Research Article
BibTex RIS Cite

Effect of soil components on some phosphorus fractions

Year 2023, , 610 - 623, 27.12.2023
https://doi.org/10.29050/harranziraat.1357243

Abstract

Phosphorus (P), a macro plant nutrient element in plant cultivation, is an important nutrient source for plant growth. Despite sufficient P in the soil, there are situations where the plant cannot utilize this P, leading to constraints in plant growth. T To address this, studies were conducted on two heavy-textured soils with P availability issues. The effects of removing lime, organic matter, and iron oxides from the soil were monitored on P fractions. For organic matter removal (OG), 30% H2O2 was added to the soil and heated, and excess H2O2 was washed away. For the lime removal process (KG), 1.0 N HCl solution was added to the soil, and when swelling was completed, the water on the soil surface was washed and siphoned. For lime, organic matter an d iron removal process (KODG), 0.5 M NaHCO3, 0.3 M Na3C6H5O7 solution and Na-dithionite were added to the soil, heated in a water bath and evaporated, and the process continued until the color turned white. OG, KG, limand organic matter removal process (KOG) and KODG subjects were created by removing components individually andsequentially for both soils. P-adsorption maximums (Smax) of soils from which soil components were removed by undergoingdifferent pre-treatments were found. The obtained equilibrium solution P amounts (C) and adsorbed P (S) data were used to create the linearized equation of the Langmuir adsorption isotherm. The P fractions were determined using wet digestion, drydigestion and NaHCO3 (pH 8.5) extraction. In the Düver and Harran series total phosphorus (PT) was found to be 804 and 858mg kg-1, organic phosphorus (Po) was 430 and 340 mg kg-1, inorganic phosphorous (Pi) was 374 and 518 mg kg-1, Olsen phosphorous (POls) was 4.10 and 11.67 mg kg-1. The regression between removal of soil components and PT was significant (0.795*) in the Düver series. Removals resulted in a decrease in the PT value and was statistically significant (F=10.24*, P<0.05; F=16.95**, P<0.01). The regression relationship between removal processes and Pi amount was significant (0.905* and 0.789*). While statistical significance was obtained as F=31.43**, P<0.01 in the Düver series, F=51.15**, P<0.01 in the Harran series. Thesignificance between the subjects in both soils was at the level of 5%, respectively (F=6.06*, P<0.05; F=8.59*, P<0.05). It wasobserved that at the point where PT was lowest (when all three components were removed from the soil), Smax was also lowWhile there was no significant change in Smax in response to changes in PT in the Düver series soil, it was significant in thHarran series soil (F=7.75, P<0.05). The removal of soil components led to an increase in Smax and PT amounts of soil, whilcausing a decrease in the amount of POls.

