Research Article
BibTex RIS Cite

Effect of Salicylic Acid on Some Morphological, Physiological and Biochemical Parameters of Basil Plant (Ocimum basilicum L.) Which was Subjected to Salt (NaCl) Stress

Year 2017, Volume: 21 Issue: 3, 332 - 342, 27.09.2017
https://doi.org/10.29050/harranziraat.339489

Abstract

Salinity is an important
abiotic stress which reduces the productivity and quality of agricultural areas
by also negatively affecting plant growth and development. This study was
conducted to determine changes on some morphological, physiological and
biochemical parameters caused by different salt concentrations as well as to
determine the effect of exogenous salicylic acid (SA) application on these
changes for basil plant (Ocimum
basilicum 
L.) which has an
economical value due to its nice odor and essential oil content. Plant heigth,
number of tree branches, fresh and dry herbal weights, pigment contents of
leaves and antioxidant enzyme activities decreased for plants on which only
NaCl (25 and 50 mM) application was made but foliar SA application was not;
while malondialdehyde (MDA) content and essential oil ratios increased on
leaves of the plants. While plant heigth, number of tree branches, fresh and
dry herbal weights, pigment contents of leaves did not generally change for
plants which were subjected to NaCl stress after foliar SA application; MDA
content, essential oil ratios and antioxidant enzyme activities increased. This
study has shown that exogenous SA application decreased in general negative effects
caused by salt stress. 

