Research Article
BibTex RIS Cite

Nicotiana tabacum L. ÜZERİNE AŞILANMIŞ Lycopersicon esculentum Mill.’in RASTGELE ÇOĞALTILMIŞ POLİMORFİK DNA ANALİZİ İLE GENETİK STABİLİTENİN BELİRLENMESİ

Year 2012, Volume: 16 Issue: 2, 37 - 44, 20.02.2014

Abstract

Aşılama, tarım ve ormancılıkta sıkça kullanılan bir yöntemdir. Aşılı bitkiler, kalem ve anaç bitkilerinden farklı fenotipik özellikler gösterebilir. Yapılan çalışmalar, aşılamanın genetik varyasyonu ve kalıtımı etkileyebileceğini belirtmiştir. Genetik belirteç yöntemi olarak Rastgele Çoğaltılmış Polimorfik DNA (Random Amplified Polymorphic DNA Analysis; RAPD) analizinin kullanılması ile genotipik değişimler belirlenebilmektedir. Bu çalışmada amaç, tütün üzerine aşılanmış domates bitkisindeki genetik stabilitenin veya moleküler düzeyde aşı etkili değişimlerin RAPD yöntemi ile tanımlanmasıdır. Aşılama deneylerinde kalem olarak domates bitkisinin (Lycopersicum esculantum Mill.) ticari H2274 çeşidi, anaç olarak ise olan tütün bitkisinin (Nicotiana tabacum L.) Samsun çeşidi kullanılmıştır. Aşılamalar yarma aşılama tekniği ile yapılmış ve sera ortamına aktarılmıştır. Aşılamadan 60 gün sonra aşılı ve aşısız bitkilerin taze yapraklarından DNA izole edilmiştir. Kontrol olarak kullanılan aşısız domates bitkilerinden 8 adet primer ile elde edilen RAPD profillerde toplam 102 adet bant tespit edilmiştir. Aşılı örneklerdeki polimorfizm oranı %2.94 ve genomik kalıp stabilite oranı ise %97.06 olarak hesaplanmıştır. Yüksek genetik stabiliteye sahip aşılama teknikleri, genetik transformasyon olmaksızın ürün eldesini arttırarak tarımsal uygulamaları geliştirebilmektedir. 

