Research Article
BibTex RIS Cite

Domateste Clavibacter michiganensis subsp. michiganensis'in ikincil enfeksiyonuna karşı endofitik bakterilerin biyokontrol kapasitesinin belirlenmesi

Year 2022, Volume: 26 Issue: 1, 50 - 59, 25.03.2022
https://doi.org/10.29050/harranziraat.1017880

Abstract

Bitki gelişimini teşvik eden bakterilerin (PGPB) alt grubu olan Endofit bakteriler (EB) bitki dokuları içinde de bulunabilmeleri nedeniyle bitki hastalıkları ile savaşımda önemli bir potansiyele sahiptir. Bu çalışmada dört farklı endofit bakteri izolatının domateste Clavibacter michiganensis subsp. michiganensis (Cmm) patojeninin neden olduğu bakteriyel kanser ve solgunluk hastalığının kontrolü ve bitki gelişimi üzerine olan etkilerinin belirlenmesi amaçlanmıştır. Torf/perlit karışımında yetiştirilen domates fidelerine 108 CFU/mL yoğunluğundaki EB süspansiyonları kotiledon yaprak aşaması ve dördüncü bileşik yaprak oluşum aşamasında olmak üzere iki defa içirme metodu ile uygulanmıştır. Cmm’nin 108 CFU/mL yoğunluğundaki süspansiyonu ise ikinci EB uygulamasından 48 saat sonra fidelerin üçüncü bileşik yaprağının alt ve üstüne inokule edilmiştir. Çalışmalar 24±2 oC derecede, %40-60 nem ve 14 saat ışık/10 saat karanlık koşullarına sahip iklim odasında yürütülmüştür. Patojen inokulasyonundan 7 hafta sonra 0-4 skalası ile hastalık şiddeti, bitki gelişim parametreleri ve klorofil içeriği tespit edilmiştir. In vitro çalışmalarda dört endofit bakteri izolatından üçünün patojen gelişimini sınırlandırdığı gözlenmiştir. Bu izolatların aynı zamanda in vivo saksı çalışmalarında da Cmm’nin neden olduğu hastalık gelişimini sınırlandırdığı belirlenmiştir. EB T2K2-1 izolatı %40 etki ile en başarılı izolat olurken, bunu %17,5 ve 15,5 etki ile V30G2 ve T14K1-1 izolatları takip etmiştir. İzolatlar arasında farklılık olsa da bitki gelişim parametrelerine pozitif katkı sağladığı gözlenmiştir. Yaprak sayısında, T2K2-1 ve V35Y1 izolatlarının uygulandığı bitkilerde artış gözlemlenirken hastalık baskısı altında bu etki gözlenmemiştir. Bitki boyu ve klorofil içeriği bakımından uygulamalar arasında önemli bir fark belirlenmemiştir. Kullanılan EB, farklı biyolojik savaş mekanizması ile Cmm’nin hastalık gelişimini sınırlandırabilmesi ve bitki gelişimine pozitif katkı ortaya koymaları,bitkisel üretimde pestisit ve sentetik gübre kullanımının azaltılmasına yardımcı olabilecekleri hipotezimizi desteklemiştir.

Thanks

C.P. Uçar YÖK 100/2000 Doktora Burs Programı ile desteklenmektedir.

