Research Article
BibTex RIS Cite

Sclerotinia minor Jagger üzerine potansiyel biyokontrol ajanlarının değerlendirilmesi

Year 2022, Volume: 26 Issue: 4, 480 - 490, 26.12.2022
https://doi.org/10.29050/harranziraat.1198298

Abstract

Bu çalışma farklı bitkilerin rizosferik toprak bölgesinden izole edilen 38 bakteri izolatının ayçiçeğinde beyaz çürüklük etmenlerinden biri olan Sclerotinia minor Jagger’e karşı antagonistik etkilerini belirlemek amacıyla yapılmıştır. In vitro koşullarda test edilen bakterilerin yaklaşık %37’si orta ya da yüksek düzeyde patojenin misel gelişimini baskılamıştır. In vitro koşullarda patojeni yüksek düzeyde (%80-100) engelleyen bakteriler (Pseudomonas chlororaphis IDV5, Bacillus amyloliquefaciens IEB1, Bacillus cereus IPT3, Stenotrophomonas sp. IGL1, henüz teşhis edilememiş 2 bakteri izolatı (IFG1 ve IFG2)) daha sonra iklim odası koşullarında saksı çalışmaları ile test edilmiştir. Araştırma sonuçlarımıza göre saksı denemelerinde Pseudomonas chlororaphis dışında tüm bakteriler %100 etkili olmuştur. Ayrıca in vitro’da S. minor’e karşı etkisiz olmasına rağmen, daha önce yaptığımız farklı çalışmalarda in vivo koşullarda başarılı olduğunu tespit ettiğimiz Pseudomonas koreensis (IFG4)’de denemeye dahil edilmiş ve in vivo’da etkili bulunmuştur. Bu sonuç bazı rizosferik bakterilerin patojenin baskılanmasında rol oynayan bazı engelleyici özelliklerinin bitki ile bir araya geldiğinde ortaya çıktığını göstermektedir. Sonuç olarak çalışmamız biyolojik mücadelenin ayçiçeğinde toprak patojenlerini kontrol etmenin alternatiflerinden biri olduğunu ve bu antagonistik bakterilerin diğer özellikleri yönünden de araştırıldıktan sonra biyoajan olarak kullanılabileceğini ortaya koymaktadır.

