scienta.2017.12.035
  • Roux, S., Gaudin, R., & Tisseyre, B. (2019). Why does spatial extrapolation of the vine water status make sense? Insights from a modelling approach. Agricultural Water Management, 217: 255–264. DOI: http://dx.doi.org/10.1016/j.agwat.2019.03.013
  • Seguin, G., (1986). Terroirs and pedology of wine growing. Experientia, 42: 861-873. DOI: http://dx.doi.org/10.1007/BF01941763
  • Shellie, K. C., & King, B. A. (2020). Application of a daily crop water stress index to deficit irrigate Malbec grapevine under semi-arid conditions. Agriculture, 10 (11): 492. DOI: http://dx.doi.org/10.3390/agriculture10110492
  • Suter, B., Triolo, R., Pernet, D., Dai, Z. & Van Leeuwen, C. (2019). Modeling stem water potential by separating the effects of soil water availability and climatic conditions on water status in grapevine (Vitis vinifera L.). Frontiers in Plant Science, 10: 1485. DOI: http://dx.doi.org/10.3389/fpls.2019.01485
  • TMM 2018. Tekirdağ Meteoroloji Müdürlüğü kayıtları.
  • Van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., & Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55 (3): 207-217. DOI: http://dx.doi.org/10.5344/ajev.2004.55.3.207
  • Wenter, A., Zanotelli, D., Montagnani, L., Tagliavini, M., & Andreotti, C. (2018). Effect of different timings and intensities of water stress on yield and berry composition of grapevine (cv. Sauvignon blanc) in a mountain environment. Scientia Horticulturae, 236: 137-145. DOI: http://dx.doi.org/10.1016/j.scienta.2018.03.037
  • Zombardo, A., Mica, E., Puccioni, S., Perria, R., Valentini, P., Mattii, G.B., Cattivelli, L., & Storchi, P. (2020).Berry quality of grapevine under water stress as affected by rootstock–scion interactions through gene expression regulation. Agronomy, 10 (5): 680. DOI: http://dx.doi.org/10.3390/agronomy10050680
  • Zsofi, Zs., Sz. Villango, Z., Palfi, E., Toth, E., & Balo, B. (2014). Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under postveraison water deficit. Scientia Horticulturae, 172: 176–182. DOI: http://dx.doi.org/10.1016/j.scienta.2014.04.008
  • Zufferey, V., Verdenal, T., Dienes, A., Belcher, S., Lorenzini, F., Koestel, C., Gindro, K., Spangenberg, J. E., Viret, O., & Spring, J. L. (2018). The impact of plant water status on the gas exchange, berry composition and wine quality of Chasselas grapes in Switzerland: Impacts of water stress on grapevine physiology. OENO One, 52 (4). DOI: http://dx.doi.org/10.20870/oeno-one.2018.52.4.2181

Morphological characteristics of cluster of cv. Cabernet-Sauvignon (Vitis vinifera L.) grape variety classified according to berry heterogeneity

Year 2023, , 444 - 457, 27.12.2023
https://doi.org/10.29050/harranziraat.1319416

Abstract

Two experiments were conducted in two vineyards consisting of vines from the organic-certified Cabernet-Sauvignon/1103P graft combination and the conventional cultivation Cabernet Sauvignon/5BB graft combination. Vines were identified based on pre-dawn leaf water potential values according to stress levels in a Split-Plot Experimental Design. Grapevines were classified as <-0.8 MPa and >-0.8 MPa. These vines were further grouped into dryland-shallow soil and bottomland-deep soil areas, and for each area-soil type, Control, Stress 1, and Stress 2 levels were created. At harvest, the berries were divided into four groups based on their diameter: 10mm-12mm, 12mm-14mm, 14mm-16mm, and 16mm-18mm (In some measurements, no berries belonging to the 16-18mm category could be found). The grapes were grouped as Control, Stress 1 (S1 > -0.8 MPa), and Stress 2 (S2 < -0.8 MPa) based on size groups and stress levels, and certain morphological characteristics of the clusters were examined. The width and length of the clusters were not significantly affected by the area-soil type. Cluster weight, cluster volume, and number of berries per cluster criteria were influenced by stress levels. It was determined that organic vineyards with higher stress levels had fewer clusters compared to conventional vineyards. The number of berries in the clusters showed significant differences based on vineyard area and soil type, water stress levels, and berry size. In conclusion, in the Tekirdağ province, to obtain high-quality grapes from the cv. Cabernet-Sauvignon, it is considered suitable to utilize berries ranging from 10mm to 12mm in size, in conjunction with dryland-shallow soil conditions where the water potential (Ψpd) can decrease to as low as -0.8 MPa during the ripening period.