Supporting Institution

TUBİTAK

References

  • Allen, D. (2002). Standarditaion of Soil Test for Phosphorus. Chemistry Centere (Wa), Grains Research and Development Corporation: Part 1 Sorption.
  • Amrani, M., Westfall, D.G., & Moughli, L. (1999). Evaulation of residual and cumulative phosphorus effects in contrasted moroccon calcareous soils. Nutrient Cycling in Agroecosystems, 55:231-238. https://doi.org/10.1023/A:1009855609746.
  • Aquiera, N.H., & Jackson, M.L. (1953). Iron oxide removal from soils and clays. Soil Sci. Soc. Amer. Proc., 17: 359–364. https://doi.org/10.2136/sssaj1953.03615995001700040015x
  • Arcak, Ç. (2003). Toprak Ve Gübre Araştırma Enstitüsü Sarayköy Araştırma Ve Deneme İstasyonu Toprakları. Tarım ve Köyişleri Bakanlığı Köy Hizmetleri Genel Müdürlüğü. Toprak ve Gübre Araştırma Enstitüsü, Teknik Rapor No:3, Ankara.
  • Bahl, G.S., & Singh, N.T. (2009). Phosphorus diffusion in soils in relation to some edaphic factors and its influence on P uptake by maize and wheat. The Journal of Agricultural Science, 107(2): 335-341. https://doi.org/10.1017/S002185960008713X.
  • Benzing, P., & Richardson, C.J. (2005). CaCO3 Causes underestimation of NaOH extractable phosphorus in sequential fractionations. Soil Sci., 170(10): 802-809. DOI: 10.1097/01.ss.0000190501.98437.d1.
  • Berg, A., & Joern, S.B.C. (2006). Sorption dynamics of organic and inorganic phosphorous compounds in soil. J. Environ Qoal., 35(5):1855-62. https://doi.org/10.2134/jeq2005.0420.
  • Bertrand, I., Hinsinger, P., Jaillard, B., & Arvieu, J.C. (1999). Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic phosphated calcite and goethite. Plant and Soil, 211(1):111-119. https://doi.org/10.1023/A:1004328815280.
  • Bhadoria, S.P., Steringrobe, B., Claassen, N., & Liebersbach, H. (2002). Phosphorous efficiency of Wheat and sugar beet seedlings grown in soil with mainly calcium or ıron and aliminium phosphate. Plant and Soil, 246:41-52. https://doi.org/10.1023/A:1021567331637.
  • Blake, L., Johnston, A.E., Poulton, P.R., & Goulding, K.W.T. (2003). Changes in soil phosphrus fractions following positive and negative phosphorus balances for long periods. Plant and Soil, 254:245–261. https://doi.org/10.1023/A:1025544817872.
  • Bouyoucus, G.J. (1951). A Recalibration of The Hydrometer Method for Making Mechanical Analysis of Soil. Contribution from the Soil Science Department of the Michigan Agricultural Experiment Station, East Lansing, Mich. Authorized for publication by the Director as Journal Article No:1199. https://doi.org/10.2134/agronj1951.00021962004300090005x.
  • Braschi, N.C., Ciavatta, C., Giovannini, C., & Gessa, C. (2003). Combined effect of water and organic matter on phosphorous availability in calcareous soils. Nutrient Cycling in Agroecosystems, 67:67-74. https://doi.org/10.1023/A:1025143809825.
  • Bolat, İ. & Kara, Ö. (2017). Bitki Besin Elementleri: Kaynakları, İşlevleri, Eksik ve Fazlalıkları. Bartın Orman Fakultesi Dergisi, 19(1): 218-228. DOI: 10.24011/barofd.251313
  • Campbell, K.L. & Edwards, D.R. (2001). Phosphorus and Water Quality. W. F. Ritter and A. Shirmonhammadi (Ed.), Agricultural Nonpoint Source Pollution, Waterahed Management and Hydrology, 91-107 Boca Raton, New York. Washington. D.C.
  • Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., & Smith, V.H. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8:559–568.
  • Carreira, J.A., Vinegla, B., & Lajtha, K. (2006). Secondary CaCO3 and pecipitation of P-Ca compounds control the retention of soil P in arid ecosystems. J. Arid Environ., 64(3):460-473. https://doi.org/10.1016/j.jaridenv.2005.06.003.
  • Castro, B., & Torrent, J. (2003). Phosphate sorption by calcareous vertisols and inceptisols as evaluated from extended P- sorption curves. Eur. J. Soil Sci., 49(4):661-667. https://doi.org/10.1046/j.1365-2389.1998.4940661.x.
  • Chacon, N., & Dezzeo, N. (2004). Phosphorus fractions and sorption processes in taken in forest-savanna sequence of the gran in southern Venezuela. Biol Fertil. Soils, 40:14-19. https://doi.org/10.1007/s00374-004-0733-7.
  • Condron, M.L. (2003). Dynamics and Availability of Organic Phosphorus in Soil. Proceedings of 2nd Internal Symposium on Phosphorus Dynamics in the Soil Plant Contium p: 14-15.
  • Cong, W.F., Suriyagoda, L.D.B., & Lambers, H. (2020). Tightening the phosphorus cycle through phosphorusefficient crop genotypes. Trends Plant Sci., 25:967–75.
  • Cross, A.F., and Schlesinger, W. (2001). Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 52:155-172. https://doi.org/10.1023/A:1006437504494.
  • Derici, M.R., ve Ağca, N. (1999). Phosphorus adsorption of the soils of the gaziantep kayacık plain. Tr. J. Agriculture and Forestry, Tübitak, 23(2):395–400.
  • DİE (1998). Tarımsal Yapı (Üretim, Fiyat, Değer). Başbakanlık Devlet İstatistik Enstitüsü Yayınları, DİE Matbaası, Ankara.
  • Dinç, U., Şenol, S., Sayın, M., Kapur, S., Güzel, N., Derici, R., Yeşilsoy, N.Ş., Yeğingil, İ., Sarı, M., Kay,a Z., Aydın, M., Kettaş, F., Berkman, A., Çolak, A.K., Yılmaz, K., Tunçgöğüs, B., Çavuşgil, V., Özbek, H., Gülüt, K.Y., Karaman, C., Dinç, O., Öztürk, N., ve Kara, E.E. (1988). Güneydoğu Anadolu Bölgesi Toprakları (GAT) 1. Harran Ovası. TUBİTAK Tarım ve Ormancılık Grubu Güdümlü Araştırma Projesi Kesin Sonuç Raporu, Proje TOAG-534.
  • Elser, J.J., Bracken, M.E.S., Cleland,E.E., Gruner, D.S., Harpole,W.S., Hillebrand,H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., & Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10:1135–42. doi:10.1111/j.1461-0248.2007.01113.x.
  • Frossard, E., Condron, L.M., Oberson, A., Sinaj, S., & Fardean, J.C. (2000). Procesess governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29(1):15-23. https://doi.org/10.2134/jeq2000.00472425002900010003x.
  • Gahrooe, R.F. (2003). Increased microbial activity affects the extractable phosphorus in Ca-rich arid and semi-arid soils. Proceedings of 2nd Internal Symposium on Phosphorus Dynamics in the Soil-Plant Contium 46-47.
  • Gallet, A., Flish, R., Ryser, J., Nosberger, J., Frossard, E., & Sinaj, S. (2003). Uptake of residual phosphate and freshly applied diammonium phosphate by lolium perenne and trifolium repens. J. Plant Nutr. Sci., 166(5): 557-567. https://doi.org/10.1002/jpln.200321075.