References

  • Aeron, A., Kumar, S., Pandey, P., Maheshwari, D.K. (2011). Emerging role of plant growth promoting rhizobacteria in agrobiology. In Bacteria in Agrobiology: Crop Ecosystems; Springer: Berlin/Heidelberg, Germany, pp. 1–36.
  • Abdullah, M., Ali, N.Y., Suleman, P. (2008). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot. 27, 1354–1359.
  • Alexander, D.B., Zuberer, D.A. (1991). Use of Chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of soils, 12(1), 39-45.
  • Amara, U., Khalid, R., Hayat, R. (2015). Soil bacteria and phytohormones for sustainable crop production. In Bacterial Metabolites in Sustainable Agroecosystem; Springer: Chem, Switzerland, pp. 87–103.
  • Ambrosini, A., Passaglia, L. M. (2017). Plant growth-promoting bacteria (PGPB): isolation and screening of PGP activities. Current protocols in plant biology, 2(3), 190-209.
  • Aşkın, A. & Ozan, S. (2013) Orta Anadolu Bölgesinde örtü altı hıyar yetiştiriciliğinde mildiyö (Pseudoperonospora cubensis Berk. And Curt.) mücadelesinde Bacillus spp. izolatlarının kullanım olanaklarının araştırılması. Bitki Koruma Ürünleri ve Makineleri Kongresi, 2-4 Nisan; Antalya, 57-68.
  • Bakker, A.W. & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol.Biochem. vol: (19), 451-457.
  • Baniasadi, F., Shahidi Bonjar, G.H., Baghizadeh A., Nik, A.K. and Jorjandi, M. et al., (2009). Biological control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinomycetes isolates. Am. J. Agric. Biol. Sci., 4: 146-151. DOI: 10.3844/ajabssp.2009.146.151.
  • Bardin, S.D. and Huang, H.C. (2001). Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol., 23: 88–9.
  • Bolton, M.D., Thomma, B.P., Nelson, B.D. (2006) Sclerotinia sclerotiorum (lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7(1):1–16.
  • Cattara, V., Sutra, L., Morineau, A., Achouak, W., Christen, R. and Gardan, L. (2002). Phenotypic and genomic evidence for the revision of Pseudomonas corrugate and proposal of Pseudomonas mediterranea sp.nov. International Journal of Systematic and Evolutionary Microbiology 52, 1749-1758.
  • Chitrampalam, P., Figuli, P. J., Matheron, M. E., Subbarao, K. V., & Pryor, B. M. (2008). Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in desert agroecosystems. Plant Disease, 92(12), 1625–1634.
  • Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E.A. (2005). Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959.
  • Dworkin, M., Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol 75: 592-601.
  • Fernando, W.G.D., Nakkeeran, S., Zhang, Y., Savchuk, S. (2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107.
  • Goswami, D., Thakker, J.N., Dhandhukia, P.C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2, 1127500.
  • Gopalakrishnan, S., Humayun, P. Kiran, B.K., Kannan, I.G.K., Vidya, M.S., Deepthi, K., Rupela, O. (2011). Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol. 27, 1313–1321.
  • Hao, J. J., Subbarao, K. V., Hubbard, J. C. and Koike, S. T. (2000). Effects of broccoli ro-tation on lettuce drop caused by Sclerotinia minor and sclerotia in soil. (Abstr.) Phytopa-thology 90: S34.
  • Hernandez-Leon, R., Rojas-Solis, D., Contreras-Perez, M., Orozco-Mosqueda, M.C., Macias-Rodriguez L.L., Reyes-de la Cruz, H., Valencia-Cantero, E., Santoyo, G. (2015). Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92.
  • Idris, H.A., Labuschagne, N. and Korsten, L. (2007). Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. J. Biocontrol., 40: 97-106.
  • Isnaini, M. & Keane, P.J. (2007). Biocontrol and epidemiology of lettuce drop caused by Sclerotinia minor at Bacchus Marsh, Victoria. Australasian Plant Pathology, 36(3), 295–304.
  • Ji, S.H., Paul, N.C., Deng, J.X., Kim, Y.S., Yun, B.S., Yu, S.H. (2013). Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases. Mycobiology. 41, 234–242.
  • Kashyap, B.K., Solanki, M.K., Pandey, A.K., Prabha, S., Kumar, P., Kumari, B. (2019). Bacillus as plant growth promoting rhizobacteria (PGPR): A promising green agriculture technology. In Plant Health under Biotic Stress; Springer Nature Singapore Pte Ltd.: Singapore, pp. 219–236.
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Kim, H.B., Srinivasan, S., Sathiyaraj, G., Quan, L.H., Kim, S.H., Bui, T.P., Liang, Z.Q., Kim, Y.J. and Yang, D.C. (2009). Stenotrophomonas ginsengisoli sp. nov., a bacterium isolated from a ginseng field. Int. J. Syst. Evol. Microbiol. Doi:10.1099/ijs.0.014662-0.
