Research Article
BibTex RIS Cite

Tuz stresi altındaki tütün bitkisine yapraktan silisyum (Si) uygulamalarının etkileri

Year 2022, Volume: 26 Issue: 3, 380 - 388, 23.09.2022
https://doi.org/10.29050/harranziraat.1098905

Abstract

Tuzluluk bitkilerde verim ve kaliteyi olumsuz yönde etkileyen en önemli abiyotik stres faktörleri arasında yer almasına karşılık, silisyum (Si) bitkilerde stres faktörlerini azaltan bir element olarak bilinmektedir. Bu çalışmada tütün bitkisinde tuz stresinin neden olduğu hasara karşı yapraktan Si uygulamalarının koruyucu etkisinin araştırılması amaçlanmıştır. Çalışmada dört farklı (0, 1.5, 3, 4.5 ve 6 dS m-1) tuz dozu altında yetiştirilen Canik 190/5 tütün çeşidine yapraktan 1 ve 2 defa Si uygulamaları yapılmıştır. Tüm bitki kuru madde verimi, Na, K, Ca, Mg, P konsantrasyonu ile K/Na oranı incelenmiştir. Artan dozlarda tuz uygulamaları tütün bitkisinin yeşil aksam kuru madde veriminde azalmaya neden olurken, yapraktan Si uygulamaları kuru madde verimlerindeki azalmayı yavaşlatmıştır. Kontrol uygulamalarının ortalama bitki kuru madde verimi 6.42 g bitki-1 iken, yapraktan 1 defa Si uygulamasında bu değer 6.65 g bitki-1’e çıkmış, yapraktan 2 defa Si uygulamasında ise 7.08 g bitki-1’e çıkmıştır. Silisyum uygulamaları tütün bitkisinin Na konsantrasyonlarında azalmaya neden olurken, K konsantrasyonları ile K/Na oranlarında artışa neden olarak bitkinin tuza karşı dayanıklılığını arttırmıştır. Çalışma sonucunda; tütün bitkisinin tuz stresine karşı dayanıklılığının arttırılmasında yapraktan Si uygulamalarının pozitif etkisinin olabileceği, uygulama sayısı bakımından ise yapraktan 2 defa uygulamanın daha etkili olduğu ortaya çıkmıştır.