  • Gebrim, F.O., Novais, R.F., Silva, I.R., Schulthais, F., Vergütz, L., Procopio, L.C., Moreira, F.F., & Jesus, G.L. (2010). Mobility of inorganic and organic phosphorus forms under different levels of phosphate and poultry litter fertilization in soils. R. Brass. Ci. Solo, 34:1195-1205. https://doi.org/10.1590/S0100-06832010000400019.
  • George, T.S., Richardson, A.E., Hadobas, P.A., & Simpson, R.J. (2003). Rhizosphere Limitations to The Efficiency of Phytase-Phtate Interactions. Proceedings of 2nd Internal Symposium on Phosphorus Dynamics in the Soil-Plant Contium, 48-49.
  • Ghahremani, M., Tran, H., Biglou, S.G., O’Gallagher, B., She, Y.M., & Plaxton, W.C. (2019). A glycoform of the secreted purple acid phosphatase AtPAP26 co-purifies with a mannose-binding lectin (AtGAL1) upregulated by phosphate-starved Arabidopsis. Plant Cell Environ, 42:1139–57.
  • Gu, C., Wilson, S.G., & Margenot, A.J. (2020) Lithological and bioclimatic impacts on soil phosphatase activities in California temperate forests. Soil Biol. Biochem., 141:107633. https://doi.org/10.1016/j.soilbio.2019.107633.
  • Guilherme, L.R.G., Curi, N., Silva, M.L.N., Reno, N.B. & Machado, R.A.F. (2000). Phosphorus Adsorption in Lowland Soils From Minas Gerais State Brazil. Revista Brasileira De Ciencia Do Solo, 24(1), 27–34.
  • Hartge, K.H. (1971). Die Physikalische Untersuchung Von Böden. Enke Verlag Stuttgart. pp. 31–50.
  • Hawkesford, M.J., Cakmak, I., Coskun, D., De Kok, L.J., Lambers, H., et al. (2022). Functions of macronutrients. In Marschner’s Mineral Nutrition of Plants, ed. Z Rengel, I Cakmak, PJ White. London: Elsevier. 4th Ed.
  • Hedley, M., Stewart, J. & Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J., 46:970–976. https://doi.org/10.2136/sssaj1982.03615995004600050017x
  • Hou, E., Tan, X., Heenan, M., & Wen, D. (2018) A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Sci. Data., 5:180166.
  • Jackson, M.L. (1958). Soil Chemical Analysis. Prentice-Hall. Inc. Eng. Cliffs. New Jersey, USA. UW-Madison Libraries Parallel Press. Amazon.co.uk. https://books.google.com.tr. Jacson, M. L. (1962). Soil Chemical Analysis, New Jersey: Prentice-Hall, Inc. Eng. Cliffs.
  • Johnson, A.H., Frizano, J., & Vann, D.R. (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135:487–499. https://doi.org/10.1007/s00442-002-1164-5
  • Kacar, B. ve Katkat, V.A. (1997). Tarımda Fosfor. Bursa, Ticaret Borsası Yayınları. Yayın No: 5, Bursa.
  • Klotzbücher, A., Kaiser, K., Klotzbücher, T., Wolff, M., & Mikutta, R. (2019) Testingmechanisms underlying the Hedley sequential phosphorus extraction of soils. J. Soil Sci. Plant. Nutr., 182:570–577. https://doi.org/10.1002/jpln.201800652
  • Laljee, B. (2012). Phosphorous Fixsation as Influenced by Soil Characteristics of Some Mauritian Soils. University of Mauritius. http://www.gov.mu/portal/sites/ncb/moa/farc/amas97/html/p15.htm.
  • Lambers, H. (2021). Annual review of plant biology phosphorus acquisition and utilization in plants. Annual Review of Plant Biology., 73:17–42. https://doi.org/10.1146/annurev-arplant-102720
  • Li, M., Hou, Y.L., & Zhu, B. (2007). Phosphorus sorption-desorption by purple soils of China in relation to their properties. Aust. J. Soils., 45:182-189. https://doi.org/10.1071/SR06135
  • Mai, W., Xue, X., Feng, G., Yang, R., & Tian, C. (2019). Arbuscular mycorrhizal fungi—15-fold enlargement of the soil volume of cotton roots for phosphorus uptake in intensive planting conditions. Eur. J. Soil Biol., 90:31–35. https://doi.org/10.1016/j.ejsobi.2018.12.002
  • Marschner, P., Solaiman, Z., & Rengel, Z. (2005). Growth, phosphorous uptake and rhizosphere microbial- community. Composition of a phosphorous- efficient wheat cultivar in soils differing in pH. Journal of Plant Nutrition and Soil Science, 168:343–51. https://doi.org/10.1002/jpln.200424101.
  • Martin, A.E., & Reeve, R. (1955). A rapid manometric method for determining soil carbonate. Soil Sci., 79(3):187-197.
  • Matar, A., Torrent, J., & Ryan, J. (1992). Soil and fertilizer phosphorus and crop responses in the dryland mediterranean zone. Advances in Soil Science, 18:81-146. https://doi.org/10.1007/978-1-4612-2844-8_3.
  • Mehra, O.P. & Jackson, M.L. (1960). Iron Oxide Removal From Soil and Clays by a Dithionite-Citrate System Buffered With Sodium Bicarbonate. Proc.7th Natl. Conf. on Clays and Clay Minerals, 317–327, New York.
  • Methods of Soil Analysis, Part 3. Chemical methods. SSSA Book Series No. 5. Soil Science Society of American Society of Agronomy. 677 S. Segoe Rd., Madison, WI 53711, USA. Methods of Soil Analysis. Part 3. Chemical Methods-SSSA Book Series No: 5.
  • Munhoz, R.O., Berton, R.S., & Camargo, O.A. (2011). Phosphorus sorption and redistribution on soil solid phase in a Brazilian Haplorthox amended with biosolids. Applied and Environmental Soil Sci., Special Issue:7 https://doi.org/10.1155/2011/283061.
  • McCauley, A., Jones, C. & Jacobsen, J. (2009). Nutrient Management. Nutrient management module 9 Montana State University Extension Service. Publication, 4449-9, 1–16.
  • Negassa, W. & Leinweber, P. (2009). How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant. Nutr. Soil. Sci. 172:305–325. https://doi.org/10.1002/jpln.200800223
  • Nwoke, O.C., Vanlauwe, B., Diels, J., Sanginga, N., & Osonubi, O. (2004). The Distribution of phosphorus fractions and desorption characteristics of some soils in te moist savanna zone of West Africa. Nutrient Cyling in Agroecosystems, 69:127–141. https://doi.org/10.1023/B:FRES.0000029677.09424.ef.
  • Oehl, F., Frossard, E., Fliessbach, A., Dubois, D., & Oberson, A. (2004). Basal organic phosphorus minerilization in soils under different farming systems. Soil Biology and Biochemistry Soil Biology and Biochemistry, 36(4):667–675. https://doi.org/10.1016/j.soilbio.2003.12.010.
  • Olsen, S.R., Cole, V., Watanable, F.S., & Dean, L.A. (1954). Estimation of Avaible Phosphorus in Soils by Extraction with Sodium Bicarbonate. U. S. Dept. of Agr. Cir., 939, Washington. D.C.