  • Koçak, R. & Boyraz, N. (2021). The Incidence Rate of White Rot (Sclerotinia sclerotiorum (Lib.) de Bary) Disease in Sunflower Cultivation Areas in Konya and Aksaray Provinces and its Pathogenic Potential. Selcuk Journal of Agriculture and Food Sciences 35 (2), 101-107.
  • Koike, S.T., Subbarao, K.V., Davis, R.M. and Turini, T.A. (2003). Vegetable Diseases caused by Soilborne Pathogens. Publication 8099, University of California.
  • Kumar, V., Jain, L., Jain, S.K., Chaturvedi, S., Kaushal, P. (2020). Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 2020, 134, 50–63.
  • Lamey, A., Knodel, J., Endres, G., Gregoire, T., Ashley, R. (2000). Sunflower disease and midge survey. NDSU, Extension Service, Fargo, ND. http://www.ag.ndsu.nodak.edu. Accessed on September 10, 2014.
  • Lorito, M., Woo, S.L., Iaccarino, M., Scala, F. (2006). Microrganismi antagonisti. In: Iaccarino, M. (Ed.), Microrganismi Benefici per le Piante. Idelson-Gnocchi s.r.l., Napoli, Italia, pp. 146–175.
  • Martin, C.C.G., Brathwaite, R.A.I. (2012). Compost and compost tea: principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production Biol. Agric. Hortic., 28: pp. 1-33.
  • Nelson, B., Duval, D., Wu, H., 1988. An in vitro tecnique for large-scale production of sclerotia of Sclerotinia sclerotiorum. Phytopathology, 78:1470-1472.
  • Ngalimat, M.S., Mohd Hata, E., Zulperi, D., Ismail, S.I., Ismail, M.R., Mohd Zainudin, N., Saidi, N.B., Yusof, M.T. (2021). Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms. 9:682.
  • Noble R. & Conventry E. (2005). Suppression of soil-borne plant diseases with composts: a review Biocontrol. Sci. Technol. 15: 3-20 pp.
  • Penrose, D.M. & Glick, B.R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth- promoting rhizobacteria. Physiologia plantarum, 118(1), 10-15.
  • Pikovskaya, R.I. (1948). Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology, 17, 362-370.
  • Saygılı, H., Şahin, F., Aysan, A. (2006). Fitobakteriyoloji. Meta Basım Matbaacılık Hizmetleri, Bornova, İzmir.
  • Schmidt, C.S., Mrnka, L., Lovecká, P. et al. (2021). Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease. Sci Rep 11, 3810 https://doi.org/10.1038/s41598-021-81937-7.
  • Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal Khan, M.S., Shahid, N., Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121, 102–117.
  • Tozlu, E. (2003). Pasinler Ovası’nda Ayçiçeğinde Gövde Çürüklüğü Hastalığını Oluşturan Sclerotinia sclerotiorum (Lib.) de Bary ve Sclerotinia minor Jagger’ın Yayılışı, Tanılanması, Patojeniteleri ve Biyolojik Kontrolü. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Basılmamış Doktora Tezi, 117, Erzurum.
  • Tozlu, E., Demirci, E. (2008). Incidence and characterization of sunflower stem rot disease caused by Sclerotinia sclerotiorum and S. minör in Pasinler Plain of Erzurum, and reaction of some sunflower cultivars to the pathogens. Plant Protection Bulletin, 48 (4), 19-33. Retrieved from https://dergipark.org.tr/en/pub/bitkorb/issue/3678/48807.
  • Ünal, F., Aşkın, A., Koca, E. et al. (2019). Mycelial compatibility groups, pathogenic diversity and biological control of Sclerotium rolfsii on turfgrass. Egypt J Biol Pest Control 29, 44 https://doi.org/10.1186/s41938-019-0144-6
  • Van Becelaere, G., Miller, J.F. (2004) Combining ability for resistance to Sclerotinia head rot in sunflower. Crop Sci 44:1542–1545.
  • Ventorino, V., Parillo, R., Testa, A., Aliberti, A., Pepe, O. (2013). Chestnut biomass biodegradation for sustainable agriculture Bioresources, 8, pp. 4647-4658.
  • Ventorino, V., Parillo, R., Testa, A., Viscardi, S., Espresso, F., and Pepe, O. (2016). Chestnut green waste composting for sustainable forest management: microbiota dynamics and impact on plant disease control. J. Environ. Manage. 166: 168–177.
  • Wu B.M., Subbarao K.V. (2008). Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Phytopathology 98:1144–1152.
  • Yang, H.C., Im, W.T., Kang, M.S., Shin, D.Y. and Lee, S.T. (2006). Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int. J. Syst. Evol. Microbiol. 56, 81-84.
  • Yiğit, F. (2005). Bitki patojenlerinin kontrolünde kullanılan biyokontrol ürünler ve özellikleri. S.Ü. Ziraat Fak. Derg., 19 (36): 70-77.
  • Yousef, N.M. (2018). Capability of Plant Growth Promoting Rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditons. European Journal of Biological Research, 8(4), 174-182.
  • Zazzerini, A. (1987). Antagonistic effect of Bacillus spp. on Sclerotinia sclerotiorum sclerotia. Phytopathol Mediterr 26:185–187.
  • Zhang, Z., Yuen, G. Y., Sarath, G. & Penheiter, A. R. (2001). Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91, 204–211.

