Research Article
BibTex RIS Cite

Biotic interactions of cultivated mushroom and green mold disease in compost and casing soil

Year 2021, , 13 - 22, 24.03.2021
https://doi.org/10.29050/harranziraat.795177

Abstract

Presence of Trichoderma aggressivum f. aggressivum (green mold disease) either in compost or casing soil causes significant yield losses in button mushroom (Agaricus bisporus) cultivation. The aim of this study was to examine biotic interactions between A. bisporus and T. aggressivum f. aggressivum in compost and casing soil. In the study, strains (brown and white) of A. bisporus and isolates (Şem1/1 and K3) of T. aggressivum f. aggressivum were used. Experiments (compost and casing soil) were conducted according to completely randomized design in factorial with four replications. Yield values of each experiment were established by weighing sporophores (mushrooms) in each plot. Mean yield values of each treatment were compared with others. Presence of the T. aggressivum f. aggressivum isolates in compost and casing soil significantly (P˂0.01) inhibited mycelial growth and fruiting body formation of both strains of A. bisporus. In the presence of the T. aggressivum f. aggressivum isolates in casing soil, average yield loss of the strains of A. bisporus was 36.41%, while it was 29.35% in the presence of the T. aggressivum f. aggressivum isolates in compost. Average yield loss of the white strain of A. bisporus was 49.68%, whereas it was 16.08% in the brown strain. The study revealed that presence of T. aggressivum f. aggressivum in casing soil could be much more negative influence on yield of A. bisporus than that of compost and brown strain of A. bisporus could be more resistant to T. aggressivum f. aggressivum than white strain.