References

  • Agrios, G. (2005). Plant Pathology. Fifty Ed. ed. Elsevier Acedemic Pres.
  • Akköprü, A., Çakar, K., & Husseini, A. (2018). Effects of endophytic bacteria on disease and growth in plants under biotic stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(2), 200-208.
  • Akköprü, A., Akat, Ş., Özaktan, H., Gül, A., & Akbaba, M. (2021). The long-term colonization dynamics of endophytic bacteria in cucumber plants, and their effects on yield, fruit quality and Angular Leaf Spot Disease. Scientia Horticulturae, 282, 110005.
  • Amaresan, N., Jayakumar, V., Kumar, K., & Thajuddin, N. (2012). Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Annals of microbiology, 62(2), 805-810.
  • Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., & Jones, J. B. (2004). Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant disease, 88(6), 669-673.
  • Aravind, R., Kumar, A., & Eapen, S. J. (2012). Pre-plant bacterisation: A strategy for delivery of beneficial endophytic bacteria and production of disease-free plantlets of black pepper (Pipernigrum L.). Archives of Phytopathology and Plant Protection, 45(9), 1115-1126.
  • Babier, Y., & Akköprü, A., (2020) Çeşitli Kültür Bitkilerinden İzole Edilen Endofitik Bakterilerin Karakterizasyonu ve Bitki Patojeni Bakterilere Karşı Antagonistik Etkilerinin Belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 521-534.
  • BELGÜZAR, S., YILAR, M., YANAR, Y., KADIOĞLU, İ., & DOĞAR, G. (2016). Antibacterial activities of Thymus vulgaris L.(Thyme) extract and essential oil againt Clavibacter michiganensis subsp. michiganensis. Turkish Journal of Weed Science, 19(2), 20-27.
  • Boyno, G., Demir, S., & Akköprü, A. (2020). Domateste Alternaria solani (Ell. & G. Martin) Sor.’ye Karşı Bazı Endofit Bakterilerin Etkisi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3), 469-477.
  • Carlton, W. M., Braun, E. J., & Gleason, M. L. (1998). Ingress of Clavibacter michiganensis subsp. michiganensis into tomato leaves through hydathodes. Phytopathology, 88(6), 525-529.
  • Chalupowicz, L., Barash, I., Reuven, M., Dror, O., Sharabani, G., Gartemann, K. H., & Manulis‐Sasson, S. (2017). Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Molecular plant pathology, 18(3), 336-346.
  • Çetinkaya Yıldız, R. (2007). Identification of tomato bacterial wilt diseases agent [Clavibacter michiganensis subsp. michiganensis (Smith) Davis et. al.] and research on their biological control by using plant growth promoting rhizobacteria. Adana, Turkey, Çukurova University, Graduate School of Natural and Applied Sciences.
  • de León, L., Siverio, F., López, M. M., & Rodríguez, A. (2011). Clavibacter michiganesis subsp. michiganensis, a seedborne tomato pathogen: healthy seeds are still the goal. Plant disease, 95(11), 1328-1338.
  • FAO, (2019). Food And Agriculture Organization Of The United Nations http://www.Fao.Org/Faostat/En/#Data/Qc.
  • Glick, B. R., Jacobson, C. B., Schwarze, M. M., & Pasternak, J. J. (1994). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40(11), 911-915.
  • Grobelak, A., Napora, A., & Kacprzak, M. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22-28.
  • Hallman, J. M. (1997). The Seed of Fire: Divine Suffering in the Christology of Cyril of Alexandria and Nestorius of Constantinople. Journal of Early Christian Studies, 5(3), 369-391.
  • Hardoim, P. R. (2011). Bacterial endophytes of rice: Their diversity, characteristics and perspectives. Groningen, Nederland, University of Groningen.
  • Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in microbiology, 16(10), 463-471.
  • Hoagland DR, & Arnon DI 1950. The Water-Culture Method for Growing Plants without Soil. California College Agricultural Experiment Station Cire. Berkeley, Circular 347.
  • Huang P, de-Bashan L, Crocker T, Kloepper J. W., & Bashan Y (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biol Fertil Soils, 53,199–208
  • Kang S H, Cho H, Cheong H, Ryu C, Kim J. F., & Park S. (2007). Two Bacterial Entophytes Eliciting Both Plant Growth Promotion and Plant Defense on Pepper (Capsicum annuum L.). J. Microbiol. Biotechnol., 17(1), 96–103.
