Research Article
PDF Mendeley EndNote BibTex Cite

Biochemical alterations in lettuce (Lactuca sativa L.) infected with ‘Candidatus Phytoplasma asteris’ related strain (16SrI-B subgroup)

Year 2022, Volume 26, Issue 1, 15 - 24, 25.03.2022
https://doi.org/10.29050/harranziraat.1036313

Abstract

Phytoplasma infections are able to limit the lettuce growth around the world. The alterations of biochemical contents in the host physiology following phytoplasma infection in lettuce remain to be elucidated. In this study, changes in total protein and chlorophyll content, proline, malondialdehyde (MDA) accumulation, peroxidase (POD) and catalase (CAT) enzyme levels were investigated in leaves of lettuce plant after Candidatus Phytoplasma asteris infection. Symptoms observed in plants infected with phytoplasma were yellowing, little leaf, stunting, and a general decline. Phytoplasma agent detected in all infected lettuce by PCR-RFLP studies. Total protein and chlorophyll contents of phytoplasma-infected plants were lower than those of healthy control. Proline, MDA accumulation, POX and CAT enzyme activities were increased in infected plants as compared to those of control. The results show that phytoplasma infection can modify the host physiology of lettuce. In conclusion, this study indicated that the previously identified Ca. P. asteris was still pathogen with no changes in its DNA sequence and it was able to reduce the quality parameters of the lettuce plant and possess potential danger to the lettuce growing areas.