  • Öztürkmen, A.R., Ramazanoğlu, E., Çakmaklı, M. & Çakmaklı E. (2021). Harran ovası yaygın toprak serilerinin su tutma eğrilerinin belirlenmesi, BEU Journal of Science, 10(3):1009-1018. https://doi.org/10.17798/bitlisfen.877500
  • Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of Soil Analysis. Chemical and Mikrobiological Properties. Second Edition. American Society of Agronomy, Inc. Soil Science Society of America, Inc. Publisher, Madison, Wisconsin, USA.
  • Pant, H.K., & Reddy, K.R. (2001). Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality, 30:1474–1480. https://doi.org/10.2134/jeq2001.3041474x
  • Pierzynski, G.M. (2000). Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. Department of Agronomy, Southern Cooperative Series Bulletin No:396, 2004 Throckmorton Plant Sciences Ctr. Kansas State University, Ks 66506–5501, Manhattan.
  • Polemio, M., & Rhoades, J.D. (1977). Determining cation exchange capacity: new procedure for calcareous and gypsiferous soils. Soil Sci. Soc. Am. J., 41(3):524-528. https://doi.org/10.2136/sssaj1977.03615995004100030018x.
  • Reddy, D.D., Rao, S.A., & Singh, M. (2005). Changes in P fractions and sorption in an alfisol following crop residues application. J. of Plant Nutrition and Soil Sci., 168(2):241-247. https://doi.org/10.1002/jpln.200421444
  • Richards, L.A. (1954). Diagnosis and Improvement Saline and Alkaline Soils. U. S. Dep. Agr. Handbook 60.
  • Richardson, A.E. (1994). Soil Microorganisms and Phosphorus Avability. Pankhurst, C. E.; Doube, B. M.; Gupta, V. V. S. R.; Grace, P. R.(eds.) Book chapter: Soil biota: management in sustainable farming systems. pp.50-62 ref.107. ISBN: 9780643055995, Record Number: 19951907604, Publisher: CSIRO Publications
  • Ron, V.M., Edwards, A.C., Shand, C.A., & Cresser, M.S. (1993). Phosphorus fractions in soil solution: ınfluence of soil acidity and fertilizer addition. Plant and Soil, 148:175-183. https://doi.org/10.1007/BF00012855.
  • Samadi, A. (2006). Phosphorus Sorption characteristics in relation to soil properties in some calcareous soils of Western Azarbaijan province. J. Agric. Sci. Technol., 8:251-264. Sardi, K., &Csatho, H. (2002). Studies on The Phosphorus Adsorption of Diffrent Soil Types and Nutrient Levels. 17.Wcss., Thailand.
  • Sattari, S.Z., Bouwman, A.F., Giller, K.E., & Van Ittersum, M.K. (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci., 109:6348–6353. https://doi.org/10.1073/pnas.111367510
  • Schulte, E.E., & Kelling, K.A. (1996). Soil and Applied Phosphorus. Understanding Plant Nutrients. A2520. University of Wisconsin System Board of Regents and University of Wisconsin Extention, Cooperative Extention.
  • Shah, T.J, Rai, A.P, & Ma, A. (2019). Relationship of Phosphorus Fractions with Soil Properties in Mothbean Growing Acid Soils of North Western Indian Himalayas, Communications in Soil Science and Plant Analysis, https://doi.org/10.1080/00103624.2019.1604730
  • Shen, J., Rengel, Z., Tang, C., & Zhang, F. (2003). Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown lupinus albus. Plant and Soil, 248:199-206. https://doi.org/10.1023/A:1022375229625.
  • Saygan, E.P. (2007). Harran ovasındaki bazı toprak serilerinin fosfor fraksiyonları. T.C. Harran Üniversitesi Fen Bilimleri Enstitüsü. Toprak Anabilim Dalı, http://acikerisim.harran.edu.tr.
  • Tisdale, J.L., Nelson, W.L., & Beaton, J.D. (1985). Soil and Fertilizer Phosphorus in Soil Fertility and Fetlizers. Macmillan Publishing Company, New York, U.S.A. 189-248.
  • Turner, B.L., Cade-Menun, B.J., & Westermann, D.T. (2003). Organic phosphorus composition and potential bioavailability in semi-arid Arable soils of Western United States. Soil Sci. Soc. Am. J., 67(4):1168-1179. https://doi.org/10.2136/sssaj2003.1168.
  • U.S. Salinity Laboratory Staff (1954). Methods for Soil Characterization Diagnosis and İmprovement of Saline and Alkali Soils Agricultural Handbook. No: 60. U.S.A. Washington, D.C.
  • Uzunoğlu, S. (1992). Toprak Bünyesi ve Analiz Metotları. Tarım ve Köyişleri Bakanlığı. Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No:184, Teknik Yayın No: T–64, Ankara.
  • Valladares, G.S., Pereira, M.G., & Dos Anjos, U.H.C. (2003). Phosphate sorption in low activity clay soils. Bragantia Campinas, 62(1), 111–118.
  • Vance, C.P., Uhde-Stone, C., & Allan, D.L. (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol., 157:423–447. https://doi.org/10.1046/j.1469-8137.2003.00695.x
  • Voort, J. (2010). The effect of carbon on grass-encroachment in the Dutch coastal dunes. Master Thesis Research. Institute for Biodiversity and Ecosystem Dynamic.
  • Wagai, R., & Mayer, M.R. (2007). Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimical et Cosmochimica Acta, 71(1):25-35. https://doi.org/10.1016/j.gca.2006.08.047.
  • Walker, T.W., & Adams, A.F.R. (1958). Studies on soil organic matter:1. ınfluence of phosphorus content of organic phosphorus in grassland soil. Soil Sci., 85(6): 307-318.
  • Walkley, A., & Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter and a proposed modification of the cromic acid titration method. Soil Sci., 37(1): 29-38.
  • Wang, S., Jin, X., Pang, Y., Zhao, H., Zhao, W., & Wu, F. (2005). Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. J. of Colloid and Interface Sci., 289:339-346. https://doi.org/10.1016/j.jcis.2005.03.081.
  • Xu, X., Zhu, T., Nikonorova, N., & De Smet, I. (2019). Phosphorylation-mediated signalling in plants. In Annual Plant Reviews Online, ed. JA Roberts, pp. 909–32. Chichester, UK: Wiley and Sons
  • Yang, J.E., Jones, C.A., Kim, H.J., & Jacobsen, J.S. (2002). Soil inorganic phosphorus fractions and Olsen-P in phosphorus-responsive calcareous soils: Effects of fertilizer amount and incubation time. Soil Sci. And Plant Analysis, 33(5-6): 855–871. https://doi.org/10.1081/CSS-120003071.
  • Zhang, R., Wu, F., Liu, C., Fu, P., Li, W., Wang, L., Liao, H., & Guo, J. (2008). Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environmental Pollution, 152(2):366-372. https://doi.org/10.1016/j.envpol.2007.06.024.
  • Zhou, M., & Li, Y. (2001). Phosphorus sorption characteristics of calcareous soils and limestone from the southern everglades and adjacent farmlands. Soil Science Society of America Journal, 65(5):1404-1412. https://doi.org/10.2136/sssaj2001.6551404x.

