Research Article
BibTex RIS Cite

Effects of post-flowering drought on nitrogen mobilization and growth of bread wheat (Triticum aestivum L.) using stable 15N isotope

Year 2022, Volume: 26 Issue: 4, 458 - 469, 26.12.2022
https://doi.org/10.29050/harranziraat.1152932

Abstract

Water and nitrogen shortage are one of the main limiting factors of crop productivity such as wheat and cereals. Increased variation and changes in climate conditions are expected to dominate yield potential of wheat. Nitrogen isotope technique widely used in recent years provides useful information about mobilization and nitrogen use efficiency under environmental constraints. This study aimed to determine the effects of drought conditions applied during different growing periods on nitrogen uptake by using stable 15N isotope, yield and quality properties and stomatal conductivity of bread wheat. Environmental variation was obtained by designing 4 artificial practices (irrigated condition, rainfed condition, early drought (flowering-harvest) and late drought (grain filling-harvest) by rainout shelter with covering progress about drought in different growing periods. Number of grains per spike, 1000 grain weight, single spike yield, spike numbers per square meter, plant height, grain yield, biomass yield, stomatal conductance, protein, ash content and stem δ15N (‰), flag leaf δ15N (‰), grain δ15N (‰) values were determined. The drought period from the beginning of flowering till harvest of plants had adverse impact on grain yield and yield components. The results clearly indicated the practices that may cause drought stress in the generative period should be avoided. In addition, nitrogen use efficiency of bread wheat was disrupted with the decrease in the amount and efficiency of plant water use during drought periods. The results also revealed that contribution of nitrogen to crop yield decreased due to less consumption of nitrogen in plant metabolic activities during drought periods. Based on the results additional water supply decreased δ15N content in mature grains from 13420 ‰ to 9278 ‰. Nitrogen applied in stem elongation period had greater contribution to grain δ15N content (15269 ‰) compared to tillering growth stage (8975 ‰). Nitrogenous fertilizer application time suggested not to be delayed to improve nitrogen contribution in metabolic activities and to prevent postponing the tillering and stem elongation periods. The application of nitrogen improved mobilization and efficiency of nitrogen contribution to different plant parts during generative development stages of bread wheat.

Supporting Institution

This research was supported through Project No: SUMYO-16003 by Aydın Adnan Menderes University.