References

  • Abbas, T., Balal, R. M., Shahid, M. A., Pervez, M. A., Ayyub, C. M., Aqueel, M. A. & Javaid, M. M. (2015). Siliconinduced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum, 37(2), 1-15.
  • Abbasi, G. H., Akhtar, J., Ahmad, R., Jamil, M., Anwar-ul-Haq, M., Ali, S. & Ijaz, M. (2015). Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant growth regulation, 76(1), 111-125.
  • Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N., Wijaya, L., Ali, S. & Ashraf, M. (2019). Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. Journal of Plant Growth Regulation, 38(1), 70-82.
  • Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A., John, R., Egamberdieva, D. & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in plant science, 6, 868.
  • Aktas, H., Abak, K. & Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3), 260-266.
  • Alzahrani, Y., Kuşvuran, A., Alharby, H. F., Kuşvuran, S. & Rady, M. M. (2018). The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicology and environmental safety, 154, 187-196.
  • Ashraf, M., Afzal, M., Ahmed, R., Mujeeb, F., Sarwar, A. & Ali, L. (2010). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salttolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326(1), 381-391.
  • Ashraf, M., Kanwal, S., Tahir, M., Sarwar, A. & Ali, L. (2007). Differential salt tolerance of sugarcane genotypes. Pakistan Journal of Agricultural Sciences, 44(1), 85-89.
  • Eker, S., Cömertpay, G., Konuşkan, Ö., Ülger, A. C., Öztürk, L. & Çakmak, İ. (2006). Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turkish journal of agriculture and forestry, 30(5), 365-373.
  • Ekmekçi, E., Apan, M. & Kara, T. (2005). Tuzluluğun bitki gelişimine etkisi. Anadolu tarım bilimleri dergisi, 20(3), 118-125.
  • Dikilitaş, S. K., & Dikilitaş, M. (2021). Determination of the physiological and biochemical effects of humic acid application in strawberry plant grown under salt stress. Harran Tarım ve Gıda Bilimleri Dergisi, 25(3), 326-335.
  • Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J. & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6), 132.
  • Ibrahim, M., Akhtar, J., Younis, M., Riaz, M., Anwarul-Haq, M. & Tahir, M. (2007). Selection of cotton (Gossypium hirsutum L.) genotypes against NaCl stress. Soil and Environment, 26(1), 59-63.
  • Kacar, B. & İnal, A. (2008). Bitki analizleri (Vol. No: 1241). Ankara: Nobel Yayın Dağıtım.
  • Kang, J., Zhao, W., Zhao, M., Zheng, Y. & Yang, F. (2015). NaCl and Na2SiO3 coexistence strengthens growth of the succulent xerophyte Nitraria tangutorum under drought. Plant growth regulation, 77(2), 223-232.
  • Kaya, A., & İnan, M. (2017). Tuz (NaCl) stresine maruz kalan reyhan (Ocimum basilicum L.) bitkisinde bazı morfolojik, fizyolojik ve biyokimyasal parametreler üzerine salisilik asidin etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 332-342.
  • Liang, Y., Chen, Q., Liu, Q., Zhang, W. & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.). Journal of plant physiology, 160(10), 1157-1164.
  • Liang, Y., Shen, Q., Shen, Z. & Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition, 19(1), 173-183.
  • Ma, J. F. & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in plant science, 11(8), 392-397.
  • Marschner, H. (1995). Nutritional physiology. In H. Marschner (Ed.), Mineral Nutrition of Higher Plants. (Vol. 2nd ed., pp. 313-363). London: Academic Press.
  • Meena, V., Dotaniya, M., Coumar, V., Rajendiran, S., Kundu,S. & Subba Rao, A. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(3), 505-518.
  • Miransari, M. & Smith, D. (2019). Sustainable wheat (Triticum aestivum L.) production in saline fields: a review. Critical reviews in biotechnology, 39(8), 999-1014.
  • Moussa, H. R. (2006). Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int. J. Agric. Biol, 8(3), 293-297.
  • Mulaudzi, T., Hendricks, K., Mabiya, T., Muthevhuli, M., Ajayi, R. F., Mayedwa, N., . . . Iwuoha, E. (2020). Calcium Improves germination and growth of Sorghum bicolor seedlings under salt stress. Plants, 9(6), 730.
  • Muneer, S. & Jeong, B. R. (2015). Proteomic analysis of saltstress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant growth regulation, 77(2), 133-146.
  • Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Naheed, G., Shahbaz, M., Akram, N. A. & Ashraf, M. (2008). Interactive effect of rooting medium application of phosphorus and NaCl on plant biomass and mineral nutrients of rice (Oryza sativa L.). Pak. J. Bot, 40(4), 1601-1608.
  • Nefissi Ouertani, R., Abid, G., Karmous, C., Ben Chikha, M., Boudaya, O., Mahmoudi, H., . . . Ghorbel, A. (2021). Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AoB Plants, 13(4), plab034.
  • Özcan, H. (2000). Tuz Stresinde Bazı Nohut (Cicer aietinum L. cvs.) Çeşitlerinin Gelişimi ve Prolin, Sodyum, Klor, Fosfor ve Potasyum Konsantrasyonlarındaki Değişimler. Turkish journal of agriculture and forestry, 24(6), 649-654.
  • Öztekin, G. B. & Tutal, A. (2021). Kuzu Marulu (Valerianella locusta (L.) Laterr) Yetiştiriciliğinde Besin Solüsyonuna Silisyum İlavesinin Tuz Stresine Karşı Etkileri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(1), 36-46.
  • Parvin, K., Nahar, K., Hasanuzzaman, M., Bhuyan, M. & Fujita, M. (2019). Calcium-mediated growth regulation and abiotic stress tolerance in plants. In Plant abiotic stress tolerance (pp. 291-331): Springer.
  • Peksüslü, A. (1998). Bazı Türk Tütün Çeşitlerinin İzmir-Bornova Koşullarında Morfolojik, Fizyolojik ve Biyokimyasal Özellikleri. EÜ Fen Bilimleri Enstitüsü (Doktora Tezi). Bornova-İzmir.
  • Poustini, K. & Siosemardeh, A. (2004). Ion distribution in wheat cultivars in response to salinity stress. Field crops research, 85(2-3), 125-133.
  • Qian, Q.-Q., Zai, W.-S., Zhu, Z.-J. & Yu, J.-Q. (2006). Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativus L.) seedlings under salt stress. Zhi wu Sheng li yu fen zi Sheng wu xue xue bao= Journal of Plant Physiology and Molecular Biology, 32(1), 107-112.
  • Romero-Aranda, M. R., Jurado, O. & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of plant physiology, 163(8), 847-855.
  • Saqib, R. M., Ashraf, M., Shahzad, S. M. & Imtiaz, M. (2011). Silicon nutrition for mitigation of salt toxicity in sunflower (Helianthus annuus L.). International Journal of Agriculture and Applied Sciences (Pakistan).
  • Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R. & Sommer, M. (2021). Silicon cycling in soils revisited. Plants, 10(2), 295.
  • Servet, A. R. A. S., & Eşitken, A. (2018). Effects of silicon to salt stress on strawberry plant. Harran Tarım ve Gıda Bilimleri Dergisi, 22(4), 478-483.
  • Shafiq, F., Iqbal, M., Ali, M. & Ashraf, M. A. (2021). Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve netprimary productivity under salt-stress. Ecotoxicology and environmental safety, 211, 111901.
  • Shah, J. P. & Thivakaran, G. A. (2014). GIS study on chemical properties of salt affected soils of coastal kachchh, Gujarat, India. Annual Research & Review in Biology, 3492-3503.
  • Shahzad, M., Zörb, C., Geilfus, C. M. & Mühling, K. H. (2013). Apoplastic Na+ in Vicia faba leaves rises after short‐term salt stress and is remedied by silicon. Journal of Agronomy and Crop Science, 199(3), 161-170.
  • Sidari, M., Santonoceto, C., Anastasi, U., Preiti, G. & Muscolo, A. (2008). Variations in four genotypes of lentil under NaCl-salinity stress. American Journal of Agriculture and Biological Science, 3, 410-416.
  • Singh, A., Singh, R. & Singh, K. (2005). Growth, yield and economics of rice (Oryza sativa) as influenced by level and time of silicon application. Indian Journal of Agronomy, 50(3), 190-193.
  • Taha, R. S., Seleiman, M. F., Shami, A., Alhammad, B. A. & Mahdi, A. H. (2021). Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants, 10(6), 1040.
  • Talaat, N. B., Ghoniem, A. E., Abdelhamid, M. T. & Shawky, B. T. (2015). Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant growth regulation, 75(1), 281-295.
  • Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S. & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10-16.
  • Turhan, A., Seniz, V. & Kuscu, H. (2009). Genotypic variation in the response of tomato to salinity. African Journal of biotechnology, 8(6).
  • Uras, S. & Sonmez, S. (2010). Tarım Alanlarında Tuzluluk Oluşumu ve Bitkiler ile Çevre Üzerine Etkileri. Ege Universitesi Zir. Fak. Dergisi, 574-579.
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C. & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609.
  • Zhu, Y. & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for sustainable development, 34(2), 455-472.
  • Zuccarini, P. (2008). Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52(1), 157-160.