  • Khan, Z., Guelich, G., Phan, H., Redman, R., & Doty, S. L. (2012). Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agron, doi:10.5402/2012/890280
  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of laboratory and clinical medicine, 44(2), 301-307.
  • Kuşvuran, Ş., Daşgan, H. Y., & Kazım, A. B. A. K. (2011). Farklı kavun genotiplerinin kuraklık stresine tepkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 21(3), 209-219.
  • Mercado-Blanco, J., & JJ Lugtenberg, B. (2014). Biotechnological applications of bacterial endophytes. Current Biotechnology, 3(1), 60-75.
  • Muthukumar, A., Nakkeeran, S., Eswaran, A., & Sangeetha, G. (2010). In vitro efficacy of bacterial endophytes against the chilli damping-off pathogen Pythium aphanidermatum. Phytopathologia Mediterranea, 49(2), 179-186.
  • Naue, C. R., Rocha, D. J., & Moura, A. B. (2014). Biological control of tomato bacterial spot by seed microbiolization. Tropical Plant Pathology, 39, 413-416.
  • Olur G. (2019). Tuzlu ortamda gelişen bitkilerden izole edilen endofit bakterilerin hıyar bitkisinde köşeli yaprak leke hastalığı (Pseudomonas syringae pv. lachrymans), tuzluluk stresi ve bitki gelişimine etkileri (yayımlanmamış yüksek lisans tezi). Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.
  • Özaktan, H (1991). Domates bakteryel solgunluğu (Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al.) ile mücadele olanakları üzerinde Araştırmalar (Doktora Tezi). Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Özaktan, H., Gül A., Çakir B., Yolageldi L., & Akköprü A (2015). Bakteriyel Endofitlerin Hıyar Yetiştiriciliğinde Biyogübre ve Biyopestisit Olarak Kullanılma Olanakları. Tubitak-COST 111O505 nolu Proje kesin raporu. (in Turkish) (COST Action FA1103: Endophytes in Biotechnology and Agriculture).
  • Peritore‐Galve, F. C., Schneider, D. J., Yang, Y., Thannhauser, T. W., Smart, C. D., & Stodghill, P. (2019). Proteome profile and genome refinement of the tomato-pathogenic bacterium Clavibacter michiganensis subsp. michiganensis. Proteomics, 19(7), e1800224-e1800224.
  • Ribaudo, C. M., Riva, D. S., Gori, J. I., Zaballa, J. I., & Molina, C. (2016). Identification of endophytic bacteria and their characterization as biocontrol agents against tomato southern blight disease. Appli Micro Open Access, 2(1000123), 2.
  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, 19(8), 827-837.
  • Romano, I., Ventorino, V., & Pepe, O. (2020). Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Frontiers in plant science, 11, 6.
  • Romero, F. M., Marina, M., & Pieckenstain, F. L. (2016). Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Research in microbiology, 167(3), 222-233.
  • Akat, S., & Özaktan, H. (2011). Domates bakteriyel kanser ve solgunluk hastalığıyla [Clavibacter michiganensis subsp. michiganensis (Smith) Davis et. al] biyolojik mücadelede bakteriyel antagonistlerin etkinliğinin araştırılması. Türkiye Biyolojik Mücadele Dergisi, 2(1), 3-18.
  • Takishita, Y., Charron, J. B., & Smith, D. L. (2018). Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Frontiers in microbiology, 9, 2119.
  • TUİK, (2021). Türkiye İstatistik Kurumu. https://www.tuik.gov.tr
  • Xia, Y., DeBolt, S., Dreyer, J., Scott, D., & Williams, M. A. (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in plant science, 6, 490.
  • Yazıcı S, Karamustafaoğlu İ, Aysan Y & Yanar Y (2011). Tokat yöresi domates alanlarında Clavibacter michiganensis subsp. michiganensis’in neden olduğu domates bakteriyel kanser ve solgunluk hastalığı. Türkiye IV. Bitki Koruma Kongresi, 28-30 Haziran 2011, Kahramanmaraş, s 331.
  • Yıldız, R. Ç., & AYSAN, Y. Domates bakteriyel solgunluk hastalığının bitki büyüme düzenleyici kökbakterileri ile biyolojik mücadelesi. Türkiye Biyolojik Mücadele Dergisi, 5(1), 9-22.
  • Yi, H. S., Yang, J. W., & Ryu, C. M. (2013). ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Frontiers in plant science, 4, 122.