Project Number

SUMYO-16003

References

  • Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Manboob, W., Hafeez, O. B. A., Tapera, T., Labuschagne, M., & Rizwan, M. (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40 (80). Ayrancı, R. (2012). Farklı kuraklık tiplerinde ekmeklik buğday genotiplerinin fizyolojik, morfolojik, verim ve kalite özellikleri yönüyle ıslahta kullanılabilecek uygun parametrelerin belirlenmesi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, PhD thesis.
  • Barutçular, C., Yıldırım, M., Koç, M., Dizlek, H., Akıncı, C., El Sabagh, A, Saneoka, H., Ueda, A., Islam, M. S., Toptaş, İ., Albayrak, Ö. & Tanrıkulu, A. (2016). Quality Traits Performance of Bread Wheat Genotypes Under Drought and Heat Stress Conditions. Fresenius Environmental Bulletin, 25 (12a): 6159-6165.
  • Black, C.A. (1965). Methods of soil analysis: Part I Physical and mineralogical properties. American Society of Agronomy, Madison, Wisconsin, USA.
  • Borghi, B. (1999). Nitrogen as determinant of wheat growth and yield. In: Wheat: Ecology and physiology of yield determination. Editors: Satorre E.H and Slafer G.A, Food Products Press, New York, 67-84.
  • Bort, J., Araus J. L., Hazzam H., Grando S., Ceccarelli, S. (1998). Relationships between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley. Plant Physiol. Biochem., 36 (12), 889-897.
  • Dalal, R.C., Strong, W.M., Cooper, J. E., King, A. J. (2013). Relationship between water use and nitrojen use efficiency discerned by 13C discrimination and 15N isotope ratio in bread wheat grown under no-till. Soil & Tillage Research 128:110-118.
  • del Pozo, A., Matus, I., Serret M.D., Araus, J.L. (2014). Agronomic and physiological traits associated with breeding advances of wheat under high-productive Mediterranean conditions. The case of Chile. Environmental ve Experimental Botany 103:180-189.
  • Erekul, O., & Köhn, W. (2006). Effect of weather and soil conditions on yield components and bread-making quality of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm.) varieties in North-East Germany. J. Agronomy & Crop Science, 192: 452-462.
  • Erekul, O., Kautz, T., Ellmer, F., & Turgut, İ. (2009). Yield and bread-making quality of different wheat (Triticum aestivum L.) genotypes grown in Western Turkey. Archives of Agronomy and Soil Science, 55 (2): 169-182.
  • Farooq, M., Bramley, H., Palta, J. A. & Siddique, H. M. (2011). Heat Stress in Wheat During Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 30: 1-17.
  • Fraser, R.A., Bogaard A., Heaton, T., Charles, M., Jones, G., Christensen, B.T., Halstead, P., Merbach, I., Poulton, P. R., Sparkes, D., & Styring, A. K. (2011). Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science 38:2790-2804.
  • Götz, K.P, Herzog, H., & Erekul, O. (2008). Effects of N-application on utilization of 15N and 13C and quality in two wheat cultivars. Isotopes in Environmental and Health Studies, 44 (2): 209-217.
  • Götz, K.P, Erekul, O., Wutzke, K.D., Koca, Y.O & Aksu, T. (2017). 15N allocation into wheat grains (Triticum aestivum L.) influenced by sowing rate and water supply at flowering under a Mediterranean climate, Isotopes in Environmental and Health Studies, 53 (3): 275-285.
  • Halitligil, M.B. (1996). Bitkisel üretimde nükleer tekniklerin kullanımı ve Türkiyedeki Gelişimi. IV. Ulusal Nükleer Tarım ve Hayvancılık Kongresi, 25-27 Eylül, Uludağ Üniv., Bursa, Tarım Sözlü Bildirileri, 1-6.
  • Khatiwada, A., Neupone, I., Sharma, B., Bhetwal, N., & Pandey, B. (2020). Effects of drought stress on yield and yield attributing characters of wheat: A review. Agriways, 8 (2): 115-121.
  • Kılıç, H., & Yağbasanlar, T. (2010). The effect of drought stress on grain yield, yield components and sme quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanizi Cluj-Napoca, 38 (1): 164-170.
  • Kiss, E., Depreczeni, K., Heltai, G., & A. Balint. (1990). Genotypic differences in N uptake and use by several winter wheat varieties. Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies, Proceedings of An International Symposium Held İn Vienna, 1-5 October 1990. pp. 387-393.
  • Kutlu, İ. (2010). Tahıllarda kuraklık stresi. Türk Bilimsel Derlemeler Dergisi 3(1):35-41, ISSN:1308-0040.
  • Liu, H., Guo, B., Wei, Y., Wei, S., Ma, Y., & Zhang, W. (2015). Effects of region, genotype, harvest year and their interactions on δ13C, δ13N and δD in wheat kernels. Food Chemistry 171:56-61.