References

  • Atienzar, F.A., Cordi, B. and Evenden, A.J. 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology and Chemistry, 18:2275-2282.
  • Beceril, C., Ferrero, M. and Sanz, F. 1999. Detection of mitomycin C-induced genetic damage in fish cells by use of RAPD. Mutagenesis, 14:449-456.
  • Chen, H. and Wang, Y.Q. 2006. Genetic variation in the graft union of tomato andeggplant. American-Eurasian Journal of Agricultural and Environmental Sciences, 1(1):37-41.
  • Danylchenko, O. and Sorochinsky, B. 2005. Use of RAPD assay for the detection of mutation changes in plant DNA induced by UV-B and R-rays. BMC Plant Biology, 5(1):59.
  • Ellsworth, D.L., Rittenhouse, K.D. and Honeycutt, R.L. 1993. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Bio Techniques, 14(2):214-217.
  • Ersayın-Yaşınok, A., Şahin, F.I., Eyidoğan, F., Kuru, M. and Haberal, M. 2008. Changes in Nicotine Levels of Nicotine in Fruits and Leaves of the Tobacco-Grafted Tomatoes. Dialysis, Transplantation and Burns, 19(2):61-68.
  • Hirata, Y. 1980. Graft-induced changes in skin and flesh color in tomato (Lycopersicon esculentum Mill.). Journal of Japanese Society for Horticultural Science, 49:211-216.
  • Hirata, Y., Noguchi, T., Kita, M., Kan, T. and Ledoux, L. 1995. Graft transformation and its mechanism in higher plants. In Modification of Gene Expression and Non-Mendelian Inheritance, (Eds K. Oono and F. Takaiwa). Japan: Proc US-Jpn Joint Meet. NIAR, 325-340.
  • Hirata, Y. and Yagishita, N. 1986. Graft-induced changes in soybean storage proteins. I. Appearance of the changes. Euphytica, 35:395-401.
  • Khah, E.M., Kakava, E., Mavromatis, A., Chachalis, D. and Goulas, C. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8(1):3-7.
  • Murfet, I.C. 1985. Pisum sativum L. In Handbook of Flowering (IV), (Eds A.H. Halevy). New York and London: Boca Raton, 97-126.
  • Ohta, Y. 1991. Graft-transformation, the mechanism for graft-induced genetic changes in higher plants. Euphytica, 55(1):91-99.
  • Pandey, K.K. 1976. Genetic transformation and “graft-hybridization” in flowering plants. Theoretical and Applied Genetics, 47:299-302.
  • Rout, G.R., Das, P., Goel, S. and Raina, S.N. 1998. Determination of genetic stability of micropropagated plants of ginger using Random Amplified polymorphic DNA (RAPD) markers. Botanical Bulletin of Academia Sinica, 39:23-27.
  • Selvi, B.S., Ponnuswami, V. and Kavitha, P.S. 2008. Use of RAPD Assay for the Detection of Mutation Changes in Aonla (Emblica officinalis Gaertn.). Advances in Natural and Applied Sciences, 2(3):129-134.
  • Stegemann, S. and Bock, R. 2009. Exchange of genetic material between cells in plant tissue grafts. Science, 1; 324(5927):649-51.
  • Taller, J., Hirata, Y., Yagishita, N., Kita, M. and Ogata, N. 1998. Graft-induced genetic changes and the inheritance of several characteristics in pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 82:68-79.
  • Taller, J., Yagishita, N. and Hirata, Y. 1999. Graft-induced variants as a source of novel characteristics in the breeding of pepper (Capsicum annuum L.) Euphytica, 108:73-78.
  • Zhang, D.H., Meng, Z.H., Xiao, W.M., Wang, X.C. and Sodmergon. 2002. Graft-induced Inheritable Variation in Mungbean and Its Application in Mungbean Breeding. Acta Botanica Sinica, 44 (7):832-837.
  • Zoubenko, O.V., Allison, L.A., Svab, Z. and Maliga, P. 1994. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited. Nucleic Acids Research, 22:3819.

DETERMINATION of GENETIC STABILITY of TOMATO (Lycopersicon esculentum Mill.) GRAFTED on TOBACCO (Nicotiana tabacum L.) by RANDOM AMPLIFIED POLYMORPHIC DNA ANALYSIS

Year 2012, Volume: 16 Issue: 2, 37 - 44, 20.02.2014

Abstract

Grafting has been widely used in agriculture, forestry and horticulture. Grafted plants may exhibit some phenotypic variations from scions and rootstock plants. Existance and possible mechanisms of graft induced genetic variation and inheritance of graft induced characters has been debated among researchers. Use of random amplified polymorphic DNA (RAPD) as genetic marker assay enables detection of genotypic alterations. The prupose of the present study was assessment of genetic stability or any graftinduced changes at molecular level in tomato grafted on tobacco rootstock by RAPD analysis. Nicotiana tabacum L. cv. Samsun was used as rootstock and a Lycopersicon esculentum Mill. commercial cv. H2274 was used as scion in grafts. Plants were grafted by cleft grafting method and transferred to soil field in greenhouse. DNA was isolated from fresh leaves of grafted and non-grafted plants 60 days after
grafting. RAPD analysis revealed that 8 primers gave a total of 102 bands in the profiles of non-grafted tomato plants. Polymorphism of the grafted tomato plants was caluculated as 2.94% and in concordance, Genomic template stability (GTS) was 97.06%. Succesive grafting with high genomic stability, may improve crop yield in agricultural practices without involvement of genetic transformation.

