Review
BibTex RIS Cite

Ses Dalgaları ile Hücrelerde Geri Dönülmez DNA Hasarları Oluşturmak Mümkün müdür?

Year 2018, Volume: 22 Issue: 4, 560 - 571, 24.12.2018

Abstract

Ses dalgalarının organizmaların
fizyolojik ve biyokimyasal yapıları üzerinde etkili olduğu artık bilinen bir
gerçektir. Ses dalgası ile yüksek organizmaların davranışlarını etkilemek
mümkün olduğu gibi, sesin etkisini hücre seviyesinde de görmek mümkündür. Özellikle,
ses dalgasının etki veya etkilerinin DNA üzerinde kalıcı veya geçici etki
bırakması bitki koruma açısından önemli bir aşamadır. Çünkü ses dalgası ile
istenmeyen organizmaların DNA molekülü bozulduğunda organizmaların tamir süreci
uzayacak ve bu aşamada ilave olarak kullanılacak düşük dozdaki kimyasal maddeler
(pestisitler, hormonlar, vb.) dayanıklılık ve kalıntı sorununa yol açmadan
patojen ve diğer organizmaları elemine edebilecektir. Bu derlemede, ses
dalgasının DNA molekülü üzerinde oluşturduğu hasarlar ve bunların tamir
mekanizması ele alınmıştır.