  • Lopes, M.S., & J.L. Araus. (2006). Nitrogen source and water regime effects on durum wheat photosynthesis and stable carbon and nitrogen isotope composition. Physiologia Plantarum 126:435-445, ISSN 0031-9317.
  • Luo D., Dong, H., Luo, H., Xian, Y., Wan, J., Guo, X., & Wu, Y. (2015). The application of stable isotope ratio analysis to determine the geographical origin of wheat. Food Chemistry 174:197-204.
  • Ma, Q., Sun, Q., Zhang, X., Li, F., Ding, Y., Tao, R., Zhu, M., Ding, J., Li, C., Guo, W., & Zhu, X. (2022). Controlled-release nitrogen fertilizer management influences grain yield in winter wheat by regulating flag leaf senescence post-anthesis and grain filling. Food and Energy Security, 11, e361.
  • Mirbahar A. A., Markhand G. S., Mahar A. R., Abro S. A., & Kanhar N. A. (2009). Effect of water stress on yield and yield components of wheat (Triticum aestivum L.) varieties. Pak. J. Bot., 41 (3): 1303-1310.
  • Oliveira, L. S., & Franca, A. S. (2011). Applications of near infrared spectroscopy (NIRS) in food quality evaluation. In: Food Quality: Control, Analysis and Consumer Concerns (Chapter 3). Editors: Daniel A. Medina and Amanda M Laine, Nova Science Publishers Inc.
  • Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., Roessner, U., & Dolferus, R. (2021). Reproductive stage drought tolerance in wheat: Importance of stomatal conductance and plant growth regulators. Genes, 12, 1742. https://doi. org/10.3390/genes12111742.
  • Öztürk, A. (1999). Kuraklığın kışlık buğdayın gelişmesi ve verimine etkisi. Turkish J. of Agriculture and Forestry, 23:531-540. TÜBİTAK.
  • Petrova, T., & Penchev, E. (2014). Effect of drought on the yield components of common winter wheat cultivars. Turkish Journal of Agricultural and Natural Sciences, 1 (Special issue): 641-646.
  • Quemada, M., & Gabriel, J. L. 2016. Approaches for increasing nitrogen and water use efficiency simultaneously. Global Food Security 9 (2016) 29–35.
  • Rebetzke, G.J., Condon, A. G., Richards, R. A., & Read, J. J. (2001). Phenotypic variation and sampling for leaf conductance in wheat (Triticum aestivum L.) breeding populations. Euphytica, 121: 335-341.
  • Reynolds, M.P., Singh, R. P., İbrahim, A., Ageeb, O. A. A., Largue-Saavedra, A., & Quick, J. S. (1998). Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100:85-94.
  • Sanchez-Bragado R, Serret M.D. & Araus J.L. (2017). The Nitrogen Contribution of Different Plant Parts to Wheat Grains: Exploring Genotype, Water, and Nitrogen Effects. Front. Plant Sci. 7:1986: 1-14.
  • Seemann, J.R., Sharkey, T. D., Wang, J. T., & Osmond, C. B. (1987). Environmental effects on photosynthesis, nitrogen use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol. 84, 796-802.
  • Serret, M. D., Ortiz-Monasterio, I., Pardo, A., & Araus, J. L. (2008). The effects of urea fertilisation and genotype on yield, nitrogen use efficiency, δ15N and δ13C in wheat. Annals of Applied Biology, 153: 243-257.
  • Tamang, B. G., Brasier, K. G., Thomason, W. E., Griffey, C. A., & Fukao, T. (2017). Differential responses of grain yield, grain protein, and their associated traits to nitrogen supply in soft red winter wheat. J. Plant Nutr. Soil Sci., 180: 316-325.
  • Tatar, Ö., Çakaloğulları, U., Tonk, F. A., İştipliler, D., & Karakoç, R. (2020). Effect of drought stress on yield and quality traits of common wheat during grain filling stage. Turkish Journal of Field Crops, 25 (1): 236-244.
  • Tonk, F. A., İlker, E., Tatar, Ö., Reçber, A., Tosun, M. (2011). Farklı yağış miktarı ve dağılımlarının ekmeklik buğday verimi üzerine etkileri. Ege Üniv. Ziraat Fak. Derg., 48(2):127-132, ISSN: 1018-8851.
  • Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., İsmail, İ. A., Raza, A., Rehman, A., Hossain, A., & El Sabagh, A. (2021). Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability, 13, 4799:1-15.
  • Xue, O., Zhu, Z., Musick, J.T., Stewart, B. A & Dusek, D. A. (2006). Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. Journal of Plant Physiology, 163: 154-164.
  • Zhao, C. X., He, M. R., Wang, Z. L., Wang, Y. F., & Lin, Q. (2009). Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Comptes Rendus Biologies, 332 (8): 759-764.
  • Zörb, C., Ludewig, U., & Hawkesford, M. J. (2018). Perspective on Wheat Yield and Quality with Reduced Nitrogen Supply. Trends in Plant Science, 23 (11): 1029-1037.