Determination of biocontrol capacity of endophytic bacteria to the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato

Year 2022, Volume: 26 Issue: 1, 50 - 59, 25.03.2022
https://doi.org/10.29050/harranziraat.1017880

Abstract

Endophyte bacteria (EB), is a subgroup of plant growth-promoting bacteria (PGPB) living in plant tissues, has an important potential in controlling plant diseases. In this study, it was aimed to determine the effects of four different EB isolates on controlling the bacterial cancer and wilt disease caused by the Clavibacter michiganensis subsp.michiganensis (Cmm), and on plant growth. EB suspensions with a density of 108CFU/mL were applied to tomato seedlings grown in peat/perlite mixture by drenching method twice. The suspension of Cmm at a density of 108 CFU/mL was applied by rubbing with piece of cotton to the third compound leaf of the seedlings 48-hours after the second EB application. The studies were carried out in a climate room with 40-60% humidity at 24±2°C and 14-hours of light/10 hours of darkness. The disease severity, which detection by 0-4 scale, plant growth parameters and chlorophyll content were determined on seven weeks after the pathogen inoculation. In in vitro studies, three of the four EB were observed to limit the growth of the pathogen. These isolates were also determined to limit the development of the disease caused by Cmm in vivo pot studies. T2K2-1 isolate was the most successful isolate with 40% effect, followed by V30G2 andT14K1 isolates with 17.5% and 15.5% effects, respectively. Although there were differences between EB, it was observed that they contributed positively to plant growth parameters. While an increase was observed in the number of leaves in seedlings treated with T2K2-1 and V35Y1, this effect was not observed under disease pressure. There was no significant difference between the treatments in terms of plant height and chlorophyll content. EB used in this study were limited to disease development caused by Cmm by different biocontrol mechanisms, and positively affected plant growth. Therefore, EB can help reduce the use of pesticides and synthetic fertilizers in tomato production.