References

  • Aebi, S., Kurdi-Haidar, B., Gordon, R., Cenni, B., Zheng, H., Fink, D., Christen, R.D., Boland, C.R., Coi, M., Fishel, R., Howell, S.B. 1996. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Research, 56 (13): 3087-3090.
  • Alenko, A., Fleming, A.M., Burrows, C.J., 2017. Reverse transcription past products of guanine oxidation in rna leads to insertion of a and c opposite 8-oxo-7, 8-dihydroguanine and a and g opposite 5-guanidinohydantoin and spiroiminodihydantoin diastereomers. Biochemistry, 56 (38): 5053-5064.
  • Ali, M.H., Al-Saad, K.A., Ali, C.M., 2014. Biophysical studies of the effect of high power ultrasound on the DNA solution. Physica Medica: European Journal of Medical Physics, 30 (2): 221-227.
  • Ananthakrishnan, G., Xia, X., Amutha, S., Singer, S., Muruganantham, M., Yablonsky, S., Fischer, E., Gaba, V., 2007. Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Reports, 26 (3): 267-276.
  • Appel, H.M., Cocroft, R.B., 2014. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175 (4): 1257-1266.
  • Ceylan, N., Kaba, S., Karaman, K., Celiker, M., Basbugan, Y., Demir, N., 2016. Investigation of the effect of the efficiency of noise at different intensities on the DNA of the newborns. Noise & Health, 18 (80): 7.
  • Chehab, E.W., Eich, E., and Braam, J., 2009. Thigmomorphogenesis: A complex plant response to mechano-stimulation. Journal of Experimental Botany, 60 (1): 43–56.
  • Cuéllar-Villarreal, M.D., Ortega-Hernández, E., Becerra-Moreno, A., Welti-Chanes, J., Cisneros-Zevallos, L., Jacobo-Velázquez, D.A., 2016. Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biology and Technology, 119: 18-26. doi: 10.1016/j.postharvbio.2016.04.013.
  • De Bont, R., Van Larebeke, N., 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 19 (3): 169-185.
  • De Luca, P.A., Vallejo-Marín, M., 2013. What's the ‘buzz’about? The ecology and evolutionary significance of buzz-pollination. Current Opinion in Plant Biology, 16 (4): 429-435.
  • Di Paolo, C., Müller, Y., Thalmann, B., Hollert, H., Seiler, T.B. 2018. p53 induction and cell viability modulation by genotoxic individual chemicals and mixtures. Environmental Science and Pollution Research, 25 (5): 4012-4022.
  • Dikilitas, M., 2003. Effect of salinity, its interactions with Verticillium albo-atrum on the disease development in tomato (Lycopersicon esculentum Mill.) and lucerne (Medicago sativa and M. media) plants. Ph.D. Thesis, University of Wales, Swansea.
  • Dikilitas, M., Collins, A.R., Kocyigit, A., El Yamani, N., Karakas, S., 2015. DNA damage in potato plants exposed to high level of NaCl stress. Frontiers in Genetics, Conference Abstract: 11th International Comet Assay Workshop (ICAW), 1-4 September 2015, Antwerpen, Belgium. doi: 10.3389/conf.fgene.2015.01.00066.
  • Dikilitas, M., Yucel, N., Dervis, S. 2017. Production of Antioxidant and Oxidant Metabolites in Tomato Plants Infected with Verticillium dahliae Under Saline Conditions. In: Khan, M., Khan, N., (eds.) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Springer, Singapore, 315-329pp. doi: 10.1007/978-981-10-5254-5_13.
  • Dikilitaş, M., Balak, V., Karakaş, S., 2016. Ses Dalgalarının Tarımsal Ürünlerin Muhafazası ve Bitki Gelişimi Üzerine Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 20 (4): 338-355.
  • Ermolaeva, M.A., Dakhovnik, A., Schumacher, B., 2015. Quality control mechanisms in cellular and systemic DNA damage responses. Ageing Research Reviews, 23: 3-11.