References

  • Bahar, E., & Öner, H. (2016). Cabernet-Sauvignon üzüm çeşidinde farklı kültürel işlemlerin verim özellikleri üzerine etkileri. Bahçe, 45 (Özel Sayı): 591-598.
  • Bahar, E., Korkutal, I., & Kabatas, I. E. (2017). Sangiovese üzüm çeşidinde dönemsel yaprak su potansiyeli (ψyaprak) değişimleri ve salkım seyreltme uygulamalarına bağlı olarak düzenlenen sulama oranlarının verim, sürgün ve gelişme özellikleri üzerine etkileri. Mediterranean Agricultural Sciences, 30 (2): 85-90.
  • Bellvert, J., Mata, M., Vallverdú, X., Paris, C., & Marsal, J. (2021). Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precision Agriculture, 22: 319-341. DOI: https://doi.org/10.1007/s11119-020-09718-2
  • Bota, J., Tomás, M., Flexas, J., Medrano, H., & Escalona, J.M., 2016. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agricultural Water Management, 164, 91-99. http://dx.doi.org/10.1016/j.agwat.2015.07.016.
  • Calderon-Orellana, A., Bambach, N., Aburto, F., & Calderón, M. (2019). Water deficit synchronizes berry color development in Crimson Seedless table grapes. American Journal of Enology and Viticulture, 1: 60-67. DOI: http://dx.doi.org/10.5344/ajev.2018.17070.
  • Carbonneau, A. (1998). Aspects Qualitatifs. 258-276. In: Tiercelin, JR (Ed.), Traite d’irrigation. Tec. & Doc. Lavosier Ed., Paris, p.1011.
  • Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., Rodrigues, M. L., & Lopes, C. M., (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105, 661-676. DOI: http://dx.doi.org/10.1093/aob/mcq030.
  • Chen, W. K., He, F., Wang, Y. X., Liu, X., Duan, C.Q., & Wang, J. (2018). Influences of berry size on fruit composition and wine quality of Vitis vinifera L. cv. Cabernet Sauvignon grapes. South African Journal for Enology and Viticulture, 39. DOI: http://dx.doi.org/10.21548/39-1-2439.
  • Cheng, G., Yan-Nan, H., Yue, T., Wang, J., & Zhang, Z. (2014). Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules, 19 (9): 13683-13703. DOI: http://dx.doi.org/10.3390/molecules190913683
  • Cogato, A., Jewan, S. Y. Y., Wu, L., Marinello, F., Meggio, F., Sivilotti, P., Sozzi, M., & Pagay, V. (2022). Water stress impacts on grapevines (Vitis vinifera L.) in hot environments: physiological and spectral responses. Agronomy, 12 (8): 1819. DOI: http://dx.doi.org/10.3390/agronomy 12081819
  • Cole, J., & Pagay, V. (2015). Usefullness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Scientia Horticulturae, 191: 10-14. DOI: http://dx.doi.org/10.1016/j.scienta.2015.04.034
  • Coombe, B. G. (1995). Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1: 104-110. DOI: http://dx.doi.org/10.1111/j.1755-0238.1995.tb00086.x.
  • Deloire, A., & Heyns, D. (2011). The leaf water potentials: Principles, method and thresholds. WineLand Technical Year Book, September 2011, 128-131.
  • Deloire, A., & Rogiers, S. (2015). Monitoring vine water status Part 2: A detailed example using the pressure chamber. Grapevine Management Guide 2014-15. NSW DPI Management Guide. 16-19.
  • Deloire A., Pellegrino A., & Rogiers S. (2020). A few words on grapevine leaf water potential. Ives Technical Reviews Vine & Wine. DOI: http://dx.doi.org/10.20870/IVES-TR.2020.3620
