Research Article
BibTex RIS Cite

Kışlık buğday genotiplerinde konvansiyonel teknikler kullanılarak çizgili pas’ın warrior ırkı ve yerel popülasyonuna genetik bağışıklığın belirlenmesi

Year 2023, Volume: 27 Issue: 1, 30 - 41, 24.03.2023
https://doi.org/10.29050/harranziraat.1177052

Abstract

Puccinia striiformis f. sp. tritici’nin neden olduğu buğday çizgili pası, buğday’da (Triticum spp.) dikkate değer ürün kayıplarına neden olan önemli ve yıkıcı bir biyotik strestir. Çizgili pasa karşı dayanıklılık sağlayan önemli genlerin kırılma olasılığı ve yeni agresif ırkların ortaya çıkma tehdidi, dünyadaki tüm buğday yetiştirilen alanlarda endişe kaynağı olmaya devam etmektedir. Bu nedenle, ıslah programları ırk değişikliklerine karşı farklı gen kombinasyonlarına sahip yeni çeşitler geliştirmek için geniş genetik çeşitliliği taramaya devam etmelidir. Bu kapsamda, çeşitli ülke ve programlardan temin edilen 140 buğday genotipi, 2020 ve 2021 yetiştirme sezonlarında hem fide ve hem de ergin-bitki dönemlerinde çizgili pasa gösterdikleri reaksiyonlar bakımından değerlendirilmiştir. Bu genotiplerin ergin-bitki evresi değerlendirmeleri, Ankara’daki Tarla Bitkileri Merkez Araştırma Enstitüsü’nün Haymana lokasyonunda PstS7 (Warrior) ırkının suni inokülasyonu altında ve İzmir’deki Ege Tarımsal Araştırma Enstitüsü’nün Menemen lokasyonunda çizgili pasın doğal olarak ortaya çıkan yerel popülasyonu altında yürütülmüştür. Fide dönemi testleri ise Tarla Bitkileri Merkez Araştırma Enstitüsü, Hastalık ve Zararlılara Dayanıklılık Birimi’nde kontrollü koşullarda PstS7 ırkı kullanılarak gerçekleştirilmiştir. Her iki lokasyonda da test edilen genotiplerin %80'inden fazlası ergin-bitki evresinde immun, dayanıklı ve orta derecede dayanıklı reaksiyonlar sergilerken, genotiplerin sadece %36.4'ü fide döneminde dayanıklılık reaksiyonları sergilemiştir. Genotiplerin enfeksiyon katsayıları (CI), her bir genotipin çizgili pas reaksiyonu ve hastalık şiddeti kullanılarak hesaplanmıştır. Genotiplerin CI’na göre sınıflandırılmasında 0 = immun; 0.1-5.0 = dayanıklı; 5.01-20.0 = orta dereceli dayanıklı; 20.1-40.0 = orta dereceli hassas; 40.1-100 = hassas skalası kullanılmıştır. Sonuç olarak, her iki lokasyonda değerlendirilen 101 genotip (%72.1) hem PstS7 ırkına hem de yerel çizgili pas popülasyonuna karşı immun, dayanıklı ve orta dereceli dayanıklı bulunmuştur. Bu genotipler, geliştirilecek çeşitler için dayanıklılık gen kaynakları olarak önerilmiştir.

Supporting Institution

Uluslararası Kışlık Buğday Geliştirme Programı (IWWIP)