Ekmeklik buğdayda (Triticum aestivum L.) 15N izotopu kullanılarak çiçeklenme sonrası kuraklığın azot mobilizasyonu ve gelişimine etkileri

Year 2022, Volume: 26 Issue: 4, 458 - 469, 26.12.2022
https://doi.org/10.29050/harranziraat.1152932

Abstract

Su ve azot eksikliği buğday ve diğer tahıllar gibi bitkilerin ürün verimliliğini etkileyen ana faktörlerden birisidir. İklim koşullarındaki artan değişiklikler nedeniyle buğday bitkisinin verim potansiyelinin açığa çıkması engellenmektedir. Son yıllarda kullanımı artan azot izotop tekniği sayesinde olumsuz çevre koşulları altında azot taşınımı ve azot kullanım verimliliği hakkında önemli bilgiler sağlanmaktadır. Bu çalışmada ekmeklik buğdayda 15N izotopu kullanılarak farklı gelişme dönemlerinde uygulanan kuraklık koşullarının azot taşınımı, verim ve kalite özellikleri ile stoma iletkenliği üzerindeki etkilerinin belirlenmesi amaçlanmıştır. Farklı gelişme dönemlerinde (sulu ve kuru koşul, erken kuraklık (çiçeklenme-hasat) ve geç kuraklık (tane dolum dönemi-hasat)) yağmur korunağı kullanılarak uygulanan yapay kuraklık koşulları ile çevresel varyasyon elde edilmiştir. Çalışmada; başakta tane sayısı, bin tane ağırlığı, tek başak verimi, metrekarede başak sayısı, bitki boyu, tane verimi, biyomas verimi, stoma iletkenliği, tane protein ve kül oranı, sap δ15N (‰), bayrak yaprak δ15N (‰) ve tane δ15N (‰) içerikleri değerlendirilmiştir. Elde edilen sonuçlara göre; verim ve verim öğeleri generatif dönem boyunca uygulanan kuraklık uygulamalarından olumsuz yönde etkilenmiştir ve bu nedenle ekmeklik buğday üretiminde generatif dönem kuraklık stresine neden olabilecek uygulamalardan kaçınılması gerektiği sonucuna ulaşılmıştır. Ayrıca azot kullanım etkinliğinin bitki su kullanımının kısıtlanması ile azaldığı ve kuraklık dönemi boyunca su kullanım etkinliğinin azaldığı anlaşılmıştır. Tüm bunlara ek olarak kuraklık dönemi boyunca bitki metabolik aktivitelerinin azalması sonucu azot tüketiminin kısıtlanmasına bağlı olarak azotun verim potansiyeline katkısının azaldığı sonucuna ulaşılmıştır. Sulu koşulda tane δ15N içeriğinin sulama ile kuru koşula göre 13420 ‰ değerinden 9278 ‰ değerine azaldığı sonucuna ulaşılmıştır. Ayrıca sapa kalkma döneminde uygulanan azotun tane δ15N değerinin (15269 ‰) kardeşlenme döneminde uygulanan δ15N içeriğine (8975 ‰) oranla daha yüksek azot içeriğine ulaşılmasını sağlamıştır. Azotun metabolik faaliyetlere etkin bir şekilde katılması için kardeşlenme ve sapa kalkma dönemlerinde azotlu gübrelemenin uygun zamanda uygulanması ve özellikle sapa kalkma döneminde uygulanan azotun generatif dönem boyunca buğday bitkisinin farklı kısımlarında daha etkin azot taşınımına ve azot kullanımına neden olduğu sonucuna ulaşılmıştır.