References

  • Abdollahi, F., Niknam, V., Ghanati, F., Masroor, F., & Noorbakhsh SN. (2012). Biological effects of weak electromagnetic field on healthy and infected lime (Citrus aurantifolia) trees with phytoplasma. The scientific World Journal, vol.2012, Article ID 716929, 6 pages.
  • Ahmad, S.J.N., Naila, F., & Ahmad, J.N. (2019). Metabolic and physiological changes induced in Sesamum indicum infected by phytoplasmas. Phytopathogenic Mollicutes Vol. 9:1, 137-138. Ahrens, U., & Seemuller, E. (1992).
  • Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology, 82: 828-832.
  • Akinci, S., Akinci, İ.E, Karatas, A., & Abak, K. (2003). Requirements of the Temperature Sum of Head and Cos Lettuce (Lactuca Sativa L.), Grown at Diffferent Periods in Open Field and Tunnels, and Relations with Yield. KSU J. Science and Engineering, 6:(1), 97-105.
  • Akkurak, H., Guldur, M.E., Simsek, E., & Dikilitas, M. (2021) First report of lettuce yellowing disease caused by a ‘Candidatus Phytoplasma asteris’-related strain in Lactuca sativa in Turkey. New Disease Reports, 44, e12033.
  • Alam, M.M., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2014). Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8:279–293.
  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1–15.
  • Aybak, H.Ç. (2002). Salata/Marul Yetiştiriciliği. Hasad Yayıncılılık, İstanbul. Bates, L.S., Waldren, R.P. & Ve Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1): 205–207.
  • Bertaccini, A., Duduk, B., Paltrinieri, S., & Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am. J. Plant Sci. 5, 1763–1788.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254.
  • Cağlar, B. K., Elbeaino, T., Kusek, M., Pehlivan, D., Fidan, H., & Portakaldali, M. (2010). Stolbur phytoplasma infections in potato and tomato plants from different locations in Turkey. Journal of Turkish Phytopathology, 39(1–3): 1–8.
  • Christgen, S.L., & Becker, D.F. (2019). Role of Proline in Pathogen and Host Interactions. Antioxidants & Redox SignalingVol. 30, No. 4, 683-709.
  • Cvikrova, M., Hrubcova, M., Vagner, M., Machackova, I., & Eder, J. (1994). Phenolic acids and peroxidase activity in alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Physiologia Plantarum, 91(2): 226–233.
  • Dikilitaş, M., Şimşek, E., & Roychoudhury, A. (2020). Role of Proline and Glycine Betaine in Overcoming Abiotic Stresses. In: A. Roychoudhury & D. K. Tripathi (Ed.), Protective Chemical Agents in the Amelioration of Plant Abiotic Stress (first edition, pp. 1–23).
  • Duduk, B., Paltrinieri, S., Lee, I.-M., & Bertaccini, A. (2013). Nested PCR and RFLP Analysis Based on the 16S rRNA Gene. In: M. Dickinson & J. Hodgetts (Ed.), Phytoplasma Methods and Protocols (ss. 159–171). Humana Press, Totowa, NJ.
  • Guller, A., & Usta, M. (2020). Stolbur and Clover Proliferation Phytoplasma Infections in Tomato from Bingöl Province, Turkey. Turkish Journal of Agricultural and Natural Sciences, 7(4): 855–866.
  • Gundersen, D., & Lee, I. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35: 144–151.
  • Hameed, S., Akhtar, K.P., Hameed, A., Gulzar, T., Kıran, S., Yousaf, S., Abbas, G., Asghar, M.J., & Sarwar, N. (2017). Biochemical changes in the leaves of mungbean (Vigna radiata) plants infected by phytoplasma. Turkish Journal of Biochemistry, 42(6): 591–599.
  • Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 180-198.
  • Huseynova, I., Balakishiyeva, G., Aliyeva, D., Gurbanova, U., Bayramova, J., & Mustafayev, N., (2017). Changes in the activities of metabolic enzymes and antioxidant defense system in 'Candidatus phytoplasma solani' infected pepper (Capsicum annuum L.) plants. Net J Agri Sci., 5(2):58-65.
  • Junqueira, A.C.B., Bedendo, I.P., & Pascholati, S.F. (2011). Effect of phytoplasma infection on activity of peroxidase, -1,3 glucanase and chitinase in corn plants. Summa Phytopathologica, v.37, n.4, p.194-198.
  • Karakaş, S. (2013). Development of tomato growing in soils differing in salt levels and effects of companion plants on some physiological parameters and soil remediation [Harran University], Doktora tezi. http://acikerisim.harran.edu.tr:8080/jspui/handle/11513/175.
  • Kim, M.J., Moon Y., Tou J.C., Mou B., & Waterland N.L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.), Journal of Food Composition and Analysis, Volume 49:19-34.
  • Koike, S.T., Gladders, P., & Paulus, A.O., (2007). Vegetable Diseases. A Colour Handbook, UK, Manson Publishing Ltd, pp. 296-324.
  • Křístková, E., Doležalová, I., Lebeda A., Vinter, V., & Novotná, A. (2008). Description of morphological characters of lettuce (Lactuca sativa L.) genetic resourcesHort. Sci. (Prague), 35:(3), 113–129.
  • Kumari, S., Nagendran, K., Rai, B.A., Singh, B., Rao, G.P., & Bertaccini, A. (2019). Global Status of Phytoplasma Diseases in Vegetable Crops. Front. Microbiol. 10:1349. doi: 10.3389/fmicb.2019.01349.
  • Lebeda, A., Ryder E.J., Grube R., Doležalova I., & Křıstkova, E. (2007). Lettuce (Asteraceae; Lactuca spp.). In: SINGH R.J. (ed.), Genetic Resources, Chromosome Engineering, and Crop Improvement, Vol. 3, Vegetable Crops. Boca Raton, CRC Press, Tailor and Francis Group: 377–472.
  • Lin, J., Yang, C., Liu, J., Yu, S., Xing, J.,Huang, P., Chen,W., Bao, Y.,Hu,Q., Chen, C., & Zhang, M. (2020). Identification and characterization of the phytoplasma associated with lettuce chlorotic leaf rot disease together with its natural reservoirs and leafhopper vectors in China. Crop Protection, 138, 105318.
  • Lin, J.-.X., Mou, H.-.Q., Liu, J.-.M., Chen, J., Ji, C.-.H., & Chen, H.-.Y. (2014). First report of lettuce chlorotic leaf rot disease caused by phytoplasma in China. Plant Disease, 98, 1425.
  • Liu, Z., Zhao, J., & Liu, M. (2016). Photosynthetic responses to phytoplasma infection in Chinese jujube. Plant Physiol Biochem, 105:12–20.
  • Magbanua, Z.V., De Moraes, C.M., Brooks, T.D., Williams, W.P., & Luthe, D.S. (2007). Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant-Micro Int, 20:697–706.
  • Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Breusegem, F.V., & Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, Vol. 61, No. 15, pp. 4197–4220.
  • Milosevic, N., & Slusarenko, A.J. (1996). Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiological and Molecular Plant Pathology, 49(3): 143–158.
  • Morales, M., & Munné-Bosch, S. (2019). Malondialdehyde: Facts and artifacts. Plant Physiol. 180, 1246–1250.
  • Musetti, R., Di-Toppi, L.S., Martini, M., Ferrini, F., Loschi, A., & Favali, M.A. (2005). Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European Stone Fruit Yellows. Eur J Plant Pathol., 112(1):53-61.
  • Namba, S. (2019). Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95, 401–418.
  • Nasir, F., Akhtar, K.P., Hameed, A., Yousaf, S., Gulzar, T., Sarwar, N., Shah, T.M., & Kıran, S. (2017). Biochemical alterations in the leaves of different Desi and Kabuli type chickpea genotypes infected by phytoplasma. Turkish Journal of Biochemistry, 42(4): 409–417.
  • Ighodaro, O.M., & Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) an/d glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid, Alexandria Journal of Medicine, 54:4, 287-293.
  • Passardi, F., Cosio, C., Penel C., & Dunand C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, Vol: 24:5, 255-265.
  • Prasannath, K. (2017). Plant defense-related enzymes against pathogens: A Review. AGRIEAST Journal of Agricultural Sciences, 11(1):38.
  • Rasool, A., Jahan, M.S., Shazad, U., Tariq, A., & Calica, P.N. (2020). Effect of Phytoplasma Infection on Primary and Secondary Metabolites and Antioxidative Enzyme Activities of Sweet Orange (Citrus sinensis L.). J Plant Pathol Microbiol 11:519. doi: 10.35248/2157-7471.20.11.519.
  • Sertkaya, G., (2015). Hatay ili marul ve ıspanak alanlarında bazı virüslerin araştırılması. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 20:7-12.
  • Shatilov, M.V., Razin, M.F., & Ivanova, M.I., (2019). Analysis of the world lettuce market. International Conference on Sustainable Development of Cross-Border Regions, Earth and Environmental Science 395, 1-5.
  • Soylu, S., Sertkaya E., Türemiş İ., Bozkurt İ.A., & Kurt Ş. (2017). Prevalence and incidence of important disease agents, insects and weed species in lettuce (Lactuca sativa L.) growing fields in Hatay Province. Journal of Agricultural Faculty of Mustafa Kemal University, 22(1):23-33.
  • Ulubaş Serçe, Ç., & Yılmaz, S. (2019). First report of ‘Canditatus Phytoplasma trifolii’ (16SrVI group) infecting cabbage (Brassica oleracea) in Turkey. Journal of Plant Pathology, 102:553.
  • Veronica, N., Subrahmanyam, D., Kiran, T. V., Yugandhar, P., Bhadana, V. P., & Padma, V. (2017). Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes. Photosynthetica 55, 285–293.
  • Vural, H., Eşiyok, D. & Duman, İ. (2000). Kültür Sebzeleri (Sebze Yetiştirme). Ege Üniversitesi, Ziraat Fakültesi, Bornova/İzmir
  • Wang, X.S., & Han, J.G. (2009). Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agric. Sci. China. 8(4): 431-440.
  • Weber, H., Chételat, A., Reymond, P., & Farmer, E.E. (2004). Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde, Plant J. 37, 877–889.
  • Yilmaz S., Caglar B.K. & Djelouah, K. (2019). Molecular characterization of phytoplasma diseases of pepper in Turkey. Journal of Phytopathology, 167:479–483.
  • Zafari, S., Niknam, V., Musetti, R., & Noorbakhsh, S.N. (2012). Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia). Acta Physiol Plant, 34:561–568.