References

  • Ashraf, M., Mukhtar, N., Rehman, S., Rha, E.S., 2004. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishops weed (Ammi majus L). Photosynthetica. 42 (4): 543-550.
  • Baghizadeh, A., Hajmohammadrezaei, M., 2011. Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. The Journal of Stress Physiology & Biochemistry. 7(1): 55-65.
  • Bor, M., Özdemir, F., Türkan, I., 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science. 164: 77-84.
  • Cakmak, I., 1994. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-deficient and potassium deficient leaves, but not in phosphorus-deficient leaves. The Journal of Experimental Botany. 45: 1259–1266.
  • Carter, A.G., Spiering, B.A., 2002. Optical properties of intact leaves for estimating chlorophyll concentration. Journal of Environmental Quality. 31: 1424-1432.
  • Çulha, Ş., Çakırlar, H., 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi. 11:11-34.
  • De-Kok, L., Graham, M., 1980. Levels of pigments, soluble proteins, amino acids and sulfhydryl compounds in foliar tissue of Arabidopsis thaliana during dark induced and natural senescence. Plant Physiology and Biochemistry. 27: 133-142.
  • Delavari, M., Enteshari, S., Manoochehri Kalantari, K., 2014. Effects of Response of Ocimum basilicum to the interactive effect of salicylic acid and salinity stress, Iranian Journal of Plant Physiology, 4(2):983-990.
  • Delavari, P.M., Baghizadeh, A., Enteshari, S.H., Kalantari, Kh.M., Yazdanpanah, A., Mousavi, E.A., 2010. The Effects of Salicylic Acid on Some of Biochemical and Morphological Characteristic of Ocimum Basilicucm under Salinity Stress. Australian Journal of Basic and Applied Sciences, 4(10): 4832-4845.
  • Duncan, D.B., 1955. Multiple range and multiple F test sbiometrics. Int. Biom. Soc. 11(1): 1–42.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany. 68: 14–25.
  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplast, I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125: 180–198.
  • Hesami, S., Nabizadeh, E., Rahimi, A., Rokhzadi, A., 2012. Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (Coriandrum sativum) in field conditions, Environmental and Experimental Biology 10: 113–116.
  • Jiang, L., Yang, H., 2009. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicology and Environmental Safety. 72 (6): 1687-1693.
  • Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., Acet, T., 2011. Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation. 64: 27–37.
  • Kaya, A., Doganlar, Z.B., 2016. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicology and Environmental Safety 124: 470–479.
  • Kaya, A., Yigit, E., 2014. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotoxicology and Environmental Safety. 106: 232–238.
  • Khaliq, S., Zafar, Z.U., Athar, H.R., Khaliq, R., 2014. Physiological and biochemical basis of salt tolerance in Ocimum basilicum L. Journal of Medicinal Plants Studies. 2(1): 18-27.
  • Larkindale, J., Knight, M., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128: 682–695.
  • Li, G., Wan, S., Zhou, J., Yang, Z., Qin, P., 2010 Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products. 31: 13–19.
  • Lichtenthaler, K., Welburn, A.R., 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Botanisches Institutder Univeristat, Kaiserstran βe 12, Postfach pp. 591-592.
  • Mac Adam, J.W., Nelson, C.J., Sharp, R.E., 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology. 99: 872-878.
  • Mohammadzadeh, M., Arouee, H., Neamati, S.H., Shoor, M., 2013. Effect of Different levels of Salt Stress and Salicylic Acid on Morphological Characteristics of four Mass Native Basils (Ocimum basilcum), International Journal of Agronomy and Plant Production. 4: 3590-3596.
  • Morales, C., Cusido, R.M., Palazon, J., Bonfill, M., 1993. Response of Digitalis purpurea plants to temporary salinity. Journal of Plant Nutrition. 16 (2): 327-335.
  • Mostofa, M.G., Fujita, M., Phan, Tran, L.S., 2015. Nitric oxide mediates hydrogen peroxide- and salicylic acid induced salt tolerance in rice (Oryza sativa L.) seedlings, Plant Growth Regulation. 77: 265–277.
  • Munns, R., 2003. Comparative physiology of salt and water stress. Plant Cell & Environmental. 25: 239–50.
  • Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology. 22: 867–880.
  • Özgen, Y., Arslan, N., 2014. Ankara Şartlarında Bazı Reyhan (Ocimum basilicum L.) Hatlarının Tarımsal Özelliklerinin Belirlenmesi, II. Tıbbi ve Aromatik Bitkiler Sempozyumu. Yalova, s. 169- 173.
  • Parizi, M.D., Manouchehri Kalantari, K., Enteshari, S., Baghizadeh, A., 2011. Effect of salicylic acid and salt stress on Na and K content in Ocimum basilicum, Iranian Journal of Plant Physiology 1(3): 133-139.
  • Qing, X., Zhao ,X., Hu, C., Wang, P., Zhang, Y., Zhang, X., Wang, P., Shi, H., Shi, H., Jia, F., Qu, C., 2015. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicology and Environmental Safety. 114: 179–189.
  • Qiu, Z., Guo, J., Zhu, A., Zhang, L., Zhang, M., 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety. 104: 202-208.
  • Santos, C.V., 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae. 103: 93–99.
  • Tarchoune, I., Degl’Innıcenti, E., Kaddour, R., Gıidi, L., Lachaal, M., Navari-Izzo, F., Ouerghi, Z., 2012. Effects of NaCl or Na2SO4 Salinity on Plant Growth, Ion Content and Photosynthetic Activity in Ocimum basilicum L. Acta Physiologiae Plantarum 34(2):607-615.
  • Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z., Navari-Izzo, F., 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry 48: 772-777.
  • Telci, İ., 2005. Reyhan (Ocimum basilicum L.) Genotiplerinde Uygun Biçim Yüksekliklerinin Belirlenmesi, Gazi Osmanpaşa Üniv. Ziraat Fak. Dergisi, 22 (2): 77- 83.
  • Wierdak, R.N., 2013. Morphological and chemical variability of Ocimum basilicum L. (Lamiaceae). Modern Phytomorphology. 3: 115–118.

Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri

Year 2017, Volume: 21 Issue: 3, 332 - 342, 27.09.2017
https://doi.org/10.29050/harranziraat.339489

Abstract

Tuzluluk bitki büyüme ve
gelişmesini olumsuz etkileyerek tarımsal alanlarda verim ve kaliteyi düşüren
önemli bir abiyotik strestir. Bu çalışma, güzel kokusu ve uçucu yağ içeriği ile
ekonomik bir değere sahip olan reyhan (O
cimum
basilicum
L.) bitkisinde farklı tuz konsantrasyonlarının bazı morfolojik,
fizyolojik ve biyokimyasal parametreler üzerinde meydana getirdiği değişimleri
belirlemek ve bu değişimler üzerine dışsal salisilik asit (SA) uygulamasının
etkilerini saptamak amacı ile yapılmıştır. Yapraklara SA uygulaması yapılmadan
sadece NaCl (25 ve 50 mM) uygulanan bitkilerde bitki boyu, dal sayısı, taze ve
kuru herba ağırlıkları, yaprakların pigment içerikleri ve antioksidan enzim
aktiviteleri azalmış, buna karşın yapraklardaki malondialdehit (MDA) içeriği ve
uçucu yağ oranları artmıştır. Yapraklara 0.5 mM SA uygulaması yapıldıktan sonra
NaCl stresine maruz kalan bitkilerde ise bitki boyu, dal sayısı, taze ve kuru
herba ağırlıkları ile pigment içerikleri genel olarak değişmezken, MDA içeriği,
uçucu yağ oranları ve antioksidan enzim aktiviteleri artmıştır. Bu çalışma,
dışsal SA uygulamasının genel olarak tuz stresinin sebep olduğu olumsuz
etkileri azalttığını göstermiştir.