Evaluation of potential biocontrol agents on Sclerotinia minor Jagger

Year 2022, Volume: 26 Issue: 4, 480 - 490, 26.12.2022
https://doi.org/10.29050/harranziraat.1198298

Abstract

This study was carried out to determine the antagonistic effects of 38 bacterial isolates isolated from the rhizospheric soil region of different plants against Sclerotinia minor Jagger, which is one of the causative agents of white rot in sunflower. Approximately 37% of the bacteria tested in vitro suppressed mycelial growth of the pathogen at moderate or high levels. Bacteria that inhibit pathogens at a high level (80-100%) in vitro (Pseudomonas chlororaphis IDV5, Bacillus amyloliquefaciens IEB1, Bacillus cereus IPT3, Stenotrophomonas sp. IGL1, 2 unidentified bacterial isolates (IFG1 and IFG2)) were potted under climatic chamber conditions tested by work. According to our research results, all bacteria except Pseudomonas chlororaphis were 100% effective in pot experiments. In addition, although it is ineffective against S. minor in vitro, Pseudomonas koreensis (IFG4), which we have found to be successful in vivo conditions in different studies we have done before, was included in the trial and was found effective in this study as well. This result shows that some inhibitory properties of some rhizospheric bacteria, which play a role in suppressing the pathogen, appear when they come together with the plant. In conclusion, our study reveals that biological control is one of the alternatives to control soil pathogens in sunflower and can be used as a bioagent after investigating other properties of these antagonistic bacteria.