Toprak bileşenlerinin bazı fosfor fraksiyonlarına etkisi

Year 2023, , 610 - 623, 27.12.2023
https://doi.org/10.29050/harranziraat.1357243

Abstract

Bitki yetiştiriciliğinde makro bitki besin elementi olan fosfor (P) bitki gelişiminde önemli bir besin kaynağıdır. Topraklarda yeterli P olmasına karşın bitkinin bu P’dan faydalanamadığı
durumlar bitki gelişiminin kısıtlanmasına neden olmaktadır. Bu amaçla alınabilir P problemleri olan ağır bünyeli iki toprakta çalışma yapılmıştır. Topraktan kireç, organik madde ve demir oksitler uzaklaştırılarak P fraksiyonlarına etkileri takip edilmiştir. Organik madde giderme işlemi (OG) için toprağa %30’luk H2O2 ilave edilerek ısıtma işlemi yapılmış fazla H2O2 yıkanarak uzaklaştırılmıştır. Kireç giderme işlemi (KG) işlemi için toprağa 1.0 N HCl çözeltisi ilave edilmiş, kabarma tamamlandığında toprak yüzeyindeki su yıkanarak sifonlanmıştır. Kireç, organik madde ve demir giderme işlemi (KODG) için toprak üzerine 0.5 M NaHCO3, 0.3 M Na3C6H5O7 çözeltisi ve Na-dithionite ilave edilerek su banyosunda ısıtılıp, buharlaştırılmış, renk beyazlaşıncaya kadar işleme devam edilmiştir. Her iki toprak için tek tek ve ardışık bileşen uzaklaştırma işlemi yapılarak OG, KG, Kireç ve organik madde giderme işlemi (KOG) ile KODG konuları oluşturulmuştur. Farklı ön işlemlerden geçirilerek toprak bileşenleri uzaklaştırılmış toprakların P-adsorpsiyon maksimumları (Smax) bulunmuştur. Elde edilen denge çözeltisi P miktarları (C) ve adsorplanan P (S) verileri kullanılarak Langmuir adsorpsiyon izoterminin doğrusallaştırılmış denklemi oluşturulmuştur. P fraksiyonları, yaş yakma, kuru yakma ve NaHCO3 (pH 8.5) ekstraksiyonu kullanılarak tayin edilmiştir. Düver ve Harran serisinde toplam fosfor (PT) 804 ve 858 mg kg , organik fosfor (Po) 430 ve 340 mg kg -1 olarak bulunmuştur. Toprak bileşenlerinin giderilmesi ile PT arasındaki regresyon, Düver serisinde önemli olmuştur (0.795*). Giderme işlemleri PT değerinde azalma gerçekleştirmiş ve istatistiki anlamda önemli olmuştur (F=10.24*, P<0.05; F=16.95**, P<0.01). Giderme işlemleri ile Pi miktarı arasındaki regresyon ilişkisi (0.905* ve 0.789*) önemli olmuştur. Düver serisinde istatistiki önem F=31.43**, P<0.01 iken Harran serisinde F=51.15**, P<0.01 elde edilmiştir. Her iki toprakta konular arasındaki önemlilik sırasıyla (F=6.06*, P<0.05; F=8.59*, P<0.05) %5 seviyesinde olmuştur. PT’un en düşük olduğu noktada (her üç bileşenin de topraktan uzaklaştırıldığı durum) Smax değerinin de düşük olduğu görülmüştür. PT miktarındaki değişime karşın Smax değişimi Düver serisi toprağında önemli olmamış, Harran serisi toprağında önemli olmuştur (F=7.75, P<0.05). Toprak bileşenlerinin giderilmesi toprağın Smax ve PT miktarlarında artışa neden olurken POls miktarında azalmaya neden olmuştur.

Ethical Statement

Yayın etik kurulu gerektirmemektedir.

Supporting Institution

TÜBİTAK

Thanks

Bu çalışmada kullanılan veriler Ağır Bünyeli Toprakta Bazı Toprak Bileşenlerinin Fosfor Adsorpsiyon Kapasitesine Etkilerinin Langmuir İzotermleri ile Araştırılması (TOVAG-106O300) projesinin bir bölümünden alınmıştır. Proje TÜBİTAK tarafından desteklenmiştir. Yazarlar TÜBİTAK’a desteklerinden dolayı teşekkür ederler.