References

  • Afshari, F. (2004). Challenge of new race of Puccinia striiformis f. sp. tritici in Iran. Second regional yellow rust conference for central and west Asia and North Africa, Islamabad.
  • Akan, K. & Akcura, M. (2018). GGE biplot analysis of reactions of bread wheat pure lines selected from Central Anatolian landraces of Turkey to leaf rust disease (Puccinia triticinia) in multiple location-years. Cereal Research Communications. 46(2), 311–320
  • Ali, S., Shah, S. J. A. & Maqbool, K. (2008). Field-based assessment of partial resistance to yellow rust in wheat germplasm. J Agric Rural Dev 6: 99-106.
  • Anonymous (2021). CIMMYT https://www.cimmyt.org/news/what-is-sustainable-intensification/
  • Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions, Environmental Sustainability (2), 95–96
  • Beddow, J. M., et al. (2015). Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1, 15132.
  • Bux, H., Ashraf, M., Chen, X. M., & Mumtaz, A. S. (2011). Effective genes for resistance to stripe rust and virulence of Puccinia striiformis f.sp. tritici in Pakistan. Afri J Biotechnol 10: 5489-5495.
  • Cat, A., Tekin, M., Akan, K., Akar, T., & Catal, M. (2021). Races of Puccinia striiformis f. sp. Tritici identified from the coastal areas of Turkey. Can. J. Plant Pathology, 2021.Vol. 43, No. 2, S323-S332. https:/doi.org/10.1080/07060661.2021.1978000
  • Çat, A. (2022). Tescilli Makarnalık Buğday (Triticum durum) Çeşitlerinin Sarı Pas (Puccinia striiformis f. sp. tritici) Hastalığına Karşı Dayanıklılığının Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 9(2), 136-143.
  • Chen, X. M., Moore, M., Milus, E. A., Long, D. L., & Line, R. F. (2002). Wheat stripe rust epidemics and races of Puccinia striiformis f.sp. tritici in the United States in 2000. Plant Dis 86: 39-46.
  • De Vallavieille-Pope, C., Ali, S., Leconte, M., Enjalbert, J., Delos, M., & Rouzet, J. (2012). Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. lant Dis. 96, 131–140. doi: 10.1094/PDIS-02-11-0078.
  • Ellis, J. G., Lagudah, E. S., Spielmeyer, W., & Dodds, P.N. (2014). The past, present, and future of breeding rust resistant wheat. Frontiers in Plant Science5: 641
  • Feng, J., Wang, M., See, D. R., Chao, S., Zheng, Y., & Chen, X. (2018). Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108, 737–747. doi: 10.1094/PHYTO-11-17- 0375-R
  • Foroutan, A., & Ahmadian-Moghaddam, M. S. (2002) Evaluation of some advanced lines and cultivars of wheat to yellow rust in Mazandaran. Abstracts of first regional yellow rust conference for central and west Asia and North Africa, Iran.
  • Gessese, M., Bariana, H., Wong, D., Hayden, M., & Bansal, U. (2019). Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant disease, 103(6), 1166-1171.
  • Herrera-Fossel, S. A., Singh, R. P., Huerta-Espino, J., Crossa, J., & Djurle, A. (2007). Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155: 361-369.
  • Hovmøller, M. S., Walter, S., Bayles, R., Hubbard, A., Flath, K., & Sommerfeldt, N. (2016). Replacement of the European wheat yellow rust population by new races from the center of diversity in the near-Himalayan region. Plant Pathol. 65, 402–411. DOI: 10.1111/ppa.12433.
  • Ipek, E., Tekin, M., Cat, A., & Akar, T. (2022). Resistance to stripe rust in Turkish durum wheat varieties and wild emmer genotypes. Cereal Research Communications, 1-8.
  • Johnson, R., Stubbs, R. W., Fuchs, E., & Chamberlain, N. H. (1972). Nomenclature for physiologic races of Puccinia striiformis infecting wheat. Trans. Br. Mycol. Soc. 58, 475–480. DOI: 10.1016/S0007-1536(72)80096-2.
  • Khiavi, H. K., Mirak, A. A., Akrami, M., & Khoshvaghtei, H. (2017). Evaluation of Different Wheat Genotypes Reaction to Stripe Rust (Puccinia striiformis f.sp. tritici) under Field Conditions in Ardabil Province J Plant Pathol Microbiol 2017, 8:11.