  • Deloire, A., & Pellegrino, A. (2021). Review of vine water deficit. What levers for the vineyard in the short and medium term? Ives Technical Reviews Vine and Wine. DOI: http://dx.doi.org/10.20870/IVES-TR.2021.4842
  • Echeverria, G., Ferrer, M., & Miras-Avalos, J. (2017). Effects of soil type on vineyard performance and berry composition in the Río de la Plata Coast (Uruguay). OENO One, 51. DOI: http://dx.doi.org/10.20870/oeno-one.2017.51.2.1829.
  • Ferrandino, A., & Lovisolo, C. (2014). Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environmental and Experimental Botany, 103: 138-147. DOI: http://dx.doi.org/10.1016/j.envexpbot.2013.10.012
  • Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant Journal, 61: 1041-1052. DOI: http://dx.doi.org/10.1111/j.1365-313X.2010.04124.x
  • Intrigliolo, D.S., Pérez, D., Risco, D., Yeves, A., & Castel, J. R. (2012). Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science, 30: 339-349. DOI: http://dx.doi.org/10.1007/s00271-012-0354-0.
  • Kontoudakis, N., Esteruelas, M., Fort, F., Canals, J. M., De Freitas, V., & Zamora, F. (2011). Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 124 (3): 767-774. DOI: http://dx.doi.org/10.1016/j.foodchem.2010.06.093.
  • Korkutal, I., Bahar, E., & Carbonneau, A. (2022). How Grenache N (Vitis vinifera L.) physiology responses drought stress in early developmental stages? Chapters on Viticulture (pp. 25-44). In: Kunter, B. ve Keskin, N. (Ed.). İksad Publishing House, Ankara.
  • Korkutal, I., Bahar, E., & Uzun, M. (2023). Effect of berry heterogeneity and water deficit in organic and conventional vineyards on grape berry characteristics. Turkish Jounal of Agricultural and Natural Sciences, 10 (3): 510-519.
  • Levin, A. D., Deloire, A., & Gambetta, G. A. (2020). Does water deficit negatively impact wine grape yield over the long term? IVES Technical Reviews. DOI: https://doi.org/10.20870/IVES-TR.2019.4029
  • Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier, U., & Weber, E. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1: 100-110.
  • Matthews, M. A., & Anderson, M. M. (1988). Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. American Journal of Enology and Viticulture, 39: 313-320.
  • Melo, M. S., Schultz, H. R., Volschenk, C., & Hunter, J. J. (2015). Berry size variation of Vitis vinifera L. cv. Syrah: Morphological dimensions, berry composition and wine quality. South African Journal for Enology and Viticulture, 36: 1-10. DOI: http://dx.doi.org/10.21548/36-1-931
  • Munitz, S., Netzer, Y., & Schwartz, A. (2016). Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Australian Journal of Grape and Wine Research, 23: 87-94. DOI: http://dx.doi.org/10.1111/ajgw.12241
  • Nadal, M. (2010). Phenolic Maturity in Red Grapes. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. DOI: http://dx.doi.org/10.1007/978-90-481-9283-0_28
  • OIV (2009). 2nd Edition of the OIV descriptor list for grape varieties and Vitis species. 178 p.
  • Ojeda, H., Deloire, A., & Carbonneau, A. (2001). Influence of water deficits on grape berry growth. Vitis, 40: 141-145
  • Poni, S., Gatti, M., Palliotti, A., Dai, Z., Duchêne, E., Truong, T. T., Ferrara, G., Matarrese, A. M. S., Gallotta, A., Bellincontro, A., Mencarelli, F., & Tombesi, S. (2018). Grapevine quality: A multiple choice issue. Scientia Horticulturae, 234: 445-462. DOI: http://dx.doi.org/10.1016/j.scienta.2017.12.035