References

  • Allen, D. (2002). Standarditaion of Soil Test for Phosphorus. Chemistry Centere (Wa), Grains Research and Development Corporation: Part 1 Sorption.
  • Amrani, M., Westfall, D.G., & Moughli, L. (1999). Evaulation of residual and cumulative phosphorus effects in contrasted moroccon calcareous soils. Nutrient Cycling in Agroecosystems, 55:231-238. https://doi.org/10.1023/A:1009855609746.
  • Aquiera, N.H., & Jackson, M.L. (1953). Iron oxide removal from soils and clays. Soil Sci. Soc. Amer. Proc., 17: 359–364. https://doi.org/10.2136/sssaj1953.03615995001700040015x
  • Arcak, Ç. (2003). Toprak Ve Gübre Araştırma Enstitüsü Sarayköy Araştırma Ve Deneme İstasyonu Toprakları. Tarım ve Köyişleri Bakanlığı Köy Hizmetleri Genel Müdürlüğü. Toprak ve Gübre Araştırma Enstitüsü, Teknik Rapor No:3, Ankara.
  • Bahl, G.S., & Singh, N.T. (2009). Phosphorus diffusion in soils in relation to some edaphic factors and its influence on P uptake by maize and wheat. The Journal of Agricultural Science, 107(2): 335-341. https://doi.org/10.1017/S002185960008713X.
  • Benzing, P., & Richardson, C.J. (2005). CaCO3 Causes underestimation of NaOH extractable phosphorus in sequential fractionations. Soil Sci., 170(10): 802-809. DOI: 10.1097/01.ss.0000190501.98437.d1.
  • Berg, A., & Joern, S.B.C. (2006). Sorption dynamics of organic and inorganic phosphorous compounds in soil. J. Environ Qoal., 35(5):1855-62. https://doi.org/10.2134/jeq2005.0420.
  • Bertrand, I., Hinsinger, P., Jaillard, B., & Arvieu, J.C. (1999). Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic phosphated calcite and goethite. Plant and Soil, 211(1):111-119. https://doi.org/10.1023/A:1004328815280.
  • Bhadoria, S.P., Steringrobe, B., Claassen, N., & Liebersbach, H. (2002). Phosphorous efficiency of Wheat and sugar beet seedlings grown in soil with mainly calcium or ıron and aliminium phosphate. Plant and Soil, 246:41-52. https://doi.org/10.1023/A:1021567331637.
  • Blake, L., Johnston, A.E., Poulton, P.R., & Goulding, K.W.T. (2003). Changes in soil phosphrus fractions following positive and negative phosphorus balances for long periods. Plant and Soil, 254:245–261. https://doi.org/10.1023/A:1025544817872.
  • Bouyoucus, G.J. (1951). A Recalibration of The Hydrometer Method for Making Mechanical Analysis of Soil. Contribution from the Soil Science Department of the Michigan Agricultural Experiment Station, East Lansing, Mich. Authorized for publication by the Director as Journal Article No:1199. https://doi.org/10.2134/agronj1951.00021962004300090005x.
  • Braschi, N.C., Ciavatta, C., Giovannini, C., & Gessa, C. (2003). Combined effect of water and organic matter on phosphorous availability in calcareous soils. Nutrient Cycling in Agroecosystems, 67:67-74. https://doi.org/10.1023/A:1025143809825.
  • Bolat, İ. & Kara, Ö. (2017). Bitki Besin Elementleri: Kaynakları, İşlevleri, Eksik ve Fazlalıkları. Bartın Orman Fakultesi Dergisi, 19(1): 218-228. DOI: 10.24011/barofd.251313
  • Campbell, K.L. & Edwards, D.R. (2001). Phosphorus and Water Quality. W. F. Ritter and A. Shirmonhammadi (Ed.), Agricultural Nonpoint Source Pollution, Waterahed Management and Hydrology, 91-107 Boca Raton, New York. Washington. D.C.
  • Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., & Smith, V.H. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8:559–568.
  • Carreira, J.A., Vinegla, B., & Lajtha, K. (2006). Secondary CaCO3 and pecipitation of P-Ca compounds control the retention of soil P in arid ecosystems. J. Arid Environ., 64(3):460-473. https://doi.org/10.1016/j.jaridenv.2005.06.003.
  • Castro, B., & Torrent, J. (2003). Phosphate sorption by calcareous vertisols and inceptisols as evaluated from extended P- sorption curves. Eur. J. Soil Sci., 49(4):661-667. https://doi.org/10.1046/j.1365-2389.1998.4940661.x.
  • Chacon, N., & Dezzeo, N. (2004). Phosphorus fractions and sorption processes in taken in forest-savanna sequence of the gran in southern Venezuela. Biol Fertil. Soils, 40:14-19. https://doi.org/10.1007/s00374-004-0733-7.
  • Condron, M.L. (2003). Dynamics and Availability of Organic Phosphorus in Soil. Proceedings of 2nd Internal Symposium on Phosphorus Dynamics in the Soil Plant Contium p: 14-15.
  • Cong, W.F., Suriyagoda, L.D.B., & Lambers, H. (2020). Tightening the phosphorus cycle through phosphorusefficient crop genotypes. Trends Plant Sci., 25:967–75.
  • Cross, A.F., and Schlesinger, W. (2001). Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 52:155-172. https://doi.org/10.1023/A:1006437504494.
  • Derici, M.R., ve Ağca, N. (1999). Phosphorus adsorption of the soils of the gaziantep kayacık plain. Tr. J. Agriculture and Forestry, Tübitak, 23(2):395–400.
  • DİE (1998). Tarımsal Yapı (Üretim, Fiyat, Değer). Başbakanlık Devlet İstatistik Enstitüsü Yayınları, DİE Matbaası, Ankara.
  • Dinç, U., Şenol, S., Sayın, M., Kapur, S., Güzel, N., Derici, R., Yeşilsoy, N.Ş., Yeğingil, İ., Sarı, M., Kay,a Z., Aydın, M., Kettaş, F., Berkman, A., Çolak, A.K., Yılmaz, K., Tunçgöğüs, B., Çavuşgil, V., Özbek, H., Gülüt, K.Y., Karaman, C., Dinç, O., Öztürk, N., ve Kara, E.E. (1988). Güneydoğu Anadolu Bölgesi Toprakları (GAT) 1. Harran Ovası. TUBİTAK Tarım ve Ormancılık Grubu Güdümlü Araştırma Projesi Kesin Sonuç Raporu, Proje TOAG-534.
  • Elser, J.J., Bracken, M.E.S., Cleland,E.E., Gruner, D.S., Harpole,W.S., Hillebrand,H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., & Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10:1135–42. doi:10.1111/j.1461-0248.2007.01113.x.
  • Frossard, E., Condron, L.M., Oberson, A., Sinaj, S., & Fardean, J.C. (2000). Procesess governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29(1):15-23. https://doi.org/10.2134/jeq2000.00472425002900010003x.
  • Gahrooe, R.F. (2003). Increased microbial activity affects the extractable phosphorus in Ca-rich arid and semi-arid soils. Proceedings of 2nd Internal Symposium on Phosphorus Dynamics in the Soil-Plant Contium 46-47.
  • Gallet, A., Flish, R., Ryser, J., Nosberger, J., Frossard, E., & Sinaj, S. (2003). Uptake of residual phosphate and freshly applied diammonium phosphate by lolium perenne and trifolium repens. J. Plant Nutr. Sci., 166(5): 557-567. https://doi.org/10.1002/jpln.200321075.