Effects of foliar silicon (Si) applications on tobacco plant under salt stress

Year 2022, Volume: 26 Issue: 3, 380 - 388, 23.09.2022
https://doi.org/10.29050/harranziraat.1098905

Abstract

While salinity is among the most important abiotic stress factors that negatively affect yield and quality in plants, silicon (Si) is known as an element that reduces stress factors in plants. In this study, it was aimed to investigate the protective effect of foliar silicon (Si) applications against the damage caused by salt stress in tobacco plants. In the study, Si applications were made once and twice from the leaves of Canik 190/5 tobacco cultivars grown under four different (0, 1.5, 3, 4.5 and 6 dS m-1) salt doses. Shoot dry matter yield, Na, K, Ca, Mg, P concentration and K/Na ratio were investigated. While increasing doses of salt applications caused a decrease in the shoot dry matter yield of the tobacco plant, foliar Si applications slowed the decrease in dry matter yields. While the average plant dry matter yield of control applications was 6.42 g plant-1, this value increased to 6.65 g plant-1 in the application of Si once from the leaf, and it increased to 7.08 g plant-1 in the application of Si application twice from the leaf. Silicon applications caused a decrease in Na concentrations of the tobacco plant, and increased the plant's resistance to salt by causing an increase in K concentrations and K/Na ratios. According to the results obtained; It has been revealed that foliar Si applications may have a positive effect on increasing the resistance of the tobacco plant against salt stress, and in terms of the number of applications, 2 applications on the leaf are more effective.