Project Number

SUMYO-16003

References

  • Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Manboob, W., Hafeez, O. B. A., Tapera, T., Labuschagne, M., & Rizwan, M. (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40 (80). Ayrancı, R. (2012). Farklı kuraklık tiplerinde ekmeklik buğday genotiplerinin fizyolojik, morfolojik, verim ve kalite özellikleri yönüyle ıslahta kullanılabilecek uygun parametrelerin belirlenmesi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, PhD thesis.
  • Barutçular, C., Yıldırım, M., Koç, M., Dizlek, H., Akıncı, C., El Sabagh, A, Saneoka, H., Ueda, A., Islam, M. S., Toptaş, İ., Albayrak, Ö. & Tanrıkulu, A. (2016). Quality Traits Performance of Bread Wheat Genotypes Under Drought and Heat Stress Conditions. Fresenius Environmental Bulletin, 25 (12a): 6159-6165.
  • Black, C.A. (1965). Methods of soil analysis: Part I Physical and mineralogical properties. American Society of Agronomy, Madison, Wisconsin, USA.
  • Borghi, B. (1999). Nitrogen as determinant of wheat growth and yield. In: Wheat: Ecology and physiology of yield determination. Editors: Satorre E.H and Slafer G.A, Food Products Press, New York, 67-84.
  • Bort, J., Araus J. L., Hazzam H., Grando S., Ceccarelli, S. (1998). Relationships between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley. Plant Physiol. Biochem., 36 (12), 889-897.
  • Dalal, R.C., Strong, W.M., Cooper, J. E., King, A. J. (2013). Relationship between water use and nitrojen use efficiency discerned by 13C discrimination and 15N isotope ratio in bread wheat grown under no-till. Soil & Tillage Research 128:110-118.
  • del Pozo, A., Matus, I., Serret M.D., Araus, J.L. (2014). Agronomic and physiological traits associated with breeding advances of wheat under high-productive Mediterranean conditions. The case of Chile. Environmental ve Experimental Botany 103:180-189.
  • Erekul, O., & Köhn, W. (2006). Effect of weather and soil conditions on yield components and bread-making quality of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm.) varieties in North-East Germany. J. Agronomy & Crop Science, 192: 452-462.
  • Erekul, O., Kautz, T., Ellmer, F., & Turgut, İ. (2009). Yield and bread-making quality of different wheat (Triticum aestivum L.) genotypes grown in Western Turkey. Archives of Agronomy and Soil Science, 55 (2): 169-182.
  • Farooq, M., Bramley, H., Palta, J. A. & Siddique, H. M. (2011). Heat Stress in Wheat During Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 30: 1-17.
  • Fraser, R.A., Bogaard A., Heaton, T., Charles, M., Jones, G., Christensen, B.T., Halstead, P., Merbach, I., Poulton, P. R., Sparkes, D., & Styring, A. K. (2011). Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science 38:2790-2804.
  • Götz, K.P, Herzog, H., & Erekul, O. (2008). Effects of N-application on utilization of 15N and 13C and quality in two wheat cultivars. Isotopes in Environmental and Health Studies, 44 (2): 209-217.
  • Götz, K.P, Erekul, O., Wutzke, K.D., Koca, Y.O & Aksu, T. (2017). 15N allocation into wheat grains (Triticum aestivum L.) influenced by sowing rate and water supply at flowering under a Mediterranean climate, Isotopes in Environmental and Health Studies, 53 (3): 275-285.
  • Halitligil, M.B. (1996). Bitkisel üretimde nükleer tekniklerin kullanımı ve Türkiyedeki Gelişimi. IV. Ulusal Nükleer Tarım ve Hayvancılık Kongresi, 25-27 Eylül, Uludağ Üniv., Bursa, Tarım Sözlü Bildirileri, 1-6.
  • Khatiwada, A., Neupone, I., Sharma, B., Bhetwal, N., & Pandey, B. (2020). Effects of drought stress on yield and yield attributing characters of wheat: A review. Agriways, 8 (2): 115-121.
  • Kılıç, H., & Yağbasanlar, T. (2010). The effect of drought stress on grain yield, yield components and sme quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanizi Cluj-Napoca, 38 (1): 164-170.
  • Kiss, E., Depreczeni, K., Heltai, G., & A. Balint. (1990). Genotypic differences in N uptake and use by several winter wheat varieties. Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies, Proceedings of An International Symposium Held İn Vienna, 1-5 October 1990. pp. 387-393.
  • Kutlu, İ. (2010). Tahıllarda kuraklık stresi. Türk Bilimsel Derlemeler Dergisi 3(1):35-41, ISSN:1308-0040.
  • Liu, H., Guo, B., Wei, Y., Wei, S., Ma, Y., & Zhang, W. (2015). Effects of region, genotype, harvest year and their interactions on δ13C, δ13N and δD in wheat kernels. Food Chemistry 171:56-61.
  • Lopes, M.S., & J.L. Araus. (2006). Nitrogen source and water regime effects on durum wheat photosynthesis and stable carbon and nitrogen isotope composition. Physiologia Plantarum 126:435-445, ISSN 0031-9317.
  • Luo D., Dong, H., Luo, H., Xian, Y., Wan, J., Guo, X., & Wu, Y. (2015). The application of stable isotope ratio analysis to determine the geographical origin of wheat. Food Chemistry 174:197-204.