‘Candidatus Phytoplasma asteris’ (16SrI-B alt grup) ile infekteli marul (Lactuca sativa L.)’da biyokimyasal değişimler

Year 2022, Volume 26, Issue 1, 15 - 24, 25.03.2022
https://doi.org/10.29050/harranziraat.1036313

Abstract

Dünya genelinde marulda verimi sınırlayan fitoplazma infeksiyonları görülmektedir. Marul bitkisinde fitoplazma etmeninin konukçu fizyolojisinde meydana getirdiği biyokimyasal bileşenlerindeki değişimler anlaşılmaya devam etmektedir. Bu çalışmada Candidatus Phytoplasma asteris tarafından etkilenen marul bitkisinin yapraklarındaki total protein ve klorofil içeriği, prolin, malondialdehid (MDA) birikimi, peroksidaz (POD) ve katalaz (CAT) enzimlerindeki değişimler incelenmiştir. Fitoplazma ile infekteli bitkilerde gözlenen simptomlar sararma, küçük yaprak, bodurlaşma ve genel olarak bitkinin ölümü biçiminde olmuştur. PCR-RFLP çalışmalarıyla tüm infekteli marul bitkilerinde fitoplazmanın varlığı doğrulanmıştır. Fitoplazma ile infekteli bitkilerde toplam protein ve klorofil içeriği sağlıklı kontrol bitkilerine kıyasla azalmıştır. Prolin, MDA birikimi, POX ve CAT enzim aktivitesi infekteli bitkilerde artış gösterirken; sağlıklı kontrol bitkilerinde önemli düzeyde azalmıştır. Sonuçlar, fitoplazma infeksiyonunun konukçu fizyolojisini modifiye edebileceğini göstermiştir. Sonuç olarak bu çalışma, Ca. P. asteris’in marulu infekteleyen DNA dizisi değişmeyen bir patojen olduğu, etmenin marul bitkisinde kalite parametrelerini düşürdüğü ve marul yetiştirilen alanlarda potansiyel tehlike olabileceğini ortaya koymuştur.