  • Klymiuk, V., Chawla, H.S., & Wiebe, K. (2022). Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol 5, 826 (2022). https://doi.org/10.1038/s42003-022-03773-3
  • Li, J., Dundas, I., & Dong, C. (2020). Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133, 1095–1107 (2020). https://doi.org/10.1007/s00122-020-03534-y
  • Line, R. F. (2002). Stripe rust of wheat in barley in North America: a retrospective historical review. Annu. Rev. Phytopathol. 40, 75–118.
  • Malihipour, A., Torabi, M., Houshyar, R., Tarinejad, A. & Ahmadian-Moghaddam, M. S. (2002). Seedling and adult plant resistance to yellow rust in genotypes of the preliminary wheat screening nursery (PWSN) of Iran in the 1999-2000 cropping season. In: Proceedings of the first regional conference on yellow rust in the central and west Asia and North Africa region, Iran.
  • McNeal, F. H., Konzah, C. S., Smiths, E. P., Tate, W. S., & Russel, T. S. (1971). A uniform system for recording and processing cereal rust data. USDA-ARS. 34-121
  • Nazari, K. (2006). Studies of the Wheat-Stripe Rust Pathosystem at classical and molecular levels. Ph.D. thesis, The University of Sydney, NSW, Australia. p. 264.
  • Nsabiyera, V., Bariana, H. S., Qureshi, N., Wong, D., Hayden, M. J., & Bansal, U. K. (2018). Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor. Appl. Genet. 131, 1459–1467. doi: 10.1007/ s00122-018-3090-x
  • Pakeerathan, K., Bariana, H., & Qureshi, N. (2019). Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132, 3169–3176 (2019).https://doi.org/10.1007/s00122-019-03416-y
  • Roelfs, A. P., Singh, R. P., & Saari, E. E. (1992). Rust Diseases of Wheat. Concept and methods of disease management. CIMMYT
  • Shahin, A. A., & Abu El-Naga, S. A. (2011). Physiological races diversity and virulence of Puccinia striiformis tritici at both seedling and adult plant stages of wheat in Egypt. Arab J Plant Protect 29: 90-94.
  • Singh, R., Herrera-Foessel, S., Huerta-Espino, J., Singh, S., Bhavani, S. & Lan, C. (2014). Progress towards genetics and breeding for minor genes-based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. J. Integr. Agric. 13, 255–261. DOI: 10.1016/S2095-3119(13) 60649-8.
  • Tekin, M., Cat, A., Akan, K., Bulut, H., & Akar, T. (2022). Evaluation of resistance of Turkish bread wheat (Triticum aestivum) varieties to recently emerged Puccinia striiformis f. sp. tritici races. Physiological and Molecular Plant Pathology, 101928.
  • Torabi, M., Mardoukhi, V., Nazari, K., Afshari, F., Forootan, A. R., Ramai, M. A., Golzar, H., & Kashani, A. S. (1995). Effectiveness of Wheat Yellow Rust Resistance Genes in Different Parts of Iran. Cereal Rusts Powdery Mildews Bull. 23: 9-12
  • Wang, M., & Chen, X. (2017). Stripe Rust Resistance. In: X M Chen and Z S Kang (eds.), Stripe Rust. Springer.
  • Wellings, C., Singh, R. P., McIntosh, R. A., & Pretorius, Z. A. (2004). “The development and application of near isogenic lines for the stripe (yellow) rust pathosystem,” in Cereal Rusts Powdery Mildews Bulletin.
  • Wellings, C. R., & Park, R. F. (2006). Global perspectives in wheat yellow rust: Meeting the challenges of dynamic shifts in pathogen populations. In: 3rd regional yellow rust workshop, Uzbekistan.
  • Wellings, C. R. (2011). Global status of stripe rust: a review of historical and current threats. Euphytica 179, 129–141.
  • Yang, W., & Daqun, L. (2004). Advances in localization and molecular markers of wheat leaf rust resistance genes. Agricultural Sciences in China, 3: 770-79.
  • Youssef, I. A. M., Abualy, A. A. M., El-Salamoni, I. A., Doaa, R., & Abu El-Naga, S. A. (2008). Identification of physiologic races of stripe rust and postulation of resistance genes in certain Egyptian wheat cultivars. Egypt J Appl Sci 21: 404-418.