  • Gebrim, F.O., Novais, R.F., Silva, I.R., Schulthais, F., Vergütz, L., Procopio, L.C., Moreira, F.F., & Jesus, G.L. (2010). Mobility of inorganic and organic phosphorus forms under different levels of phosphate and poultry litter fertilization in soils. R. Brass. Ci. Solo, 34:1195-1205. https://doi.org/10.1590/S0100-06832010000400019.
  • George, T.S., Richardson, A.E., Hadobas, P.A., & Simpson, R.J. (2003). Rhizosphere Limitations to The Efficiency of Phytase-Phtate Interactions. Proceedings of 2nd Internal Symposium on Phosphorus Dynamics in the Soil-Plant Contium, 48-49.
  • Ghahremani, M., Tran, H., Biglou, S.G., O’Gallagher, B., She, Y.M., & Plaxton, W.C. (2019). A glycoform of the secreted purple acid phosphatase AtPAP26 co-purifies with a mannose-binding lectin (AtGAL1) upregulated by phosphate-starved Arabidopsis. Plant Cell Environ, 42:1139–57.
  • Gu, C., Wilson, S.G., & Margenot, A.J. (2020) Lithological and bioclimatic impacts on soil phosphatase activities in California temperate forests. Soil Biol. Biochem., 141:107633. https://doi.org/10.1016/j.soilbio.2019.107633.
  • Guilherme, L.R.G., Curi, N., Silva, M.L.N., Reno, N.B. & Machado, R.A.F. (2000). Phosphorus Adsorption in Lowland Soils From Minas Gerais State Brazil. Revista Brasileira De Ciencia Do Solo, 24(1), 27–34.
  • Hartge, K.H. (1971). Die Physikalische Untersuchung Von Böden. Enke Verlag Stuttgart. pp. 31–50.
  • Hawkesford, M.J., Cakmak, I., Coskun, D., De Kok, L.J., Lambers, H., et al. (2022). Functions of macronutrients. In Marschner’s Mineral Nutrition of Plants, ed. Z Rengel, I Cakmak, PJ White. London: Elsevier. 4th Ed.
  • Hedley, M., Stewart, J. & Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J., 46:970–976. https://doi.org/10.2136/sssaj1982.03615995004600050017x
  • Hou, E., Tan, X., Heenan, M., & Wen, D. (2018) A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Sci. Data., 5:180166.
  • Jackson, M.L. (1958). Soil Chemical Analysis. Prentice-Hall. Inc. Eng. Cliffs. New Jersey, USA. UW-Madison Libraries Parallel Press. Amazon.co.uk. https://books.google.com.tr. Jacson, M. L. (1962). Soil Chemical Analysis, New Jersey: Prentice-Hall, Inc. Eng. Cliffs.
  • Johnson, A.H., Frizano, J., & Vann, D.R. (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135:487–499. https://doi.org/10.1007/s00442-002-1164-5
  • Kacar, B. ve Katkat, V.A. (1997). Tarımda Fosfor. Bursa, Ticaret Borsası Yayınları. Yayın No: 5, Bursa.
  • Klotzbücher, A., Kaiser, K., Klotzbücher, T., Wolff, M., & Mikutta, R. (2019) Testingmechanisms underlying the Hedley sequential phosphorus extraction of soils. J. Soil Sci. Plant. Nutr., 182:570–577. https://doi.org/10.1002/jpln.201800652
  • Laljee, B. (2012). Phosphorous Fixsation as Influenced by Soil Characteristics of Some Mauritian Soils. University of Mauritius. http://www.gov.mu/portal/sites/ncb/moa/farc/amas97/html/p15.htm.
  • Lambers, H. (2021). Annual review of plant biology phosphorus acquisition and utilization in plants. Annual Review of Plant Biology., 73:17–42. https://doi.org/10.1146/annurev-arplant-102720
  • Li, M., Hou, Y.L., & Zhu, B. (2007). Phosphorus sorption-desorption by purple soils of China in relation to their properties. Aust. J. Soils., 45:182-189. https://doi.org/10.1071/SR06135
  • Mai, W., Xue, X., Feng, G., Yang, R., & Tian, C. (2019). Arbuscular mycorrhizal fungi—15-fold enlargement of the soil volume of cotton roots for phosphorus uptake in intensive planting conditions. Eur. J. Soil Biol., 90:31–35. https://doi.org/10.1016/j.ejsobi.2018.12.002
  • Marschner, P., Solaiman, Z., & Rengel, Z. (2005). Growth, phosphorous uptake and rhizosphere microbial- community. Composition of a phosphorous- efficient wheat cultivar in soils differing in pH. Journal of Plant Nutrition and Soil Science, 168:343–51. https://doi.org/10.1002/jpln.200424101.
  • Martin, A.E., & Reeve, R. (1955). A rapid manometric method for determining soil carbonate. Soil Sci., 79(3):187-197.
  • Matar, A., Torrent, J., & Ryan, J. (1992). Soil and fertilizer phosphorus and crop responses in the dryland mediterranean zone. Advances in Soil Science, 18:81-146. https://doi.org/10.1007/978-1-4612-2844-8_3.
  • Mehra, O.P. & Jackson, M.L. (1960). Iron Oxide Removal From Soil and Clays by a Dithionite-Citrate System Buffered With Sodium Bicarbonate. Proc.7th Natl. Conf. on Clays and Clay Minerals, 317–327, New York.
  • Methods of Soil Analysis, Part 3. Chemical methods. SSSA Book Series No. 5. Soil Science Society of American Society of Agronomy. 677 S. Segoe Rd., Madison, WI 53711, USA. Methods of Soil Analysis. Part 3. Chemical Methods-SSSA Book Series No: 5.
  • Munhoz, R.O., Berton, R.S., & Camargo, O.A. (2011). Phosphorus sorption and redistribution on soil solid phase in a Brazilian Haplorthox amended with biosolids. Applied and Environmental Soil Sci., Special Issue:7 https://doi.org/10.1155/2011/283061.
  • McCauley, A., Jones, C. & Jacobsen, J. (2009). Nutrient Management. Nutrient management module 9 Montana State University Extension Service. Publication, 4449-9, 1–16.
  • Negassa, W. & Leinweber, P. (2009). How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant. Nutr. Soil. Sci. 172:305–325. https://doi.org/10.1002/jpln.200800223
  • Nwoke, O.C., Vanlauwe, B., Diels, J., Sanginga, N., & Osonubi, O. (2004). The Distribution of phosphorus fractions and desorption characteristics of some soils in te moist savanna zone of West Africa. Nutrient Cyling in Agroecosystems, 69:127–141. https://doi.org/10.1023/B:FRES.0000029677.09424.ef.
  • Oehl, F., Frossard, E., Fliessbach, A., Dubois, D., & Oberson, A. (2004). Basal organic phosphorus minerilization in soils under different farming systems. Soil Biology and Biochemistry Soil Biology and Biochemistry, 36(4):667–675. https://doi.org/10.1016/j.soilbio.2003.12.010.
  • Olsen, S.R., Cole, V., Watanable, F.S., & Dean, L.A. (1954). Estimation of Avaible Phosphorus in Soils by Extraction with Sodium Bicarbonate. U. S. Dept. of Agr. Cir., 939, Washington. D.C.
  • Öztürkmen, A.R., Ramazanoğlu, E., Çakmaklı, M. & Çakmaklı E. (2021). Harran ovası yaygın toprak serilerinin su tutma eğrilerinin belirlenmesi, BEU Journal of Science, 10(3):1009-1018. https://doi.org/10.17798/bitlisfen.877500
  • Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of Soil Analysis. Chemical and Mikrobiological Properties. Second Edition. American Society of Agronomy, Inc. Soil Science Society of America, Inc. Publisher, Madison, Wisconsin, USA.