Supporting Institution

General Directorate of Agricultural Research and Policies

Project Number

TAGEM/BSAD/16/7/02/03

References

  • Reference1 Anderson, M. G., Beyer, D. M., & Wuest, P. J., (2001). Yield comparison of hybrid agaricus mushroom strains as a measure of resistance to trichoderma green mold. Plant Disease, 85, 731-734. https://doi.org/10.1094/PDIS.2001.85.7.731
  • Reference2 Abd-Elsalam, K. A., Almohimeed, I., Moslem, M. A., & Bahkali, A. H., (2010). M13-microsatellite PCR and rDNA sequence markers for identification of Trichoderma (hypocreaceae) species in Saudi Arabian soil. Genetics and Molecular Research, 9, 2016-2024. https://doi.org/10.4238/vol9-4gmr908
  • Reference3 Beyer, D. M., Wuest, P. J., & Kremser, J. J., (2000). Evaluation of epidemiological factors and mushroom substrate characteristics influencing the occurrence and development of Trichoderma green mold. In: Science and cultivation of edible fungi, Van Griensven, (ed). Balkema, Rotterdam, The Netherlands, pp. 633˗640.
  • Reference4 Błaszczyk, L., Popiel, D., Chełkowski, J., Koczyk, G., Samuels, G. J., Sobieralski, K., & Siwulski, M., (2011). Species diversity of Trichoderma in Poland. Journal of Applied Genetics, 52, 233-243. https://doi.org/10.1007/s13353-011-0039-z
  • Reference5 Choudhary, D. K., (2011). First preliminary report on isolation and characterization of novel Acinetobacter spp. in casing soil used for cultivation of button mushroom, Agaricus bisporus (Lange) Imbach. International Journal of Microbiology, 2011, 790285. https://doi.org/10.1155/2011/790285
  • Reference6 Guthrie, J. L., & Castle, A. J., (2006). Chitinase production during interaction of Trichoderma aggressivum and Agaricus bisporus. Canadian Journal of Microbiology, 52, 961-967. https://doi.org/10.1139/w06-054
  • Reference7 Jiang, Y., Wang, J-L., Chen, J., Mao, L-J., Feng, X-X., Zhang, C-L., & Lin, F-C., (2016). Trichoderma biodiversity of agricultural fields in east China reveals a gradient distribution of species. Plos One, 11, e0160613. https://doi.org/10.1371/journal.pone.0160613
  • Reference8 Kosanović, D., Potoćnik, I., Duduk, B., Vukojević J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S., (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163, 218-230. https://doi.org/10.1111/aab.12048
  • Reference9 Krupke, O. A., Castle, A. J., & Rinker, D. L., (2003). The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycological Research, 107, 1467-1475. https://doi.org/10.1017/S0953756203008621
  • Reference10 Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D., & Hu, Q., (2018). A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness, 7, 125-133. https://doi.org/10.1016/j.fshw.2018.05.002
  • Reference11 Mamoun, M. L., Savoie, J-M., & Olivier, J. M., (2000). Interactions between the pathogen Trichoderma harzianum Th2 and Agaricus bisporus in mushroom compost. Mycologia, 92, 233-240. https://doi.org/10.1080/00275514.2000.12061150
  • Reference12 Mirkhani, F., & Alaei, H., (2015). Species diversity of indigenous Trichoderma from alkaline pistachio soils in Iran. Mycologia Iranica, 2, 22-37. https://doi.org/10.22043/MI.2015.14264
  • Reference13 O’Brien, M., Kavanagh, K., & Grogan, H., (2017). Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. European Journal of Plant Pathology, 147, 199-209. https://doi.org/10.1007/s10658-016-0992-9
  • Reference14 Potočnik, I., Stepanović, M., Rekanović, E., Todorović, B., & Milijašević-Marčić, S., (2015). Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake. Pesticidi i fitomedicina, 30, 201-208. https://doi.org/10.2298/PIF1504201P
  • Reference15 Samuels, G. J., Dodd, S. L., Gams, W., Castlebury, L. A., & Petrini, O., (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146-170. https://doi.org/10.2307/3761854
  • Reference16 Savoie, J-M., Iapicco, R., & Largeteau-Mamoun, M. L., (2001). Factors infuencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycological Research, 105, 1348-1356. https://doi.org/10.1017/S0953756201004993
  • Reference17 Sjaarda, C. P., Abubaker, K. S., & Castle, A. J., (2015). Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Microbial Biotechnology, 8, 918-929. https://doi.org/10.1111/1751-7915.12277
  • Reference18 Sharma, S. R., Kumar, S., & Sharma, V. P., 2007. Diseases and competitor moulds of mushrooms and their management. Technical Bulletin, National Research Centre for Mushroom (Indian Council of Agricultural Research), Chambaghat, pp. 1-81. Retrieved from https://nrcmushroom.org/Disease___Competitor_Moulds__Dr._S.R._Sharma_.pdf
  • Reference19 Sharma, K. K., & Singh, U. S., (2014). Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. Journal of Applied and Natural Science, 6, 451-456. Retrieved from https://core.ac.uk/download/pdf/158352696.pdf
  • Reference20 Sobieralski, K., Siwulski, M., Blaszczyk, L., Fruzynska-Józwiak, D., & Lisiecka, J., (2012). The effect of infestation with isolates of Trichoderma sp. on mycelium growth and yielding in single-spore heterokaryotic cultures of Agaricus bisporus (Lange) Imbach. Acta Scientiarum Polonorum Hortorum Cultus, 11, 47-57. Retrieved from http://www.hortorumcultus.actapol.net/pub/11_6_47.pdf
  • Reference21 Szczech, M., Staniaszek, M., Habdas, H., Uliński, Z., & Szymański J., (2008). Trichoderma spp. the cause of green mold on Polish mushroom farms. Vegetable Crops Research Bulletin, 69, 105-114. https://doi.org/10.2478/v10032-008-0025-0
  • Reference22 Szukács, G., & Geösel, A., (2018). Effects of different casing onto the yield of button mushroom. Review on Agriculture and Rural Development, 7, 77-80. Retrieved from https://ojs.bibl.u-szeged.hu/index.php/rard/article/view/33104
  • Reference23 Williams, J., Clarkson, J. M., Mills, P. R., & Cooper, R. M., (2003). Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Applied and Environmental Microbiology, 69, 4192-4199. https://doi.org/10.1128/AEM.69.7.4192-4199.2003

Kültür mantarı ve yeşil küf hastalığının kompost ve örtü toprağındaki biyotik interaksiyonları