  • Frenzilli, G., Lenzi, P., Scarcelli, V., Fornai, F., Pellegrini, A., Soldani, P., Nigro, M., 2004. Effects of Loud Noise Exposure on DNA Integrity in Rat Adrenal Gland. Environmental Health Perspectives, 112 (17): 1671–1672.
  • Furusawa, Y., Kondo, T., 2017. DNA Damage Induced by Ultrasound and Cellular Responses. Molecular Biology, 6 (188): 2.
  • Ghosh, R., Gururani, M.A., Ponpandian, L.N., Mishra, R.C., Park, S.C., Jeong, M.J., Bae, H., 2017. Expression analysis of sound vibration-regulated genes by touch treatment in Arabidopsis. Frontiers in Plant Science, 8, 100. doi: 10.3389/fpls.2017.00100.
  • Ghosh, R., Mishra, R.C., Choi, B., Kwon, Y.S., Bae, D.W., Park, S.C., Jeong, M.J., Bae, H., 2016. Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in arabidopsis. Scientific Reports, 6, 33370. doi: 10.1038/srep33370.
  • Hoeijmakers, J.H., 2001. Genome maintenance mechanisms for preventing cancer. Nature, 411 (6835): 366.
  • Hoeijmakers, J.H., 2009. DNA damage, aging, and cancer. New England Journal of Medicine, 361 (15): 1475-1485.
  • Husseini, G.A., El-Fayoumi, R.I., O'Neill, K.L., Rapoport, N.Y., Pitt, W.G. 2000. DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Letters, 154 (2): 211-216.
  • Izadifar, Z., Babyn, P., Chapman, D., 2017. Mechanical and biological effects of ultrasound: A review of present knowledge. Ultrasound in MediJackson, S.P., Bartek, J., 2009. The DNA-damage response in human biology and disease. Nature, 461 (7267): 1071.
  • Jacobo-Velázquez, D.A., González-Agüero, M., Cisneros-Zevallos, L., 2015. Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Scientific Reports, 5, 8608. doi: 10.1038/srep08608.
  • Kenmotmsu, T., Ogawa, N., Kubota, R., Yoshida, K., Kagawa, Y., Watanabe, Y., Yoshikawa, Y., Yoshikawa, K., 2013. Double-strand breaks on a genomic DNA caused by ultrasound: Evaluation by single DNA observation. International Symposium on Micro-Nanomechatronics and Human Science (MHS), 10-13 November 2013, pp. 1-3, Nagoya, Japan.
  • Kubota, R., Yamashita, Y., Kenmotsu, T., Yoshikawa, Y., Yoshida, K., Watanabe, Y., Imanaka, T., Yoshikawa, K., 2017. Double‐Strand Breaks in Genome‐Sized DNA Caused by Ultrasound. ChemPhysChem, 18 (8): 959-964.
  • Kumari, R., Sen, N., Das, S. 2014. Tumour suppressor p53: understanding the molecular mechanisms inherent to cancer. Current Science, 786-794.
  • Lindahl, T., Barnes, D.E. 2000. Repair of endogenous DNA damage. In Cold Spring Harbor symposia on quantitative biology Vol. 65,. Cold Spring Harbor Laboratory Press. 127-134pp.
  • Ma, H., Song, T., Wang, T., Wang, S. 2016. Influence of human p53 on plant development. PloS One, 11 (9): e0162840.
  • Ma, Y., Ogawa, N., Yoshikawa, Y., Mori, T., Imanaka, T., Watanabe, Y., Yoshikawa, K., 2015. Protective effect of ascorbic acid against double-strand breaks in giant DNA: Marked differences among the damage induced by photo-irradiation, gamma-rays and ultrasound. Chemical Physics Letters, 638: 205-209.
  • McKeague, M., 2017. Aptamers for DNA Damage and Repair. International Journal of Molecular Sciences, 18 (10): 2212.
  • Miller, D.L., Thomas, R.M., 1996. The role of cavitation in the induction of cellular DNA damage by ultrasound and lithotripter shock waves in vitro. Ultrasound in Medicine and Biology, 22 (5): 681-687.
  • Milowska, K., Gabryelak, T., 2007. Reactive oxygen species and DNA damage after ultrasound exposure. Biomolecular Engineering, 24 (2), 263-267.
  • Mishra, R.C., Ghosh, R., Bae, H., 2016. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. Journal of Experimental Botany, 67 (15): 4483-4494.