References

  • Aeron, A., Kumar, S., Pandey, P., Maheshwari, D.K. (2011). Emerging role of plant growth promoting rhizobacteria in agrobiology. In Bacteria in Agrobiology: Crop Ecosystems; Springer: Berlin/Heidelberg, Germany, pp. 1–36.
  • Abdullah, M., Ali, N.Y., Suleman, P. (2008). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot. 27, 1354–1359.
  • Alexander, D.B., Zuberer, D.A. (1991). Use of Chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of soils, 12(1), 39-45.
  • Amara, U., Khalid, R., Hayat, R. (2015). Soil bacteria and phytohormones for sustainable crop production. In Bacterial Metabolites in Sustainable Agroecosystem; Springer: Chem, Switzerland, pp. 87–103.
  • Ambrosini, A., Passaglia, L. M. (2017). Plant growth-promoting bacteria (PGPB): isolation and screening of PGP activities. Current protocols in plant biology, 2(3), 190-209.
  • Aşkın, A. & Ozan, S. (2013) Orta Anadolu Bölgesinde örtü altı hıyar yetiştiriciliğinde mildiyö (Pseudoperonospora cubensis Berk. And Curt.) mücadelesinde Bacillus spp. izolatlarının kullanım olanaklarının araştırılması. Bitki Koruma Ürünleri ve Makineleri Kongresi, 2-4 Nisan; Antalya, 57-68.
  • Bakker, A.W. & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol.Biochem. vol: (19), 451-457.
  • Baniasadi, F., Shahidi Bonjar, G.H., Baghizadeh A., Nik, A.K. and Jorjandi, M. et al., (2009). Biological control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinomycetes isolates. Am. J. Agric. Biol. Sci., 4: 146-151. DOI: 10.3844/ajabssp.2009.146.151.
  • Bardin, S.D. and Huang, H.C. (2001). Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol., 23: 88–9.
  • Bolton, M.D., Thomma, B.P., Nelson, B.D. (2006) Sclerotinia sclerotiorum (lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7(1):1–16.
  • Cattara, V., Sutra, L., Morineau, A., Achouak, W., Christen, R. and Gardan, L. (2002). Phenotypic and genomic evidence for the revision of Pseudomonas corrugate and proposal of Pseudomonas mediterranea sp.nov. International Journal of Systematic and Evolutionary Microbiology 52, 1749-1758.
  • Chitrampalam, P., Figuli, P. J., Matheron, M. E., Subbarao, K. V., & Pryor, B. M. (2008). Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in desert agroecosystems. Plant Disease, 92(12), 1625–1634.
  • Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E.A. (2005). Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959.
  • Dworkin, M., Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol 75: 592-601.
  • Fernando, W.G.D., Nakkeeran, S., Zhang, Y., Savchuk, S. (2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107.
  • Goswami, D., Thakker, J.N., Dhandhukia, P.C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2, 1127500.
  • Gopalakrishnan, S., Humayun, P. Kiran, B.K., Kannan, I.G.K., Vidya, M.S., Deepthi, K., Rupela, O. (2011). Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol. 27, 1313–1321.
  • Hao, J. J., Subbarao, K. V., Hubbard, J. C. and Koike, S. T. (2000). Effects of broccoli ro-tation on lettuce drop caused by Sclerotinia minor and sclerotia in soil. (Abstr.) Phytopa-thology 90: S34.
  • Hernandez-Leon, R., Rojas-Solis, D., Contreras-Perez, M., Orozco-Mosqueda, M.C., Macias-Rodriguez L.L., Reyes-de la Cruz, H., Valencia-Cantero, E., Santoyo, G. (2015). Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92.
  • Idris, H.A., Labuschagne, N. and Korsten, L. (2007). Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. J. Biocontrol., 40: 97-106.
  • Isnaini, M. & Keane, P.J. (2007). Biocontrol and epidemiology of lettuce drop caused by Sclerotinia minor at Bacchus Marsh, Victoria. Australasian Plant Pathology, 36(3), 295–304.
  • Ji, S.H., Paul, N.C., Deng, J.X., Kim, Y.S., Yun, B.S., Yu, S.H. (2013). Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases. Mycobiology. 41, 234–242.
  • Kashyap, B.K., Solanki, M.K., Pandey, A.K., Prabha, S., Kumar, P., Kumari, B. (2019). Bacillus as plant growth promoting rhizobacteria (PGPR): A promising green agriculture technology. In Plant Health under Biotic Stress; Springer Nature Singapore Pte Ltd.: Singapore, pp. 219–236.
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Kim, H.B., Srinivasan, S., Sathiyaraj, G., Quan, L.H., Kim, S.H., Bui, T.P., Liang, Z.Q., Kim, Y.J. and Yang, D.C. (2009). Stenotrophomonas ginsengisoli sp. nov., a bacterium isolated from a ginseng field. Int. J. Syst. Evol. Microbiol. Doi:10.1099/ijs.0.014662-0.
  • Koçak, R. & Boyraz, N. (2021). The Incidence Rate of White Rot (Sclerotinia sclerotiorum (Lib.) de Bary) Disease in Sunflower Cultivation Areas in Konya and Aksaray Provinces and its Pathogenic Potential. Selcuk Journal of Agriculture and Food Sciences 35 (2), 101-107.
  • Koike, S.T., Subbarao, K.V., Davis, R.M. and Turini, T.A. (2003). Vegetable Diseases caused by Soilborne Pathogens. Publication 8099, University of California.