References

  • Abbas, T., Balal, R. M., Shahid, M. A., Pervez, M. A., Ayyub, C. M., Aqueel, M. A. & Javaid, M. M. (2015). Siliconinduced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum, 37(2), 1-15.
  • Abbasi, G. H., Akhtar, J., Ahmad, R., Jamil, M., Anwar-ul-Haq, M., Ali, S. & Ijaz, M. (2015). Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant growth regulation, 76(1), 111-125.
  • Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N., Wijaya, L., Ali, S. & Ashraf, M. (2019). Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. Journal of Plant Growth Regulation, 38(1), 70-82.
  • Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A., John, R., Egamberdieva, D. & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in plant science, 6, 868.
  • Aktas, H., Abak, K. & Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3), 260-266.
  • Alzahrani, Y., Kuşvuran, A., Alharby, H. F., Kuşvuran, S. & Rady, M. M. (2018). The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicology and environmental safety, 154, 187-196.
  • Ashraf, M., Afzal, M., Ahmed, R., Mujeeb, F., Sarwar, A. & Ali, L. (2010). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salttolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326(1), 381-391.
  • Ashraf, M., Kanwal, S., Tahir, M., Sarwar, A. & Ali, L. (2007). Differential salt tolerance of sugarcane genotypes. Pakistan Journal of Agricultural Sciences, 44(1), 85-89.
  • Eker, S., Cömertpay, G., Konuşkan, Ö., Ülger, A. C., Öztürk, L. & Çakmak, İ. (2006). Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turkish journal of agriculture and forestry, 30(5), 365-373.
  • Ekmekçi, E., Apan, M. & Kara, T. (2005). Tuzluluğun bitki gelişimine etkisi. Anadolu tarım bilimleri dergisi, 20(3), 118-125.
  • Dikilitaş, S. K., & Dikilitaş, M. (2021). Determination of the physiological and biochemical effects of humic acid application in strawberry plant grown under salt stress. Harran Tarım ve Gıda Bilimleri Dergisi, 25(3), 326-335.
  • Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J. & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6), 132.
  • Ibrahim, M., Akhtar, J., Younis, M., Riaz, M., Anwarul-Haq, M. & Tahir, M. (2007). Selection of cotton (Gossypium hirsutum L.) genotypes against NaCl stress. Soil and Environment, 26(1), 59-63.
  • Kacar, B. & İnal, A. (2008). Bitki analizleri (Vol. No: 1241). Ankara: Nobel Yayın Dağıtım.
  • Kang, J., Zhao, W., Zhao, M., Zheng, Y. & Yang, F. (2015). NaCl and Na2SiO3 coexistence strengthens growth of the succulent xerophyte Nitraria tangutorum under drought. Plant growth regulation, 77(2), 223-232.
  • Kaya, A., & İnan, M. (2017). Tuz (NaCl) stresine maruz kalan reyhan (Ocimum basilicum L.) bitkisinde bazı morfolojik, fizyolojik ve biyokimyasal parametreler üzerine salisilik asidin etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 332-342.
  • Liang, Y., Chen, Q., Liu, Q., Zhang, W. & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.). Journal of plant physiology, 160(10), 1157-1164.
  • Liang, Y., Shen, Q., Shen, Z. & Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition, 19(1), 173-183.
  • Ma, J. F. & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in plant science, 11(8), 392-397.
  • Marschner, H. (1995). Nutritional physiology. In H. Marschner (Ed.), Mineral Nutrition of Higher Plants. (Vol. 2nd ed., pp. 313-363). London: Academic Press.
  • Meena, V., Dotaniya, M., Coumar, V., Rajendiran, S., Kundu,S. & Subba Rao, A. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(3), 505-518.
  • Miransari, M. & Smith, D. (2019). Sustainable wheat (Triticum aestivum L.) production in saline fields: a review. Critical reviews in biotechnology, 39(8), 999-1014.
  • Moussa, H. R. (2006). Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int. J. Agric. Biol, 8(3), 293-297.
  • Mulaudzi, T., Hendricks, K., Mabiya, T., Muthevhuli, M., Ajayi, R. F., Mayedwa, N., . . . Iwuoha, E. (2020). Calcium Improves germination and growth of Sorghum bicolor seedlings under salt stress. Plants, 9(6), 730.
  • Muneer, S. & Jeong, B. R. (2015). Proteomic analysis of saltstress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant growth regulation, 77(2), 133-146.
  • Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Naheed, G., Shahbaz, M., Akram, N. A. & Ashraf, M. (2008). Interactive effect of rooting medium application of phosphorus and NaCl on plant biomass and mineral nutrients of rice (Oryza sativa L.). Pak. J. Bot, 40(4), 1601-1608.
  • Nefissi Ouertani, R., Abid, G., Karmous, C., Ben Chikha, M., Boudaya, O., Mahmoudi, H., . . . Ghorbel, A. (2021). Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AoB Plants, 13(4), plab034.