References

  • Abdollahi, F., Niknam, V., Ghanati, F., Masroor, F., & Noorbakhsh SN. (2012). Biological effects of weak electromagnetic field on healthy and infected lime (Citrus aurantifolia) trees with phytoplasma. The scientific World Journal, vol.2012, Article ID 716929, 6 pages.
  • Ahmad, S.J.N., Naila, F., & Ahmad, J.N. (2019). Metabolic and physiological changes induced in Sesamum indicum infected by phytoplasmas. Phytopathogenic Mollicutes Vol. 9:1, 137-138. Ahrens, U., & Seemuller, E. (1992).
  • Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology, 82: 828-832.
  • Akinci, S., Akinci, İ.E, Karatas, A., & Abak, K. (2003). Requirements of the Temperature Sum of Head and Cos Lettuce (Lactuca Sativa L.), Grown at Diffferent Periods in Open Field and Tunnels, and Relations with Yield. KSU J. Science and Engineering, 6:(1), 97-105.
  • Akkurak, H., Guldur, M.E., Simsek, E., & Dikilitas, M. (2021) First report of lettuce yellowing disease caused by a ‘Candidatus Phytoplasma asteris’-related strain in Lactuca sativa in Turkey. New Disease Reports, 44, e12033.
  • Alam, M.M., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2014). Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8:279–293.
  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1–15.
  • Aybak, H.Ç. (2002). Salata/Marul Yetiştiriciliği. Hasad Yayıncılılık, İstanbul. Bates, L.S., Waldren, R.P. & Ve Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1): 205–207.
  • Bertaccini, A., Duduk, B., Paltrinieri, S., & Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am. J. Plant Sci. 5, 1763–1788.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254.
  • Cağlar, B. K., Elbeaino, T., Kusek, M., Pehlivan, D., Fidan, H., & Portakaldali, M. (2010). Stolbur phytoplasma infections in potato and tomato plants from different locations in Turkey. Journal of Turkish Phytopathology, 39(1–3): 1–8.
  • Christgen, S.L., & Becker, D.F. (2019). Role of Proline in Pathogen and Host Interactions. Antioxidants & Redox SignalingVol. 30, No. 4, 683-709.
  • Cvikrova, M., Hrubcova, M., Vagner, M., Machackova, I., & Eder, J. (1994). Phenolic acids and peroxidase activity in alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Physiologia Plantarum, 91(2): 226–233.
  • Dikilitaş, M., Şimşek, E., & Roychoudhury, A. (2020). Role of Proline and Glycine Betaine in Overcoming Abiotic Stresses. In: A. Roychoudhury & D. K. Tripathi (Ed.), Protective Chemical Agents in the Amelioration of Plant Abiotic Stress (first edition, pp. 1–23).
  • Duduk, B., Paltrinieri, S., Lee, I.-M., & Bertaccini, A. (2013). Nested PCR and RFLP Analysis Based on the 16S rRNA Gene. In: M. Dickinson & J. Hodgetts (Ed.), Phytoplasma Methods and Protocols (ss. 159–171). Humana Press, Totowa, NJ.
  • Guller, A., & Usta, M. (2020). Stolbur and Clover Proliferation Phytoplasma Infections in Tomato from Bingöl Province, Turkey. Turkish Journal of Agricultural and Natural Sciences, 7(4): 855–866.
  • Gundersen, D., & Lee, I. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35: 144–151.
  • Hameed, S., Akhtar, K.P., Hameed, A., Gulzar, T., Kıran, S., Yousaf, S., Abbas, G., Asghar, M.J., & Sarwar, N. (2017). Biochemical changes in the leaves of mungbean (Vigna radiata) plants infected by phytoplasma. Turkish Journal of Biochemistry, 42(6): 591–599.
  • Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 180-198.
  • Huseynova, I., Balakishiyeva, G., Aliyeva, D., Gurbanova, U., Bayramova, J., & Mustafayev, N., (2017). Changes in the activities of metabolic enzymes and antioxidant defense system in 'Candidatus phytoplasma solani' infected pepper (Capsicum annuum L.) plants. Net J Agri Sci., 5(2):58-65.
  • Junqueira, A.C.B., Bedendo, I.P., & Pascholati, S.F. (2011). Effect of phytoplasma infection on activity of peroxidase, -1,3 glucanase and chitinase in corn plants. Summa Phytopathologica, v.37, n.4, p.194-198.
  • Karakaş, S. (2013). Development of tomato growing in soils differing in salt levels and effects of companion plants on some physiological parameters and soil remediation [Harran University], Doktora tezi. http://acikerisim.harran.edu.tr:8080/jspui/handle/11513/175.
  • Kim, M.J., Moon Y., Tou J.C., Mou B., & Waterland N.L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.), Journal of Food Composition and Analysis, Volume 49:19-34.
  • Koike, S.T., Gladders, P., & Paulus, A.O., (2007). Vegetable Diseases. A Colour Handbook, UK, Manson Publishing Ltd, pp. 296-324.
  • Křístková, E., Doležalová, I., Lebeda A., Vinter, V., & Novotná, A. (2008). Description of morphological characters of lettuce (Lactuca sativa L.) genetic resourcesHort. Sci. (Prague), 35:(3), 113–129.