  • Pant, H.K., & Reddy, K.R. (2001). Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality, 30:1474–1480. https://doi.org/10.2134/jeq2001.3041474x
  • Pierzynski, G.M. (2000). Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. Department of Agronomy, Southern Cooperative Series Bulletin No:396, 2004 Throckmorton Plant Sciences Ctr. Kansas State University, Ks 66506–5501, Manhattan.
  • Polemio, M., & Rhoades, J.D. (1977). Determining cation exchange capacity: new procedure for calcareous and gypsiferous soils. Soil Sci. Soc. Am. J., 41(3):524-528. https://doi.org/10.2136/sssaj1977.03615995004100030018x.
  • Reddy, D.D., Rao, S.A., & Singh, M. (2005). Changes in P fractions and sorption in an alfisol following crop residues application. J. of Plant Nutrition and Soil Sci., 168(2):241-247. https://doi.org/10.1002/jpln.200421444
  • Richards, L.A. (1954). Diagnosis and Improvement Saline and Alkaline Soils. U. S. Dep. Agr. Handbook 60.
  • Richardson, A.E. (1994). Soil Microorganisms and Phosphorus Avability. Pankhurst, C. E.; Doube, B. M.; Gupta, V. V. S. R.; Grace, P. R.(eds.) Book chapter: Soil biota: management in sustainable farming systems. pp.50-62 ref.107. ISBN: 9780643055995, Record Number: 19951907604, Publisher: CSIRO Publications
  • Ron, V.M., Edwards, A.C., Shand, C.A., & Cresser, M.S. (1993). Phosphorus fractions in soil solution: ınfluence of soil acidity and fertilizer addition. Plant and Soil, 148:175-183. https://doi.org/10.1007/BF00012855.
  • Samadi, A. (2006). Phosphorus Sorption characteristics in relation to soil properties in some calcareous soils of Western Azarbaijan province. J. Agric. Sci. Technol., 8:251-264. Sardi, K., &Csatho, H. (2002). Studies on The Phosphorus Adsorption of Diffrent Soil Types and Nutrient Levels. 17.Wcss., Thailand.
  • Sattari, S.Z., Bouwman, A.F., Giller, K.E., & Van Ittersum, M.K. (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci., 109:6348–6353. https://doi.org/10.1073/pnas.111367510
  • Schulte, E.E., & Kelling, K.A. (1996). Soil and Applied Phosphorus. Understanding Plant Nutrients. A2520. University of Wisconsin System Board of Regents and University of Wisconsin Extention, Cooperative Extention.
  • Shah, T.J, Rai, A.P, & Ma, A. (2019). Relationship of Phosphorus Fractions with Soil Properties in Mothbean Growing Acid Soils of North Western Indian Himalayas, Communications in Soil Science and Plant Analysis, https://doi.org/10.1080/00103624.2019.1604730
  • Shen, J., Rengel, Z., Tang, C., & Zhang, F. (2003). Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown lupinus albus. Plant and Soil, 248:199-206. https://doi.org/10.1023/A:1022375229625.
  • Saygan, E.P. (2007). Harran ovasındaki bazı toprak serilerinin fosfor fraksiyonları. T.C. Harran Üniversitesi Fen Bilimleri Enstitüsü. Toprak Anabilim Dalı, http://acikerisim.harran.edu.tr.
  • Tisdale, J.L., Nelson, W.L., & Beaton, J.D. (1985). Soil and Fertilizer Phosphorus in Soil Fertility and Fetlizers. Macmillan Publishing Company, New York, U.S.A. 189-248.
  • Turner, B.L., Cade-Menun, B.J., & Westermann, D.T. (2003). Organic phosphorus composition and potential bioavailability in semi-arid Arable soils of Western United States. Soil Sci. Soc. Am. J., 67(4):1168-1179. https://doi.org/10.2136/sssaj2003.1168.
  • U.S. Salinity Laboratory Staff (1954). Methods for Soil Characterization Diagnosis and İmprovement of Saline and Alkali Soils Agricultural Handbook. No: 60. U.S.A. Washington, D.C.
  • Uzunoğlu, S. (1992). Toprak Bünyesi ve Analiz Metotları. Tarım ve Köyişleri Bakanlığı. Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No:184, Teknik Yayın No: T–64, Ankara.
  • Valladares, G.S., Pereira, M.G., & Dos Anjos, U.H.C. (2003). Phosphate sorption in low activity clay soils. Bragantia Campinas, 62(1), 111–118.
  • Vance, C.P., Uhde-Stone, C., & Allan, D.L. (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol., 157:423–447. https://doi.org/10.1046/j.1469-8137.2003.00695.x
  • Voort, J. (2010). The effect of carbon on grass-encroachment in the Dutch coastal dunes. Master Thesis Research. Institute for Biodiversity and Ecosystem Dynamic.
  • Wagai, R., & Mayer, M.R. (2007). Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimical et Cosmochimica Acta, 71(1):25-35. https://doi.org/10.1016/j.gca.2006.08.047.
  • Walker, T.W., & Adams, A.F.R. (1958). Studies on soil organic matter:1. ınfluence of phosphorus content of organic phosphorus in grassland soil. Soil Sci., 85(6): 307-318.
  • Walkley, A., & Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter and a proposed modification of the cromic acid titration method. Soil Sci., 37(1): 29-38.
  • Wang, S., Jin, X., Pang, Y., Zhao, H., Zhao, W., & Wu, F. (2005). Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. J. of Colloid and Interface Sci., 289:339-346. https://doi.org/10.1016/j.jcis.2005.03.081.
  • Xu, X., Zhu, T., Nikonorova, N., & De Smet, I. (2019). Phosphorylation-mediated signalling in plants. In Annual Plant Reviews Online, ed. JA Roberts, pp. 909–32. Chichester, UK: Wiley and Sons
  • Yang, J.E., Jones, C.A., Kim, H.J., & Jacobsen, J.S. (2002). Soil inorganic phosphorus fractions and Olsen-P in phosphorus-responsive calcareous soils: Effects of fertilizer amount and incubation time. Soil Sci. And Plant Analysis, 33(5-6): 855–871. https://doi.org/10.1081/CSS-120003071.
  • Zhang, R., Wu, F., Liu, C., Fu, P., Li, W., Wang, L., Liao, H., & Guo, J. (2008). Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environmental Pollution, 152(2):366-372. https://doi.org/10.1016/j.envpol.2007.06.024.
  • Zhou, M., & Li, Y. (2001). Phosphorus sorption characteristics of calcareous soils and limestone from the southern everglades and adjacent farmlands. Soil Science Society of America Journal, 65(5):1404-1412. https://doi.org/10.2136/sssaj2001.6551404x.
There are 86 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other), Soil Sciences and Ecology
Journal Section dp
Authors

İlknur Yurdakul 0000-0002-0430-5958

Sadık Usta 0000-0001-5739-9962

Early Pub Date December 26, 2023
Publication Date December 27, 2023
Submission Date September 8, 2023
Published in Issue Year 2023

Cite

APA Yurdakul, İ., & Usta, S. (2023). Toprak bileşenlerinin bazı fosfor fraksiyonlarına etkisi. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(4), 610-623. https://doi.org/10.29050/harranziraat.1357243

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.