  • Nawaz, S.K., Hasnain, S., 2013. Occupational noise exposure may induce oxidative DNA damage. Polish Journal of Environmental Stududies, 22: 1547-51.
  • Nowacka, M., Wedzik, M., 2016. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics, 103: 163-171.
  • Rokhina, E.V., Lens, P., Virkutyte, J., 2009. Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, 27 (5): 298-306.
  • Safari, M., Ghanati, F., Behmanesh, M., Hajnorouzi, A., Nahidian, B., Mina, G. 2013. Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiologiae Plantarum, 35 (9): 2847-2855.
  • Saliev, T., Begimbetova, D., Baiskhanova, D., Abetov, D., Kairov, U., Gilman, C. P., Matkarimov, B., Tachibana, K., 2018. Apoptotic and genotoxic effects of low-intensity ultrasound on healthy and leukemic human peripheral mononuclear blood cells. Journal of Medical Ultrasonics, 45 (1): 31-39.
  • Sancar, A., Lindsey-Boltz, L.A., Ünsal-Kaçmaz, K., Linn, S., 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73 (1): 39-85.
  • Shiferaw Terefe, N., Buckow, R., Versteeg, C., 2015. Quality-related enzymes in plant-based products: effects of novel food-processing technologies part 3: ultrasonic processing. Critical Reviews in Food Science and Nutrition, 55 (2): 147-158.
  • Silva, J.A., Dobránszki, J., 2014. Sonication and ultrasound: Impact on plant growth and development. Plant Cell, Tissue and Organ Culture (PCTOC), 117 (2): 131-143. doi: 10.1007/s11240-014-0429-0.
  • Tian, H., Gao, Z., Li, H., Zhang, B., Wang, G., Zhang, Q., Pei, D., Zheng, J., 2015. DNA damage response–a double-edged sword in cancer prevention and cancer therapy. Cancer Letters, 358 (1): 8-16.
  • Udroiu, I., Marinaccio, J., Bedini, A., Giliberti, C., Palomba, R., Sgura, A., 2018. Genomic damage induced by 1‐MHz ultrasound in vitro. Environmental and Molecular Mutagenesis, 59 (1): 60-68.
  • Wang, H., Zhang, X., Teng, L., Legerski, R.J., 2015. DNA damage checkpoint recovery and cancer development. Experimental Cell Research, 334 (2): 350-358.
  • Wu, J., Lin, L., 2002. Ultrasound‐induced stress responses of panax ginseng cells: enzymatic browning and phenolics production. Biotechnology Progress, 18 (4): 862-866.
  • Wyman, C., Kanaar, R., 2006. DNA double-strand break repair: all's well that ends well. Annual Review of Genetics, 40: 363-383.
  • Xiaocheng, Y., Bochu, W., Chuanren, D., 2003. Effects of sound stimulation on energy metabolism of Actinidia chinensis callus. Colloids and Surfaces B: Biointerfaces, 30 (1-2): 67-72.
  • Yoshida, K., Ogawa, N., Kagawa, Y., Tabata, H., Watanabe, Y., Kenmotsu, T., Yoshikawa, Y., Yoshikawa, K., 2013. Effect of low-frequency ultrasound on double-strand breaks in giant DNA molecules. Applied Physics Letters, 103 (6): 063705.
  • Yoshiyama, K.O., 2015. SOG1: a master regulator of the DNA damage response in plants. Genes & Genetic Systems, 90 (4): 209-216.
  • Yoshiyama, K.O., Sakaguchi, K., Kimura, S., 2013. DNA damage response in plants: conserved and variable response compared to animals. Biology, 2 (4): 1338-1356.
  • Yu, J., Engeseth, N.J., Feng, H., 2016. High intensity ultrasound as an abiotic elicitor-effects on antioxidant capacity and overall quality of romaine lettuce. Food and Bioprocess Technology, 9 (2): 262-273.
  • Yu, T., Yang, Y., Liu, S., Yu, H., 2009. Ultrasound increases DNA damage attributable to cisplatin in cisplatin‐resistant human ovarian cancer cells. Ultrasound in Obstetrics & Gynecology, 33 (3), 355-359.