  • Kumari, S., Nagendran, K., Rai, B.A., Singh, B., Rao, G.P., & Bertaccini, A. (2019). Global Status of Phytoplasma Diseases in Vegetable Crops. Front. Microbiol. 10:1349. doi: 10.3389/fmicb.2019.01349.
  • Lebeda, A., Ryder E.J., Grube R., Doležalova I., & Křıstkova, E. (2007). Lettuce (Asteraceae; Lactuca spp.). In: SINGH R.J. (ed.), Genetic Resources, Chromosome Engineering, and Crop Improvement, Vol. 3, Vegetable Crops. Boca Raton, CRC Press, Tailor and Francis Group: 377–472.
  • Lin, J., Yang, C., Liu, J., Yu, S., Xing, J.,Huang, P., Chen,W., Bao, Y.,Hu,Q., Chen, C., & Zhang, M. (2020). Identification and characterization of the phytoplasma associated with lettuce chlorotic leaf rot disease together with its natural reservoirs and leafhopper vectors in China. Crop Protection, 138, 105318.
  • Lin, J.-.X., Mou, H.-.Q., Liu, J.-.M., Chen, J., Ji, C.-.H., & Chen, H.-.Y. (2014). First report of lettuce chlorotic leaf rot disease caused by phytoplasma in China. Plant Disease, 98, 1425.
  • Liu, Z., Zhao, J., & Liu, M. (2016). Photosynthetic responses to phytoplasma infection in Chinese jujube. Plant Physiol Biochem, 105:12–20.
  • Magbanua, Z.V., De Moraes, C.M., Brooks, T.D., Williams, W.P., & Luthe, D.S. (2007). Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant-Micro Int, 20:697–706.
  • Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Breusegem, F.V., & Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, Vol. 61, No. 15, pp. 4197–4220.
  • Milosevic, N., & Slusarenko, A.J. (1996). Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiological and Molecular Plant Pathology, 49(3): 143–158.
  • Morales, M., & Munné-Bosch, S. (2019). Malondialdehyde: Facts and artifacts. Plant Physiol. 180, 1246–1250.
  • Musetti, R., Di-Toppi, L.S., Martini, M., Ferrini, F., Loschi, A., & Favali, M.A. (2005). Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European Stone Fruit Yellows. Eur J Plant Pathol., 112(1):53-61.
  • Namba, S. (2019). Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95, 401–418.
  • Nasir, F., Akhtar, K.P., Hameed, A., Yousaf, S., Gulzar, T., Sarwar, N., Shah, T.M., & Kıran, S. (2017). Biochemical alterations in the leaves of different Desi and Kabuli type chickpea genotypes infected by phytoplasma. Turkish Journal of Biochemistry, 42(4): 409–417.
  • Ighodaro, O.M., & Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) an/d glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid, Alexandria Journal of Medicine, 54:4, 287-293.
  • Passardi, F., Cosio, C., Penel C., & Dunand C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, Vol: 24:5, 255-265.
  • Prasannath, K. (2017). Plant defense-related enzymes against pathogens: A Review. AGRIEAST Journal of Agricultural Sciences, 11(1):38.
  • Rasool, A., Jahan, M.S., Shazad, U., Tariq, A., & Calica, P.N. (2020). Effect of Phytoplasma Infection on Primary and Secondary Metabolites and Antioxidative Enzyme Activities of Sweet Orange (Citrus sinensis L.). J Plant Pathol Microbiol 11:519. doi: 10.35248/2157-7471.20.11.519.
  • Sertkaya, G., (2015). Hatay ili marul ve ıspanak alanlarında bazı virüslerin araştırılması. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 20:7-12.
  • Shatilov, M.V., Razin, M.F., & Ivanova, M.I., (2019). Analysis of the world lettuce market. International Conference on Sustainable Development of Cross-Border Regions, Earth and Environmental Science 395, 1-5.
  • Soylu, S., Sertkaya E., Türemiş İ., Bozkurt İ.A., & Kurt Ş. (2017). Prevalence and incidence of important disease agents, insects and weed species in lettuce (Lactuca sativa L.) growing fields in Hatay Province. Journal of Agricultural Faculty of Mustafa Kemal University, 22(1):23-33.
  • Ulubaş Serçe, Ç., & Yılmaz, S. (2019). First report of ‘Canditatus Phytoplasma trifolii’ (16SrVI group) infecting cabbage (Brassica oleracea) in Turkey. Journal of Plant Pathology, 102:553.
  • Veronica, N., Subrahmanyam, D., Kiran, T. V., Yugandhar, P., Bhadana, V. P., & Padma, V. (2017). Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes. Photosynthetica 55, 285–293.
  • Vural, H., Eşiyok, D. & Duman, İ. (2000). Kültür Sebzeleri (Sebze Yetiştirme). Ege Üniversitesi, Ziraat Fakültesi, Bornova/İzmir
  • Wang, X.S., & Han, J.G. (2009). Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agric. Sci. China. 8(4): 431-440.
  • Weber, H., Chételat, A., Reymond, P., & Farmer, E.E. (2004). Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde, Plant J. 37, 877–889.
  • Yilmaz S., Caglar B.K. & Djelouah, K. (2019). Molecular characterization of phytoplasma diseases of pepper in Turkey. Journal of Phytopathology, 167:479–483.
  • Zafari, S., Niknam, V., Musetti, R., & Noorbakhsh, S.N. (2012). Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia). Acta Physiol Plant, 34:561–568.