Identification of genetic immunity to the warrior race and local population of stripe rust using conventional techniques in winter wheat genotypes

Year 2023, Volume: 27 Issue: 1, 30 - 41, 24.03.2023
https://doi.org/10.29050/harranziraat.1177052

Abstract

Wheat stripe rust caused by the Puccinia striiformis f. sp. tritici (Pst) is a major and devastating biotic stress inducing notable product losses in wheat (Triticum spp.). Possibility of the breakdown of important genes conferring resistance against to stripe rust and the threat of emergence of new aggressive races remain a concern in all wheat growing areas around the world. Therefore, breeding programs must continue screening of wide genetic diversity to improve new varieties with different gene combinations against race changes. Within this scope, 140 wheat genotypes obtained from various countries and programs were evaluated in terms of their reactions to stripe rust at both seedling and adult-plant stages in 2020 and 2021 growing seasons. The adult-plant stage evaluations of these genotypes were conducted under artificial inoculation of PstS7 (Warrior) race at Haymana location of Field Crops Central Research Institute in Ankara and under naturally occurring local stripe rust population at Menemen location of Aegean Agricultural Research Institute in Izmir. Whereas the seedling stage tests were carried out using the PstS7 race under controlled conditions at Pest and Disease Resistance Unit of the Field Crops Central Research Institute. More than 80% of the genotypes tested at both locations exhibited immune, resistant, and moderately resistant reactions at the adult-plant stage, while only 36.4% of the genotypes exhibited resistance reactions at the seedling stage. The coefficients of infection (CI) of the genotypes were calculated by using the stripe rust reaction and disease severity of each genotype. Following scales were used for classification of the genotypes based on the CI: 0 = Immune; 0.1-5.0 = Resistant; 5.01-20.0 = Moderately Resistant; 20.1-40.0 = Moderately Susceptible; 40.1-100 = Susceptible. In conclusion, 101 genotypes (72.1%) evaluated at both locations were found to be immune, resistant, and moderately resistant to both the PstS7 race and local stripe rust population. These genotypes have been proposed as resistance gene sources for cultivars to be developed.