Is it possible to induce irreversible DNA damages in cells via sound waves?

Year 2018, Volume: 22 Issue: 4, 560 - 571, 24.12.2018

Abstract

It is an accepted reality that sound waves could effect the physiological and biochemical structures of the organsims. It is possible to affect the behaviour of higher organisms, yet
this effect could be observed in the level of cells. Effects of sound waves on DNA with permanent or reversible damages would be an important step for plant protection studies.
Because the recovery period of DNA of unwanted organisms would be extended with the increase of additional low doses of chemical compounds such as pesticides and hormones without leading to residue or resistance problems. In this review, damages occured by sound waves on DNA molecule and its repair mechanism was evaluated.

References

  • Aebi, S., Kurdi-Haidar, B., Gordon, R., Cenni, B., Zheng, H., Fink, D., Christen, R.D., Boland, C.R., Coi, M., Fishel, R., Howell, S.B. 1996. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Research, 56 (13): 3087-3090.
  • Alenko, A., Fleming, A.M., Burrows, C.J., 2017. Reverse transcription past products of guanine oxidation in rna leads to insertion of a and c opposite 8-oxo-7, 8-dihydroguanine and a and g opposite 5-guanidinohydantoin and spiroiminodihydantoin diastereomers. Biochemistry, 56 (38): 5053-5064.
  • Ali, M.H., Al-Saad, K.A., Ali, C.M., 2014. Biophysical studies of the effect of high power ultrasound on the DNA solution. Physica Medica: European Journal of Medical Physics, 30 (2): 221-227.
  • Ananthakrishnan, G., Xia, X., Amutha, S., Singer, S., Muruganantham, M., Yablonsky, S., Fischer, E., Gaba, V., 2007. Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Reports, 26 (3): 267-276.
  • Appel, H.M., Cocroft, R.B., 2014. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175 (4): 1257-1266.
  • Ceylan, N., Kaba, S., Karaman, K., Celiker, M., Basbugan, Y., Demir, N., 2016. Investigation of the effect of the efficiency of noise at different intensities on the DNA of the newborns. Noise & Health, 18 (80): 7.
  • Chehab, E.W., Eich, E., and Braam, J., 2009. Thigmomorphogenesis: A complex plant response to mechano-stimulation. Journal of Experimental Botany, 60 (1): 43–56.
  • Cuéllar-Villarreal, M.D., Ortega-Hernández, E., Becerra-Moreno, A., Welti-Chanes, J., Cisneros-Zevallos, L., Jacobo-Velázquez, D.A., 2016. Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biology and Technology, 119: 18-26. doi: 10.1016/j.postharvbio.2016.04.013.
  • De Bont, R., Van Larebeke, N., 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 19 (3): 169-185.
  • De Luca, P.A., Vallejo-Marín, M., 2013. What's the ‘buzz’about? The ecology and evolutionary significance of buzz-pollination. Current Opinion in Plant Biology, 16 (4): 429-435.
  • Di Paolo, C., Müller, Y., Thalmann, B., Hollert, H., Seiler, T.B. 2018. p53 induction and cell viability modulation by genotoxic individual chemicals and mixtures. Environmental Science and Pollution Research, 25 (5): 4012-4022.
  • Dikilitas, M., 2003. Effect of salinity, its interactions with Verticillium albo-atrum on the disease development in tomato (Lycopersicon esculentum Mill.) and lucerne (Medicago sativa and M. media) plants. Ph.D. Thesis, University of Wales, Swansea.
  • Dikilitas, M., Collins, A.R., Kocyigit, A., El Yamani, N., Karakas, S., 2015. DNA damage in potato plants exposed to high level of NaCl stress. Frontiers in Genetics, Conference Abstract: 11th International Comet Assay Workshop (ICAW), 1-4 September 2015, Antwerpen, Belgium. doi: 10.3389/conf.fgene.2015.01.00066.
  • Dikilitas, M., Yucel, N., Dervis, S. 2017. Production of Antioxidant and Oxidant Metabolites in Tomato Plants Infected with Verticillium dahliae Under Saline Conditions. In: Khan, M., Khan, N., (eds.) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Springer, Singapore, 315-329pp. doi: 10.1007/978-981-10-5254-5_13.