References

  • Agrios, G. (2005). Plant Pathology. Fifty Ed. ed. Elsevier Acedemic Pres.
  • Akköprü, A., Çakar, K., & Husseini, A. (2018). Effects of endophytic bacteria on disease and growth in plants under biotic stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(2), 200-208.
  • Akköprü, A., Akat, Ş., Özaktan, H., Gül, A., & Akbaba, M. (2021). The long-term colonization dynamics of endophytic bacteria in cucumber plants, and their effects on yield, fruit quality and Angular Leaf Spot Disease. Scientia Horticulturae, 282, 110005.
  • Amaresan, N., Jayakumar, V., Kumar, K., & Thajuddin, N. (2012). Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Annals of microbiology, 62(2), 805-810.
  • Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., & Jones, J. B. (2004). Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant disease, 88(6), 669-673.
  • Aravind, R., Kumar, A., & Eapen, S. J. (2012). Pre-plant bacterisation: A strategy for delivery of beneficial endophytic bacteria and production of disease-free plantlets of black pepper (Pipernigrum L.). Archives of Phytopathology and Plant Protection, 45(9), 1115-1126.
  • Babier, Y., & Akköprü, A., (2020) Çeşitli Kültür Bitkilerinden İzole Edilen Endofitik Bakterilerin Karakterizasyonu ve Bitki Patojeni Bakterilere Karşı Antagonistik Etkilerinin Belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 521-534.
  • BELGÜZAR, S., YILAR, M., YANAR, Y., KADIOĞLU, İ., & DOĞAR, G. (2016). Antibacterial activities of Thymus vulgaris L.(Thyme) extract and essential oil againt Clavibacter michiganensis subsp. michiganensis. Turkish Journal of Weed Science, 19(2), 20-27.
  • Boyno, G., Demir, S., & Akköprü, A. (2020). Domateste Alternaria solani (Ell. & G. Martin) Sor.’ye Karşı Bazı Endofit Bakterilerin Etkisi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3), 469-477.
  • Carlton, W. M., Braun, E. J., & Gleason, M. L. (1998). Ingress of Clavibacter michiganensis subsp. michiganensis into tomato leaves through hydathodes. Phytopathology, 88(6), 525-529.
  • Chalupowicz, L., Barash, I., Reuven, M., Dror, O., Sharabani, G., Gartemann, K. H., & Manulis‐Sasson, S. (2017). Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Molecular plant pathology, 18(3), 336-346.
  • Çetinkaya Yıldız, R. (2007). Identification of tomato bacterial wilt diseases agent [Clavibacter michiganensis subsp. michiganensis (Smith) Davis et. al.] and research on their biological control by using plant growth promoting rhizobacteria. Adana, Turkey, Çukurova University, Graduate School of Natural and Applied Sciences.
  • de León, L., Siverio, F., López, M. M., & Rodríguez, A. (2011). Clavibacter michiganesis subsp. michiganensis, a seedborne tomato pathogen: healthy seeds are still the goal. Plant disease, 95(11), 1328-1338.
  • FAO, (2019). Food And Agriculture Organization Of The United Nations http://www.Fao.Org/Faostat/En/#Data/Qc.
  • Glick, B. R., Jacobson, C. B., Schwarze, M. M., & Pasternak, J. J. (1994). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40(11), 911-915.
  • Grobelak, A., Napora, A., & Kacprzak, M. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22-28.
  • Hallman, J. M. (1997). The Seed of Fire: Divine Suffering in the Christology of Cyril of Alexandria and Nestorius of Constantinople. Journal of Early Christian Studies, 5(3), 369-391.
  • Hardoim, P. R. (2011). Bacterial endophytes of rice: Their diversity, characteristics and perspectives. Groningen, Nederland, University of Groningen.
  • Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in microbiology, 16(10), 463-471.
  • Hoagland DR, & Arnon DI 1950. The Water-Culture Method for Growing Plants without Soil. California College Agricultural Experiment Station Cire. Berkeley, Circular 347.
  • Huang P, de-Bashan L, Crocker T, Kloepper J. W., & Bashan Y (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biol Fertil Soils, 53,199–208
  • Kang S H, Cho H, Cheong H, Ryu C, Kim J. F., & Park S. (2007). Two Bacterial Entophytes Eliciting Both Plant Growth Promotion and Plant Defense on Pepper (Capsicum annuum L.). J. Microbiol. Biotechnol., 17(1), 96–103.
  • Khan, Z., Guelich, G., Phan, H., Redman, R., & Doty, S. L. (2012). Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agron, doi:10.5402/2012/890280
  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of laboratory and clinical medicine, 44(2), 301-307.