  • Ma, Q., Sun, Q., Zhang, X., Li, F., Ding, Y., Tao, R., Zhu, M., Ding, J., Li, C., Guo, W., & Zhu, X. (2022). Controlled-release nitrogen fertilizer management influences grain yield in winter wheat by regulating flag leaf senescence post-anthesis and grain filling. Food and Energy Security, 11, e361.
  • Mirbahar A. A., Markhand G. S., Mahar A. R., Abro S. A., & Kanhar N. A. (2009). Effect of water stress on yield and yield components of wheat (Triticum aestivum L.) varieties. Pak. J. Bot., 41 (3): 1303-1310.
  • Oliveira, L. S., & Franca, A. S. (2011). Applications of near infrared spectroscopy (NIRS) in food quality evaluation. In: Food Quality: Control, Analysis and Consumer Concerns (Chapter 3). Editors: Daniel A. Medina and Amanda M Laine, Nova Science Publishers Inc.
  • Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., Roessner, U., & Dolferus, R. (2021). Reproductive stage drought tolerance in wheat: Importance of stomatal conductance and plant growth regulators. Genes, 12, 1742. https://doi. org/10.3390/genes12111742.
  • Öztürk, A. (1999). Kuraklığın kışlık buğdayın gelişmesi ve verimine etkisi. Turkish J. of Agriculture and Forestry, 23:531-540. TÜBİTAK.
  • Petrova, T., & Penchev, E. (2014). Effect of drought on the yield components of common winter wheat cultivars. Turkish Journal of Agricultural and Natural Sciences, 1 (Special issue): 641-646.
  • Quemada, M., & Gabriel, J. L. 2016. Approaches for increasing nitrogen and water use efficiency simultaneously. Global Food Security 9 (2016) 29–35.
  • Rebetzke, G.J., Condon, A. G., Richards, R. A., & Read, J. J. (2001). Phenotypic variation and sampling for leaf conductance in wheat (Triticum aestivum L.) breeding populations. Euphytica, 121: 335-341.
  • Reynolds, M.P., Singh, R. P., İbrahim, A., Ageeb, O. A. A., Largue-Saavedra, A., & Quick, J. S. (1998). Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100:85-94.
  • Sanchez-Bragado R, Serret M.D. & Araus J.L. (2017). The Nitrogen Contribution of Different Plant Parts to Wheat Grains: Exploring Genotype, Water, and Nitrogen Effects. Front. Plant Sci. 7:1986: 1-14.
  • Seemann, J.R., Sharkey, T. D., Wang, J. T., & Osmond, C. B. (1987). Environmental effects on photosynthesis, nitrogen use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol. 84, 796-802.
  • Serret, M. D., Ortiz-Monasterio, I., Pardo, A., & Araus, J. L. (2008). The effects of urea fertilisation and genotype on yield, nitrogen use efficiency, δ15N and δ13C in wheat. Annals of Applied Biology, 153: 243-257.
  • Tamang, B. G., Brasier, K. G., Thomason, W. E., Griffey, C. A., & Fukao, T. (2017). Differential responses of grain yield, grain protein, and their associated traits to nitrogen supply in soft red winter wheat. J. Plant Nutr. Soil Sci., 180: 316-325.
  • Tatar, Ö., Çakaloğulları, U., Tonk, F. A., İştipliler, D., & Karakoç, R. (2020). Effect of drought stress on yield and quality traits of common wheat during grain filling stage. Turkish Journal of Field Crops, 25 (1): 236-244.
  • Tonk, F. A., İlker, E., Tatar, Ö., Reçber, A., Tosun, M. (2011). Farklı yağış miktarı ve dağılımlarının ekmeklik buğday verimi üzerine etkileri. Ege Üniv. Ziraat Fak. Derg., 48(2):127-132, ISSN: 1018-8851.
  • Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., İsmail, İ. A., Raza, A., Rehman, A., Hossain, A., & El Sabagh, A. (2021). Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability, 13, 4799:1-15.
  • Xue, O., Zhu, Z., Musick, J.T., Stewart, B. A & Dusek, D. A. (2006). Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. Journal of Plant Physiology, 163: 154-164.
  • Zhao, C. X., He, M. R., Wang, Z. L., Wang, Y. F., & Lin, Q. (2009). Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Comptes Rendus Biologies, 332 (8): 759-764.
  • Zörb, C., Ludewig, U., & Hawkesford, M. J. (2018). Perspective on Wheat Yield and Quality with Reduced Nitrogen Supply. Trends in Plant Science, 23 (11): 1029-1037.
There are 40 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Araştırma Makaleleri
Authors

Ali Erkul 0000-0001-9211-7369

Ali Yiğit 0000-0003-3303-5122

Yakup Onur Koca 0000-0002-0753-0077

Osman Erekul 0000-0002-0276-4843

Project Number SUMYO-16003
Early Pub Date December 23, 2022
Publication Date December 26, 2022
Submission Date August 2, 2022
Published in Issue Year 2022 Volume: 26 Issue: 4

Cite

APA Erkul, A., Yiğit, A., Koca, Y. O., Erekul, O. (2022). Effects of post-flowering drought on nitrogen mobilization and growth of bread wheat (Triticum aestivum L.) using stable 15N isotope. Harran Tarım Ve Gıda Bilimleri Dergisi, 26(4), 458-469. https://doi.org/10.29050/harranziraat.1152932

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.