  • Dikilitaş, M., Balak, V., Karakaş, S., 2016. Ses Dalgalarının Tarımsal Ürünlerin Muhafazası ve Bitki Gelişimi Üzerine Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 20 (4): 338-355.
  • Ermolaeva, M.A., Dakhovnik, A., Schumacher, B., 2015. Quality control mechanisms in cellular and systemic DNA damage responses. Ageing Research Reviews, 23: 3-11.
  • Frenzilli, G., Lenzi, P., Scarcelli, V., Fornai, F., Pellegrini, A., Soldani, P., Nigro, M., 2004. Effects of Loud Noise Exposure on DNA Integrity in Rat Adrenal Gland. Environmental Health Perspectives, 112 (17): 1671–1672.
  • Furusawa, Y., Kondo, T., 2017. DNA Damage Induced by Ultrasound and Cellular Responses. Molecular Biology, 6 (188): 2.
  • Ghosh, R., Gururani, M.A., Ponpandian, L.N., Mishra, R.C., Park, S.C., Jeong, M.J., Bae, H., 2017. Expression analysis of sound vibration-regulated genes by touch treatment in Arabidopsis. Frontiers in Plant Science, 8, 100. doi: 10.3389/fpls.2017.00100.
  • Ghosh, R., Mishra, R.C., Choi, B., Kwon, Y.S., Bae, D.W., Park, S.C., Jeong, M.J., Bae, H., 2016. Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in arabidopsis. Scientific Reports, 6, 33370. doi: 10.1038/srep33370.
  • Hoeijmakers, J.H., 2001. Genome maintenance mechanisms for preventing cancer. Nature, 411 (6835): 366.
  • Hoeijmakers, J.H., 2009. DNA damage, aging, and cancer. New England Journal of Medicine, 361 (15): 1475-1485.
  • Husseini, G.A., El-Fayoumi, R.I., O'Neill, K.L., Rapoport, N.Y., Pitt, W.G. 2000. DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Letters, 154 (2): 211-216.
  • Izadifar, Z., Babyn, P., Chapman, D., 2017. Mechanical and biological effects of ultrasound: A review of present knowledge. Ultrasound in MediJackson, S.P., Bartek, J., 2009. The DNA-damage response in human biology and disease. Nature, 461 (7267): 1071.
  • Jacobo-Velázquez, D.A., González-Agüero, M., Cisneros-Zevallos, L., 2015. Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Scientific Reports, 5, 8608. doi: 10.1038/srep08608.
  • Kenmotmsu, T., Ogawa, N., Kubota, R., Yoshida, K., Kagawa, Y., Watanabe, Y., Yoshikawa, Y., Yoshikawa, K., 2013. Double-strand breaks on a genomic DNA caused by ultrasound: Evaluation by single DNA observation. International Symposium on Micro-Nanomechatronics and Human Science (MHS), 10-13 November 2013, pp. 1-3, Nagoya, Japan.
  • Kubota, R., Yamashita, Y., Kenmotsu, T., Yoshikawa, Y., Yoshida, K., Watanabe, Y., Imanaka, T., Yoshikawa, K., 2017. Double‐Strand Breaks in Genome‐Sized DNA Caused by Ultrasound. ChemPhysChem, 18 (8): 959-964.
  • Kumari, R., Sen, N., Das, S. 2014. Tumour suppressor p53: understanding the molecular mechanisms inherent to cancer. Current Science, 786-794.
  • Lindahl, T., Barnes, D.E. 2000. Repair of endogenous DNA damage. In Cold Spring Harbor symposia on quantitative biology Vol. 65,. Cold Spring Harbor Laboratory Press. 127-134pp.
  • Ma, H., Song, T., Wang, T., Wang, S. 2016. Influence of human p53 on plant development. PloS One, 11 (9): e0162840.
  • Ma, Y., Ogawa, N., Yoshikawa, Y., Mori, T., Imanaka, T., Watanabe, Y., Yoshikawa, K., 2015. Protective effect of ascorbic acid against double-strand breaks in giant DNA: Marked differences among the damage induced by photo-irradiation, gamma-rays and ultrasound. Chemical Physics Letters, 638: 205-209.
  • McKeague, M., 2017. Aptamers for DNA Damage and Repair. International Journal of Molecular Sciences, 18 (10): 2212.
  • Miller, D.L., Thomas, R.M., 1996. The role of cavitation in the induction of cellular DNA damage by ultrasound and lithotripter shock waves in vitro. Ultrasound in Medicine and Biology, 22 (5): 681-687.
  • Milowska, K., Gabryelak, T., 2007. Reactive oxygen species and DNA damage after ultrasound exposure. Biomolecular Engineering, 24 (2), 263-267.
  • Mishra, R.C., Ghosh, R., Bae, H., 2016. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. Journal of Experimental Botany, 67 (15): 4483-4494.
  • Nawaz, S.K., Hasnain, S., 2013. Occupational noise exposure may induce oxidative DNA damage. Polish Journal of Environmental Stududies, 22: 1547-51.