Details

Primary Language English
Subjects Agriculture, Plant Science, Agricultural, Engineering
Published Date Mart 2022
Journal Section Araştırma Makaleleri
Authors

Havva AKKURAK (Primary Author)
HARRAN UNIVERSITY, FACULTY OF AGRICULTURE
0000-0003-1196-5230
Türkiye


Mehmet GÜLDÜR
HARRAN ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ
0000-0002-3374-5602
Türkiye


Murat DİKİLİTAŞ
HARRAN ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ
0000-0002-7399-4750
Türkiye

Thanks This study is a part of the Ph.D. thesis of Havva AKKURAK. The first author would like to thank the Higher Education Council (YÖK) of Turkey for supporting Ph.D. studies throughout 100/2000 Ph.D. program.
Publication Date March 25, 2022
Application Date December 14, 2021
Acceptance Date February 15, 2022
Published in Issue Year 2022, Volume 26, Issue 1

Cite

APA Akkurak, H. , Güldür, M. & Dikilitaş, M. (2022). Biochemical alterations in lettuce (Lactuca sativa L.) infected with ‘Candidatus Phytoplasma asteris’ related strain (16SrI-B subgroup) . Harran Tarım ve Gıda Bilimleri Dergisi , 26 (1) , 15-24 . DOI: 10.29050/harranziraat.1036313

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.