  • Kuşvuran, Ş., Daşgan, H. Y., & Kazım, A. B. A. K. (2011). Farklı kavun genotiplerinin kuraklık stresine tepkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 21(3), 209-219.
  • Mercado-Blanco, J., & JJ Lugtenberg, B. (2014). Biotechnological applications of bacterial endophytes. Current Biotechnology, 3(1), 60-75.
  • Muthukumar, A., Nakkeeran, S., Eswaran, A., & Sangeetha, G. (2010). In vitro efficacy of bacterial endophytes against the chilli damping-off pathogen Pythium aphanidermatum. Phytopathologia Mediterranea, 49(2), 179-186.
  • Naue, C. R., Rocha, D. J., & Moura, A. B. (2014). Biological control of tomato bacterial spot by seed microbiolization. Tropical Plant Pathology, 39, 413-416.
  • Olur G. (2019). Tuzlu ortamda gelişen bitkilerden izole edilen endofit bakterilerin hıyar bitkisinde köşeli yaprak leke hastalığı (Pseudomonas syringae pv. lachrymans), tuzluluk stresi ve bitki gelişimine etkileri (yayımlanmamış yüksek lisans tezi). Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.
  • Özaktan, H (1991). Domates bakteryel solgunluğu (Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al.) ile mücadele olanakları üzerinde Araştırmalar (Doktora Tezi). Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Özaktan, H., Gül A., Çakir B., Yolageldi L., & Akköprü A (2015). Bakteriyel Endofitlerin Hıyar Yetiştiriciliğinde Biyogübre ve Biyopestisit Olarak Kullanılma Olanakları. Tubitak-COST 111O505 nolu Proje kesin raporu. (in Turkish) (COST Action FA1103: Endophytes in Biotechnology and Agriculture).
  • Peritore‐Galve, F. C., Schneider, D. J., Yang, Y., Thannhauser, T. W., Smart, C. D., & Stodghill, P. (2019). Proteome profile and genome refinement of the tomato-pathogenic bacterium Clavibacter michiganensis subsp. michiganensis. Proteomics, 19(7), e1800224-e1800224.
  • Ribaudo, C. M., Riva, D. S., Gori, J. I., Zaballa, J. I., & Molina, C. (2016). Identification of endophytic bacteria and their characterization as biocontrol agents against tomato southern blight disease. Appli Micro Open Access, 2(1000123), 2.
  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, 19(8), 827-837.
  • Romano, I., Ventorino, V., & Pepe, O. (2020). Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Frontiers in plant science, 11, 6.
  • Romero, F. M., Marina, M., & Pieckenstain, F. L. (2016). Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Research in microbiology, 167(3), 222-233.
  • Akat, S., & Özaktan, H. (2011). Domates bakteriyel kanser ve solgunluk hastalığıyla [Clavibacter michiganensis subsp. michiganensis (Smith) Davis et. al] biyolojik mücadelede bakteriyel antagonistlerin etkinliğinin araştırılması. Türkiye Biyolojik Mücadele Dergisi, 2(1), 3-18.
  • Takishita, Y., Charron, J. B., & Smith, D. L. (2018). Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Frontiers in microbiology, 9, 2119.
  • TUİK, (2021). Türkiye İstatistik Kurumu. https://www.tuik.gov.tr
  • Xia, Y., DeBolt, S., Dreyer, J., Scott, D., & Williams, M. A. (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in plant science, 6, 490.
  • Yazıcı S, Karamustafaoğlu İ, Aysan Y & Yanar Y (2011). Tokat yöresi domates alanlarında Clavibacter michiganensis subsp. michiganensis’in neden olduğu domates bakteriyel kanser ve solgunluk hastalığı. Türkiye IV. Bitki Koruma Kongresi, 28-30 Haziran 2011, Kahramanmaraş, s 331.
  • Yıldız, R. Ç., & AYSAN, Y. Domates bakteriyel solgunluk hastalığının bitki büyüme düzenleyici kökbakterileri ile biyolojik mücadelesi. Türkiye Biyolojik Mücadele Dergisi, 5(1), 9-22.
  • Yi, H. S., Yang, J. W., & Ryu, C. M. (2013). ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Frontiers in plant science, 4, 122.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Araştırma Makaleleri
Authors

Ceylan Uçar 0000-0001-9056-9353

Ahmet Akköprü 0000-0002-1526-6093

Publication Date March 25, 2022
Submission Date November 2, 2021
Published in Issue Year 2022 Volume: 26 Issue: 1

Cite

APA Uçar, C., & Akköprü, A. (2022). Domateste Clavibacter michiganensis subsp. michiganensis’in ikincil enfeksiyonuna karşı endofitik bakterilerin biyokontrol kapasitesinin belirlenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 26(1), 50-59. https://doi.org/10.29050/harranziraat.1017880

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.