References

  • Atienzar, F.A., Cordi, B. and Evenden, A.J. 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology and Chemistry, 18:2275-2282.
  • Beceril, C., Ferrero, M. and Sanz, F. 1999. Detection of mitomycin C-induced genetic damage in fish cells by use of RAPD. Mutagenesis, 14:449-456.
  • Chen, H. and Wang, Y.Q. 2006. Genetic variation in the graft union of tomato andeggplant. American-Eurasian Journal of Agricultural and Environmental Sciences, 1(1):37-41.
  • Danylchenko, O. and Sorochinsky, B. 2005. Use of RAPD assay for the detection of mutation changes in plant DNA induced by UV-B and R-rays. BMC Plant Biology, 5(1):59.
  • Ellsworth, D.L., Rittenhouse, K.D. and Honeycutt, R.L. 1993. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Bio Techniques, 14(2):214-217.
  • Ersayın-Yaşınok, A., Şahin, F.I., Eyidoğan, F., Kuru, M. and Haberal, M. 2008. Changes in Nicotine Levels of Nicotine in Fruits and Leaves of the Tobacco-Grafted Tomatoes. Dialysis, Transplantation and Burns, 19(2):61-68.
  • Hirata, Y. 1980. Graft-induced changes in skin and flesh color in tomato (Lycopersicon esculentum Mill.). Journal of Japanese Society for Horticultural Science, 49:211-216.
  • Hirata, Y., Noguchi, T., Kita, M., Kan, T. and Ledoux, L. 1995. Graft transformation and its mechanism in higher plants. In Modification of Gene Expression and Non-Mendelian Inheritance, (Eds K. Oono and F. Takaiwa). Japan: Proc US-Jpn Joint Meet. NIAR, 325-340.
  • Hirata, Y. and Yagishita, N. 1986. Graft-induced changes in soybean storage proteins. I. Appearance of the changes. Euphytica, 35:395-401.
  • Khah, E.M., Kakava, E., Mavromatis, A., Chachalis, D. and Goulas, C. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8(1):3-7.
  • Murfet, I.C. 1985. Pisum sativum L. In Handbook of Flowering (IV), (Eds A.H. Halevy). New York and London: Boca Raton, 97-126.
  • Ohta, Y. 1991. Graft-transformation, the mechanism for graft-induced genetic changes in higher plants. Euphytica, 55(1):91-99.
  • Pandey, K.K. 1976. Genetic transformation and “graft-hybridization” in flowering plants. Theoretical and Applied Genetics, 47:299-302.
  • Rout, G.R., Das, P., Goel, S. and Raina, S.N. 1998. Determination of genetic stability of micropropagated plants of ginger using Random Amplified polymorphic DNA (RAPD) markers. Botanical Bulletin of Academia Sinica, 39:23-27.
  • Selvi, B.S., Ponnuswami, V. and Kavitha, P.S. 2008. Use of RAPD Assay for the Detection of Mutation Changes in Aonla (Emblica officinalis Gaertn.). Advances in Natural and Applied Sciences, 2(3):129-134.
  • Stegemann, S. and Bock, R. 2009. Exchange of genetic material between cells in plant tissue grafts. Science, 1; 324(5927):649-51.
  • Taller, J., Hirata, Y., Yagishita, N., Kita, M. and Ogata, N. 1998. Graft-induced genetic changes and the inheritance of several characteristics in pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 82:68-79.
  • Taller, J., Yagishita, N. and Hirata, Y. 1999. Graft-induced variants as a source of novel characteristics in the breeding of pepper (Capsicum annuum L.) Euphytica, 108:73-78.
  • Zhang, D.H., Meng, Z.H., Xiao, W.M., Wang, X.C. and Sodmergon. 2002. Graft-induced Inheritable Variation in Mungbean and Its Application in Mungbean Breeding. Acta Botanica Sinica, 44 (7):832-837.
  • Zoubenko, O.V., Allison, L.A., Svab, Z. and Maliga, P. 1994. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited. Nucleic Acids Research, 22:3819.
There are 20 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Araştırma Makaleleri
Authors

Didem Körpe This is me

Özlem İşeri This is me

Feride Şahin This is me

Mehmet Haberal This is me

Publication Date February 20, 2014
Submission Date February 20, 2014
Published in Issue Year 2012 Volume: 16 Issue: 2

Cite

APA Körpe, D., İşeri, Ö., Şahin, F., Haberal, M. (2014). DETERMINATION of GENETIC STABILITY of TOMATO (Lycopersicon esculentum Mill.) GRAFTED on TOBACCO (Nicotiana tabacum L.) by RANDOM AMPLIFIED POLYMORPHIC DNA ANALYSIS. Harran Tarım Ve Gıda Bilimleri Dergisi, 16(2), 37-44.

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.