  • Özcan, H. (2000). Tuz Stresinde Bazı Nohut (Cicer aietinum L. cvs.) Çeşitlerinin Gelişimi ve Prolin, Sodyum, Klor, Fosfor ve Potasyum Konsantrasyonlarındaki Değişimler. Turkish journal of agriculture and forestry, 24(6), 649-654.
  • Öztekin, G. B. & Tutal, A. (2021). Kuzu Marulu (Valerianella locusta (L.) Laterr) Yetiştiriciliğinde Besin Solüsyonuna Silisyum İlavesinin Tuz Stresine Karşı Etkileri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(1), 36-46.
  • Parvin, K., Nahar, K., Hasanuzzaman, M., Bhuyan, M. & Fujita, M. (2019). Calcium-mediated growth regulation and abiotic stress tolerance in plants. In Plant abiotic stress tolerance (pp. 291-331): Springer.
  • Peksüslü, A. (1998). Bazı Türk Tütün Çeşitlerinin İzmir-Bornova Koşullarında Morfolojik, Fizyolojik ve Biyokimyasal Özellikleri. EÜ Fen Bilimleri Enstitüsü (Doktora Tezi). Bornova-İzmir.
  • Poustini, K. & Siosemardeh, A. (2004). Ion distribution in wheat cultivars in response to salinity stress. Field crops research, 85(2-3), 125-133.
  • Qian, Q.-Q., Zai, W.-S., Zhu, Z.-J. & Yu, J.-Q. (2006). Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativus L.) seedlings under salt stress. Zhi wu Sheng li yu fen zi Sheng wu xue xue bao= Journal of Plant Physiology and Molecular Biology, 32(1), 107-112.
  • Romero-Aranda, M. R., Jurado, O. & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of plant physiology, 163(8), 847-855.
  • Saqib, R. M., Ashraf, M., Shahzad, S. M. & Imtiaz, M. (2011). Silicon nutrition for mitigation of salt toxicity in sunflower (Helianthus annuus L.). International Journal of Agriculture and Applied Sciences (Pakistan).
  • Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R. & Sommer, M. (2021). Silicon cycling in soils revisited. Plants, 10(2), 295.
  • Servet, A. R. A. S., & Eşitken, A. (2018). Effects of silicon to salt stress on strawberry plant. Harran Tarım ve Gıda Bilimleri Dergisi, 22(4), 478-483.
  • Shafiq, F., Iqbal, M., Ali, M. & Ashraf, M. A. (2021). Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve netprimary productivity under salt-stress. Ecotoxicology and environmental safety, 211, 111901.
  • Shah, J. P. & Thivakaran, G. A. (2014). GIS study on chemical properties of salt affected soils of coastal kachchh, Gujarat, India. Annual Research & Review in Biology, 3492-3503.
  • Shahzad, M., Zörb, C., Geilfus, C. M. & Mühling, K. H. (2013). Apoplastic Na+ in Vicia faba leaves rises after short‐term salt stress and is remedied by silicon. Journal of Agronomy and Crop Science, 199(3), 161-170.
  • Sidari, M., Santonoceto, C., Anastasi, U., Preiti, G. & Muscolo, A. (2008). Variations in four genotypes of lentil under NaCl-salinity stress. American Journal of Agriculture and Biological Science, 3, 410-416.
  • Singh, A., Singh, R. & Singh, K. (2005). Growth, yield and economics of rice (Oryza sativa) as influenced by level and time of silicon application. Indian Journal of Agronomy, 50(3), 190-193.
  • Taha, R. S., Seleiman, M. F., Shami, A., Alhammad, B. A. & Mahdi, A. H. (2021). Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants, 10(6), 1040.
  • Talaat, N. B., Ghoniem, A. E., Abdelhamid, M. T. & Shawky, B. T. (2015). Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant growth regulation, 75(1), 281-295.
  • Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S. & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10-16.
  • Turhan, A., Seniz, V. & Kuscu, H. (2009). Genotypic variation in the response of tomato to salinity. African Journal of biotechnology, 8(6).
  • Uras, S. & Sonmez, S. (2010). Tarım Alanlarında Tuzluluk Oluşumu ve Bitkiler ile Çevre Üzerine Etkileri. Ege Universitesi Zir. Fak. Dergisi, 574-579.
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C. & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609.
  • Zhu, Y. & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for sustainable development, 34(2), 455-472.
  • Zuccarini, P. (2008). Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52(1), 157-160.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Soil Sciences and Ecology
Journal Section Araştırma Makaleleri
Authors

Ahmet Kınay 0000-0003-4554-2148

Halil Erdem 0000-0002-3296-1549

Publication Date September 23, 2022
Submission Date April 5, 2022
Published in Issue Year 2022 Volume: 26 Issue: 3

Cite

APA Kınay, A., & Erdem, H. (2022). Tuz stresi altındaki tütün bitkisine yapraktan silisyum (Si) uygulamalarının etkileri. Harran Tarım Ve Gıda Bilimleri Dergisi, 26(3), 380-388. https://doi.org/10.29050/harranziraat.1098905

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.