  • Kumar, V., Jain, L., Jain, S.K., Chaturvedi, S., Kaushal, P. (2020). Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 2020, 134, 50–63.
  • Lamey, A., Knodel, J., Endres, G., Gregoire, T., Ashley, R. (2000). Sunflower disease and midge survey. NDSU, Extension Service, Fargo, ND. http://www.ag.ndsu.nodak.edu. Accessed on September 10, 2014.
  • Lorito, M., Woo, S.L., Iaccarino, M., Scala, F. (2006). Microrganismi antagonisti. In: Iaccarino, M. (Ed.), Microrganismi Benefici per le Piante. Idelson-Gnocchi s.r.l., Napoli, Italia, pp. 146–175.
  • Martin, C.C.G., Brathwaite, R.A.I. (2012). Compost and compost tea: principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production Biol. Agric. Hortic., 28: pp. 1-33.
  • Nelson, B., Duval, D., Wu, H., 1988. An in vitro tecnique for large-scale production of sclerotia of Sclerotinia sclerotiorum. Phytopathology, 78:1470-1472.
  • Ngalimat, M.S., Mohd Hata, E., Zulperi, D., Ismail, S.I., Ismail, M.R., Mohd Zainudin, N., Saidi, N.B., Yusof, M.T. (2021). Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms. 9:682.
  • Noble R. & Conventry E. (2005). Suppression of soil-borne plant diseases with composts: a review Biocontrol. Sci. Technol. 15: 3-20 pp.
  • Penrose, D.M. & Glick, B.R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth- promoting rhizobacteria. Physiologia plantarum, 118(1), 10-15.
  • Pikovskaya, R.I. (1948). Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology, 17, 362-370.
  • Saygılı, H., Şahin, F., Aysan, A. (2006). Fitobakteriyoloji. Meta Basım Matbaacılık Hizmetleri, Bornova, İzmir.
  • Schmidt, C.S., Mrnka, L., Lovecká, P. et al. (2021). Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease. Sci Rep 11, 3810 https://doi.org/10.1038/s41598-021-81937-7.
  • Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal Khan, M.S., Shahid, N., Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121, 102–117.
  • Tozlu, E. (2003). Pasinler Ovası’nda Ayçiçeğinde Gövde Çürüklüğü Hastalığını Oluşturan Sclerotinia sclerotiorum (Lib.) de Bary ve Sclerotinia minor Jagger’ın Yayılışı, Tanılanması, Patojeniteleri ve Biyolojik Kontrolü. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Basılmamış Doktora Tezi, 117, Erzurum.
  • Tozlu, E., Demirci, E. (2008). Incidence and characterization of sunflower stem rot disease caused by Sclerotinia sclerotiorum and S. minör in Pasinler Plain of Erzurum, and reaction of some sunflower cultivars to the pathogens. Plant Protection Bulletin, 48 (4), 19-33. Retrieved from https://dergipark.org.tr/en/pub/bitkorb/issue/3678/48807.
  • Ünal, F., Aşkın, A., Koca, E. et al. (2019). Mycelial compatibility groups, pathogenic diversity and biological control of Sclerotium rolfsii on turfgrass. Egypt J Biol Pest Control 29, 44 https://doi.org/10.1186/s41938-019-0144-6
  • Van Becelaere, G., Miller, J.F. (2004) Combining ability for resistance to Sclerotinia head rot in sunflower. Crop Sci 44:1542–1545.
  • Ventorino, V., Parillo, R., Testa, A., Aliberti, A., Pepe, O. (2013). Chestnut biomass biodegradation for sustainable agriculture Bioresources, 8, pp. 4647-4658.
  • Ventorino, V., Parillo, R., Testa, A., Viscardi, S., Espresso, F., and Pepe, O. (2016). Chestnut green waste composting for sustainable forest management: microbiota dynamics and impact on plant disease control. J. Environ. Manage. 166: 168–177.
  • Wu B.M., Subbarao K.V. (2008). Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Phytopathology 98:1144–1152.
  • Yang, H.C., Im, W.T., Kang, M.S., Shin, D.Y. and Lee, S.T. (2006). Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int. J. Syst. Evol. Microbiol. 56, 81-84.
  • Yiğit, F. (2005). Bitki patojenlerinin kontrolünde kullanılan biyokontrol ürünler ve özellikleri. S.Ü. Ziraat Fak. Derg., 19 (36): 70-77.
  • Yousef, N.M. (2018). Capability of Plant Growth Promoting Rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditons. European Journal of Biological Research, 8(4), 174-182.
  • Zazzerini, A. (1987). Antagonistic effect of Bacillus spp. on Sclerotinia sclerotiorum sclerotia. Phytopathol Mediterr 26:185–187.
  • Zhang, Z., Yuen, G. Y., Sarath, G. & Penheiter, A. R. (2001). Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91, 204–211.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Araştırma Makaleleri
Authors

Raziye Koçak 0000-0002-8221-0452

Özden Salman 0000-0002-7871-4105

Nuh Boyraz 0000-0001-6822-9360

Early Pub Date December 23, 2022
Publication Date December 26, 2022
Submission Date November 2, 2022
Published in Issue Year 2022 Volume: 26 Issue: 4

Cite

APA Koçak, R., Salman, Ö., & Boyraz, N. (2022). Sclerotinia minor Jagger üzerine potansiyel biyokontrol ajanlarının değerlendirilmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 26(4), 480-490. https://doi.org/10.29050/harranziraat.1198298

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.