Year 2021, , 13 - 22, 24.03.2021
https://doi.org/10.29050/harranziraat.795177

Abstract

Trichoderma aggressivum f. aggressivum (yeşil küf hastalığı)’ nın kompost ya da örtü toprağında bulunması kültür mantarı (Agaricus bisporus) yetiştiriciliğinde önemli verim kayıplarına neden olmaktadır. Bu çalışmanın amacı, A. bisporus ve T. aggressivum f. aggressivum arasındaki biyotik interaksiyonların kompost ve örtü toprağında incelenmesidir. Çalışmada, A. bisporus’un ırkları (kahverengi ve beyaz) ve T. aggressivum f. aggressivum’ un izolatları (Şem1/1 ve K3) kullanılmıştır. Denemeler (kompost ve örtü toprağı) tesadüf parsellerinde faktöriyel deneme desenine göre dört tekerrürlü olarak yürütülmüştür. Her bir denemenin verim değerleri her parseldeki mantarların tartılmasıyla belirlenmiştir. Her muamelenin ortalama verim değerleri diğerleri ile kıyaslanmıştır. T. aggressivum f. aggressivum izolatlarının kompost ve örtü toprağında bulunması, A. bisporus’un her iki ırkının misel gelişmesi ve mantar oluşumlarını önemli ölçüde (P˂0.01) engellemiştir. T. aggressivum f. aggressivum izolatlarının örtü toprağında bulunması halinde, A. bisporus ırklarında ortalama verim kaybı % 36.41 olurken, T. aggressivum f. aggressivum izoltlarının kompostta bulunması halinde ise bu değer % 29.35 olmuştur. A. bisporus’un beyaz ırkında ortalama verim kaybı % 49.68 olurken, kahverengi ırkta ise verim kaybı % 16.08 olmuştur. Çalışma, T. aggressivum f. aggressivum‘un örtü toprağında bulunmasının, kompostta bulunmasına göre A. bisporus’un verimi üzerine çok daha fazla negatif etki oluşturabildiğini ve A. bisporus’un kahverengi ırkının beyaz ırka göre T. aggressivum f. aggressivum’a daha dayanıklı olduğunu ortaya koymuştur.