  • Nowacka, M., Wedzik, M., 2016. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics, 103: 163-171.
  • Rokhina, E.V., Lens, P., Virkutyte, J., 2009. Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, 27 (5): 298-306.
  • Safari, M., Ghanati, F., Behmanesh, M., Hajnorouzi, A., Nahidian, B., Mina, G. 2013. Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiologiae Plantarum, 35 (9): 2847-2855.
  • Saliev, T., Begimbetova, D., Baiskhanova, D., Abetov, D., Kairov, U., Gilman, C. P., Matkarimov, B., Tachibana, K., 2018. Apoptotic and genotoxic effects of low-intensity ultrasound on healthy and leukemic human peripheral mononuclear blood cells. Journal of Medical Ultrasonics, 45 (1): 31-39.
  • Sancar, A., Lindsey-Boltz, L.A., Ünsal-Kaçmaz, K., Linn, S., 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73 (1): 39-85.
  • Shiferaw Terefe, N., Buckow, R., Versteeg, C., 2015. Quality-related enzymes in plant-based products: effects of novel food-processing technologies part 3: ultrasonic processing. Critical Reviews in Food Science and Nutrition, 55 (2): 147-158.
  • Silva, J.A., Dobránszki, J., 2014. Sonication and ultrasound: Impact on plant growth and development. Plant Cell, Tissue and Organ Culture (PCTOC), 117 (2): 131-143. doi: 10.1007/s11240-014-0429-0.
  • Tian, H., Gao, Z., Li, H., Zhang, B., Wang, G., Zhang, Q., Pei, D., Zheng, J., 2015. DNA damage response–a double-edged sword in cancer prevention and cancer therapy. Cancer Letters, 358 (1): 8-16.
  • Udroiu, I., Marinaccio, J., Bedini, A., Giliberti, C., Palomba, R., Sgura, A., 2018. Genomic damage induced by 1‐MHz ultrasound in vitro. Environmental and Molecular Mutagenesis, 59 (1): 60-68.
  • Wang, H., Zhang, X., Teng, L., Legerski, R.J., 2015. DNA damage checkpoint recovery and cancer development. Experimental Cell Research, 334 (2): 350-358.
  • Wu, J., Lin, L., 2002. Ultrasound‐induced stress responses of panax ginseng cells: enzymatic browning and phenolics production. Biotechnology Progress, 18 (4): 862-866.
  • Wyman, C., Kanaar, R., 2006. DNA double-strand break repair: all's well that ends well. Annual Review of Genetics, 40: 363-383.
  • Xiaocheng, Y., Bochu, W., Chuanren, D., 2003. Effects of sound stimulation on energy metabolism of Actinidia chinensis callus. Colloids and Surfaces B: Biointerfaces, 30 (1-2): 67-72.
  • Yoshida, K., Ogawa, N., Kagawa, Y., Tabata, H., Watanabe, Y., Kenmotsu, T., Yoshikawa, Y., Yoshikawa, K., 2013. Effect of low-frequency ultrasound on double-strand breaks in giant DNA molecules. Applied Physics Letters, 103 (6): 063705.
  • Yoshiyama, K.O., 2015. SOG1: a master regulator of the DNA damage response in plants. Genes & Genetic Systems, 90 (4): 209-216.
  • Yoshiyama, K.O., Sakaguchi, K., Kimura, S., 2013. DNA damage response in plants: conserved and variable response compared to animals. Biology, 2 (4): 1338-1356.
  • Yu, J., Engeseth, N.J., Feng, H., 2016. High intensity ultrasound as an abiotic elicitor-effects on antioxidant capacity and overall quality of romaine lettuce. Food and Bioprocess Technology, 9 (2): 262-273.
  • Yu, T., Yang, Y., Liu, S., Yu, H., 2009. Ultrasound increases DNA damage attributable to cisplatin in cisplatin‐resistant human ovarian cancer cells. Ultrasound in Obstetrics & Gynecology, 33 (3), 355-359.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Derleme Makaleleri
Authors

Murat Dikilitaş 0000-0002-7399-4750

M. Vehbi Balak 0000-0002-1374-2199

Eray Şimşek 0000-0003-4984-4223

Sema Karakaş Dikilitaş 0000-0003-1617-9407

Publication Date December 24, 2018
Submission Date May 25, 2018
Published in Issue Year 2018 Volume: 22 Issue: 4

Cite

APA Dikilitaş, M., Balak, M. V., Şimşek, E., Karakaş Dikilitaş, S. (2018). Ses Dalgaları ile Hücrelerde Geri Dönülmez DNA Hasarları Oluşturmak Mümkün müdür?. Harran Tarım Ve Gıda Bilimleri Dergisi, 22(4), 560-571.

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.