  • Roux, S., Gaudin, R., & Tisseyre, B. (2019). Why does spatial extrapolation of the vine water status make sense? Insights from a modelling approach. Agricultural Water Management, 217: 255–264. DOI: http://dx.doi.org/10.1016/j.agwat.2019.03.013
  • Seguin, G., (1986). Terroirs and pedology of wine growing. Experientia, 42: 861-873. DOI: http://dx.doi.org/10.1007/BF01941763
  • Shellie, K. C., & King, B. A. (2020). Application of a daily crop water stress index to deficit irrigate Malbec grapevine under semi-arid conditions. Agriculture, 10 (11): 492. DOI: http://dx.doi.org/10.3390/agriculture10110492
  • Suter, B., Triolo, R., Pernet, D., Dai, Z. & Van Leeuwen, C. (2019). Modeling stem water potential by separating the effects of soil water availability and climatic conditions on water status in grapevine (Vitis vinifera L.). Frontiers in Plant Science, 10: 1485. DOI: http://dx.doi.org/10.3389/fpls.2019.01485
  • TMM 2018. Tekirdağ Meteoroloji Müdürlüğü kayıtları.
  • Van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., & Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55 (3): 207-217. DOI: http://dx.doi.org/10.5344/ajev.2004.55.3.207
  • Wenter, A., Zanotelli, D., Montagnani, L., Tagliavini, M., & Andreotti, C. (2018). Effect of different timings and intensities of water stress on yield and berry composition of grapevine (cv. Sauvignon blanc) in a mountain environment. Scientia Horticulturae, 236: 137-145. DOI: http://dx.doi.org/10.1016/j.scienta.2018.03.037
  • Zombardo, A., Mica, E., Puccioni, S., Perria, R., Valentini, P., Mattii, G.B., Cattivelli, L., & Storchi, P. (2020).Berry quality of grapevine under water stress as affected by rootstock–scion interactions through gene expression regulation. Agronomy, 10 (5): 680. DOI: http://dx.doi.org/10.3390/agronomy10050680
  • Zsofi, Zs., Sz. Villango, Z., Palfi, E., Toth, E., & Balo, B. (2014). Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under postveraison water deficit. Scientia Horticulturae, 172: 176–182. DOI: http://dx.doi.org/10.1016/j.scienta.2014.04.008
  • Zufferey, V., Verdenal, T., Dienes, A., Belcher, S., Lorenzini, F., Koestel, C., Gindro, K., Spangenberg, J. E., Viret, O., & Spring, J. L. (2018). The impact of plant water status on the gas exchange, berry composition and wine quality of Chasselas grapes in Switzerland: Impacts of water stress on grapevine physiology. OENO One, 52 (4). DOI: http://dx.doi.org/10.20870/oeno-one.2018.52.4.2181
There are 42 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section dp
Authors

İlknur Korkutal 0000-0002-8016-9804

Elman Bahar 0000-0002-8842-7695

Müge Uzun 0009-0006-0245-0226

Early Pub Date December 26, 2023
Publication Date December 27, 2023
Submission Date June 24, 2023
Published in Issue Year 2023

Cite

APA Korkutal, İ., Bahar, E., & Uzun, M. (2023). Morphological characteristics of cluster of cv. Cabernet-Sauvignon (Vitis vinifera L.) grape variety classified according to berry heterogeneity. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(4), 444-457. https://doi.org/10.29050/harranziraat.1319416

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.