Project Number

TAGEM/BSAD/16/7/02/03

References

  • Reference1 Anderson, M. G., Beyer, D. M., & Wuest, P. J., (2001). Yield comparison of hybrid agaricus mushroom strains as a measure of resistance to trichoderma green mold. Plant Disease, 85, 731-734. https://doi.org/10.1094/PDIS.2001.85.7.731
  • Reference2 Abd-Elsalam, K. A., Almohimeed, I., Moslem, M. A., & Bahkali, A. H., (2010). M13-microsatellite PCR and rDNA sequence markers for identification of Trichoderma (hypocreaceae) species in Saudi Arabian soil. Genetics and Molecular Research, 9, 2016-2024. https://doi.org/10.4238/vol9-4gmr908
  • Reference3 Beyer, D. M., Wuest, P. J., & Kremser, J. J., (2000). Evaluation of epidemiological factors and mushroom substrate characteristics influencing the occurrence and development of Trichoderma green mold. In: Science and cultivation of edible fungi, Van Griensven, (ed). Balkema, Rotterdam, The Netherlands, pp. 633˗640.
  • Reference4 Błaszczyk, L., Popiel, D., Chełkowski, J., Koczyk, G., Samuels, G. J., Sobieralski, K., & Siwulski, M., (2011). Species diversity of Trichoderma in Poland. Journal of Applied Genetics, 52, 233-243. https://doi.org/10.1007/s13353-011-0039-z
  • Reference5 Choudhary, D. K., (2011). First preliminary report on isolation and characterization of novel Acinetobacter spp. in casing soil used for cultivation of button mushroom, Agaricus bisporus (Lange) Imbach. International Journal of Microbiology, 2011, 790285. https://doi.org/10.1155/2011/790285
  • Reference6 Guthrie, J. L., & Castle, A. J., (2006). Chitinase production during interaction of Trichoderma aggressivum and Agaricus bisporus. Canadian Journal of Microbiology, 52, 961-967. https://doi.org/10.1139/w06-054
  • Reference7 Jiang, Y., Wang, J-L., Chen, J., Mao, L-J., Feng, X-X., Zhang, C-L., & Lin, F-C., (2016). Trichoderma biodiversity of agricultural fields in east China reveals a gradient distribution of species. Plos One, 11, e0160613. https://doi.org/10.1371/journal.pone.0160613
  • Reference8 Kosanović, D., Potoćnik, I., Duduk, B., Vukojević J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S., (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163, 218-230. https://doi.org/10.1111/aab.12048
  • Reference9 Krupke, O. A., Castle, A. J., & Rinker, D. L., (2003). The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycological Research, 107, 1467-1475. https://doi.org/10.1017/S0953756203008621
  • Reference10 Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D., & Hu, Q., (2018). A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness, 7, 125-133. https://doi.org/10.1016/j.fshw.2018.05.002
  • Reference11 Mamoun, M. L., Savoie, J-M., & Olivier, J. M., (2000). Interactions between the pathogen Trichoderma harzianum Th2 and Agaricus bisporus in mushroom compost. Mycologia, 92, 233-240. https://doi.org/10.1080/00275514.2000.12061150
  • Reference12 Mirkhani, F., & Alaei, H., (2015). Species diversity of indigenous Trichoderma from alkaline pistachio soils in Iran. Mycologia Iranica, 2, 22-37. https://doi.org/10.22043/MI.2015.14264
  • Reference13 O’Brien, M., Kavanagh, K., & Grogan, H., (2017). Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. European Journal of Plant Pathology, 147, 199-209. https://doi.org/10.1007/s10658-016-0992-9
  • Reference14 Potočnik, I., Stepanović, M., Rekanović, E., Todorović, B., & Milijašević-Marčić, S., (2015). Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake. Pesticidi i fitomedicina, 30, 201-208. https://doi.org/10.2298/PIF1504201P
  • Reference15 Samuels, G. J., Dodd, S. L., Gams, W., Castlebury, L. A., & Petrini, O., (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146-170. https://doi.org/10.2307/3761854
  • Reference16 Savoie, J-M., Iapicco, R., & Largeteau-Mamoun, M. L., (2001). Factors infuencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycological Research, 105, 1348-1356. https://doi.org/10.1017/S0953756201004993
  • Reference17 Sjaarda, C. P., Abubaker, K. S., & Castle, A. J., (2015). Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Microbial Biotechnology, 8, 918-929. https://doi.org/10.1111/1751-7915.12277
  • Reference18 Sharma, S. R., Kumar, S., & Sharma, V. P., 2007. Diseases and competitor moulds of mushrooms and their management. Technical Bulletin, National Research Centre for Mushroom (Indian Council of Agricultural Research), Chambaghat, pp. 1-81. Retrieved from https://nrcmushroom.org/Disease___Competitor_Moulds__Dr._S.R._Sharma_.pdf
  • Reference19 Sharma, K. K., & Singh, U. S., (2014). Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. Journal of Applied and Natural Science, 6, 451-456. Retrieved from https://core.ac.uk/download/pdf/158352696.pdf
  • Reference20 Sobieralski, K., Siwulski, M., Blaszczyk, L., Fruzynska-Józwiak, D., & Lisiecka, J., (2012). The effect of infestation with isolates of Trichoderma sp. on mycelium growth and yielding in single-spore heterokaryotic cultures of Agaricus bisporus (Lange) Imbach. Acta Scientiarum Polonorum Hortorum Cultus, 11, 47-57. Retrieved from http://www.hortorumcultus.actapol.net/pub/11_6_47.pdf
  • Reference21 Szczech, M., Staniaszek, M., Habdas, H., Uliński, Z., & Szymański J., (2008). Trichoderma spp. the cause of green mold on Polish mushroom farms. Vegetable Crops Research Bulletin, 69, 105-114. https://doi.org/10.2478/v10032-008-0025-0
  • Reference22 Szukács, G., & Geösel, A., (2018). Effects of different casing onto the yield of button mushroom. Review on Agriculture and Rural Development, 7, 77-80. Retrieved from https://ojs.bibl.u-szeged.hu/index.php/rard/article/view/33104
  • Reference23 Williams, J., Clarkson, J. M., Mills, P. R., & Cooper, R. M., (2003). Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Applied and Environmental Microbiology, 69, 4192-4199. https://doi.org/10.1128/AEM.69.7.4192-4199.2003
There are 23 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Araştırma Makaleleri
Authors

Mehmet Aydoğdu 0000-0001-5267-4654

İlker Kurbetli 0000-0001-8991-4412

Project Number TAGEM/BSAD/16/7/02/03
Publication Date March 24, 2021
Submission Date September 15, 2020
Published in Issue Year 2021

Cite

APA Aydoğdu, M., & Kurbetli, İ. (2021). Biotic interactions of cultivated mushroom and green mold disease in compost and casing soil. Harran Tarım Ve Gıda Bilimleri Dergisi, 25(1), 13-22. https://doi.org/10.29050/harranziraat.795177

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.