References

  • Ashraf, M., Mukhtar, N., Rehman, S., Rha, E.S., 2004. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishops weed (Ammi majus L). Photosynthetica. 42 (4): 543-550.
  • Baghizadeh, A., Hajmohammadrezaei, M., 2011. Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. The Journal of Stress Physiology & Biochemistry. 7(1): 55-65.
  • Bor, M., Özdemir, F., Türkan, I., 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science. 164: 77-84.
  • Cakmak, I., 1994. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-deficient and potassium deficient leaves, but not in phosphorus-deficient leaves. The Journal of Experimental Botany. 45: 1259–1266.
  • Carter, A.G., Spiering, B.A., 2002. Optical properties of intact leaves for estimating chlorophyll concentration. Journal of Environmental Quality. 31: 1424-1432.
  • Çulha, Ş., Çakırlar, H., 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi. 11:11-34.
  • De-Kok, L., Graham, M., 1980. Levels of pigments, soluble proteins, amino acids and sulfhydryl compounds in foliar tissue of Arabidopsis thaliana during dark induced and natural senescence. Plant Physiology and Biochemistry. 27: 133-142.
  • Delavari, M., Enteshari, S., Manoochehri Kalantari, K., 2014. Effects of Response of Ocimum basilicum to the interactive effect of salicylic acid and salinity stress, Iranian Journal of Plant Physiology, 4(2):983-990.
  • Delavari, P.M., Baghizadeh, A., Enteshari, S.H., Kalantari, Kh.M., Yazdanpanah, A., Mousavi, E.A., 2010. The Effects of Salicylic Acid on Some of Biochemical and Morphological Characteristic of Ocimum Basilicucm under Salinity Stress. Australian Journal of Basic and Applied Sciences, 4(10): 4832-4845.
  • Duncan, D.B., 1955. Multiple range and multiple F test sbiometrics. Int. Biom. Soc. 11(1): 1–42.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany. 68: 14–25.
  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplast, I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125: 180–198.
  • Hesami, S., Nabizadeh, E., Rahimi, A., Rokhzadi, A., 2012. Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (Coriandrum sativum) in field conditions, Environmental and Experimental Biology 10: 113–116.
  • Jiang, L., Yang, H., 2009. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicology and Environmental Safety. 72 (6): 1687-1693.
  • Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., Acet, T., 2011. Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation. 64: 27–37.
  • Kaya, A., Doganlar, Z.B., 2016. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicology and Environmental Safety 124: 470–479.
  • Kaya, A., Yigit, E., 2014. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotoxicology and Environmental Safety. 106: 232–238.
  • Khaliq, S., Zafar, Z.U., Athar, H.R., Khaliq, R., 2014. Physiological and biochemical basis of salt tolerance in Ocimum basilicum L. Journal of Medicinal Plants Studies. 2(1): 18-27.
  • Larkindale, J., Knight, M., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128: 682–695.
  • Li, G., Wan, S., Zhou, J., Yang, Z., Qin, P., 2010 Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products. 31: 13–19.
  • Lichtenthaler, K., Welburn, A.R., 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Botanisches Institutder Univeristat, Kaiserstran βe 12, Postfach pp. 591-592.
  • Mac Adam, J.W., Nelson, C.J., Sharp, R.E., 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology. 99: 872-878.
  • Mohammadzadeh, M., Arouee, H., Neamati, S.H., Shoor, M., 2013. Effect of Different levels of Salt Stress and Salicylic Acid on Morphological Characteristics of four Mass Native Basils (Ocimum basilcum), International Journal of Agronomy and Plant Production. 4: 3590-3596.
  • Morales, C., Cusido, R.M., Palazon, J., Bonfill, M., 1993. Response of Digitalis purpurea plants to temporary salinity. Journal of Plant Nutrition. 16 (2): 327-335.
  • Mostofa, M.G., Fujita, M., Phan, Tran, L.S., 2015. Nitric oxide mediates hydrogen peroxide- and salicylic acid induced salt tolerance in rice (Oryza sativa L.) seedlings, Plant Growth Regulation. 77: 265–277.
  • Munns, R., 2003. Comparative physiology of salt and water stress. Plant Cell & Environmental. 25: 239–50.
  • Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology. 22: 867–880.
  • Özgen, Y., Arslan, N., 2014. Ankara Şartlarında Bazı Reyhan (Ocimum basilicum L.) Hatlarının Tarımsal Özelliklerinin Belirlenmesi, II. Tıbbi ve Aromatik Bitkiler Sempozyumu. Yalova, s. 169- 173.
  • Parizi, M.D., Manouchehri Kalantari, K., Enteshari, S., Baghizadeh, A., 2011. Effect of salicylic acid and salt stress on Na and K content in Ocimum basilicum, Iranian Journal of Plant Physiology 1(3): 133-139.
  • Qing, X., Zhao ,X., Hu, C., Wang, P., Zhang, Y., Zhang, X., Wang, P., Shi, H., Shi, H., Jia, F., Qu, C., 2015. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicology and Environmental Safety. 114: 179–189.
  • Qiu, Z., Guo, J., Zhu, A., Zhang, L., Zhang, M., 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety. 104: 202-208.
  • Santos, C.V., 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae. 103: 93–99.
  • Tarchoune, I., Degl’Innıcenti, E., Kaddour, R., Gıidi, L., Lachaal, M., Navari-Izzo, F., Ouerghi, Z., 2012. Effects of NaCl or Na2SO4 Salinity on Plant Growth, Ion Content and Photosynthetic Activity in Ocimum basilicum L. Acta Physiologiae Plantarum 34(2):607-615.
  • Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z., Navari-Izzo, F., 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry 48: 772-777.
  • Telci, İ., 2005. Reyhan (Ocimum basilicum L.) Genotiplerinde Uygun Biçim Yüksekliklerinin Belirlenmesi, Gazi Osmanpaşa Üniv. Ziraat Fak. Dergisi, 22 (2): 77- 83.
  • Wierdak, R.N., 2013. Morphological and chemical variability of Ocimum basilicum L. (Lamiaceae). Modern Phytomorphology. 3: 115–118.
There are 36 citations in total.

Details

Subjects Agricultural Engineering
Journal Section dp
Authors

Armağan Kaya

Mehmet İnan This is me

Publication Date September 27, 2017
Submission Date September 22, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Kaya, A., & İnan, M. (2017). Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım Ve Gıda Bilimleri Dergisi, 21(3), 332-342. https://doi.org/10.29050/harranziraat.339489

Cited By











Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.