References

  • Afshari, F. (2004). Challenge of new race of Puccinia striiformis f. sp. tritici in Iran. Second regional yellow rust conference for central and west Asia and North Africa, Islamabad.
  • Akan, K. & Akcura, M. (2018). GGE biplot analysis of reactions of bread wheat pure lines selected from Central Anatolian landraces of Turkey to leaf rust disease (Puccinia triticinia) in multiple location-years. Cereal Research Communications. 46(2), 311–320
  • Ali, S., Shah, S. J. A. & Maqbool, K. (2008). Field-based assessment of partial resistance to yellow rust in wheat germplasm. J Agric Rural Dev 6: 99-106.
  • Anonymous (2021). CIMMYT https://www.cimmyt.org/news/what-is-sustainable-intensification/
  • Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions, Environmental Sustainability (2), 95–96
  • Beddow, J. M., et al. (2015). Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1, 15132.
  • Bux, H., Ashraf, M., Chen, X. M., & Mumtaz, A. S. (2011). Effective genes for resistance to stripe rust and virulence of Puccinia striiformis f.sp. tritici in Pakistan. Afri J Biotechnol 10: 5489-5495.
  • Cat, A., Tekin, M., Akan, K., Akar, T., & Catal, M. (2021). Races of Puccinia striiformis f. sp. Tritici identified from the coastal areas of Turkey. Can. J. Plant Pathology, 2021.Vol. 43, No. 2, S323-S332. https:/doi.org/10.1080/07060661.2021.1978000
  • Çat, A. (2022). Tescilli Makarnalık Buğday (Triticum durum) Çeşitlerinin Sarı Pas (Puccinia striiformis f. sp. tritici) Hastalığına Karşı Dayanıklılığının Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 9(2), 136-143.
  • Chen, X. M., Moore, M., Milus, E. A., Long, D. L., & Line, R. F. (2002). Wheat stripe rust epidemics and races of Puccinia striiformis f.sp. tritici in the United States in 2000. Plant Dis 86: 39-46.
  • De Vallavieille-Pope, C., Ali, S., Leconte, M., Enjalbert, J., Delos, M., & Rouzet, J. (2012). Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. lant Dis. 96, 131–140. doi: 10.1094/PDIS-02-11-0078.
  • Ellis, J. G., Lagudah, E. S., Spielmeyer, W., & Dodds, P.N. (2014). The past, present, and future of breeding rust resistant wheat. Frontiers in Plant Science5: 641
  • Feng, J., Wang, M., See, D. R., Chao, S., Zheng, Y., & Chen, X. (2018). Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108, 737–747. doi: 10.1094/PHYTO-11-17- 0375-R
  • Foroutan, A., & Ahmadian-Moghaddam, M. S. (2002) Evaluation of some advanced lines and cultivars of wheat to yellow rust in Mazandaran. Abstracts of first regional yellow rust conference for central and west Asia and North Africa, Iran.
  • Gessese, M., Bariana, H., Wong, D., Hayden, M., & Bansal, U. (2019). Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant disease, 103(6), 1166-1171.
  • Herrera-Fossel, S. A., Singh, R. P., Huerta-Espino, J., Crossa, J., & Djurle, A. (2007). Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155: 361-369.
  • Hovmøller, M. S., Walter, S., Bayles, R., Hubbard, A., Flath, K., & Sommerfeldt, N. (2016). Replacement of the European wheat yellow rust population by new races from the center of diversity in the near-Himalayan region. Plant Pathol. 65, 402–411. DOI: 10.1111/ppa.12433.
  • Ipek, E., Tekin, M., Cat, A., & Akar, T. (2022). Resistance to stripe rust in Turkish durum wheat varieties and wild emmer genotypes. Cereal Research Communications, 1-8.
  • Johnson, R., Stubbs, R. W., Fuchs, E., & Chamberlain, N. H. (1972). Nomenclature for physiologic races of Puccinia striiformis infecting wheat. Trans. Br. Mycol. Soc. 58, 475–480. DOI: 10.1016/S0007-1536(72)80096-2.
  • Khiavi, H. K., Mirak, A. A., Akrami, M., & Khoshvaghtei, H. (2017). Evaluation of Different Wheat Genotypes Reaction to Stripe Rust (Puccinia striiformis f.sp. tritici) under Field Conditions in Ardabil Province J Plant Pathol Microbiol 2017, 8:11.
  • Klymiuk, V., Chawla, H.S., & Wiebe, K. (2022). Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol 5, 826 (2022). https://doi.org/10.1038/s42003-022-03773-3
  • Li, J., Dundas, I., & Dong, C. (2020). Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133, 1095–1107 (2020). https://doi.org/10.1007/s00122-020-03534-y
  • Line, R. F. (2002). Stripe rust of wheat in barley in North America: a retrospective historical review. Annu. Rev. Phytopathol. 40, 75–118.
  • Malihipour, A., Torabi, M., Houshyar, R., Tarinejad, A. & Ahmadian-Moghaddam, M. S. (2002). Seedling and adult plant resistance to yellow rust in genotypes of the preliminary wheat screening nursery (PWSN) of Iran in the 1999-2000 cropping season. In: Proceedings of the first regional conference on yellow rust in the central and west Asia and North Africa region, Iran.
  • McNeal, F. H., Konzah, C. S., Smiths, E. P., Tate, W. S., & Russel, T. S. (1971). A uniform system for recording and processing cereal rust data. USDA-ARS. 34-121
  • Nazari, K. (2006). Studies of the Wheat-Stripe Rust Pathosystem at classical and molecular levels. Ph.D. thesis, The University of Sydney, NSW, Australia. p. 264.
  • Nsabiyera, V., Bariana, H. S., Qureshi, N., Wong, D., Hayden, M. J., & Bansal, U. K. (2018). Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor. Appl. Genet. 131, 1459–1467. doi: 10.1007/ s00122-018-3090-x
  • Pakeerathan, K., Bariana, H., & Qureshi, N. (2019). Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132, 3169–3176 (2019).https://doi.org/10.1007/s00122-019-03416-y
  • Roelfs, A. P., Singh, R. P., & Saari, E. E. (1992). Rust Diseases of Wheat. Concept and methods of disease management. CIMMYT
  • Shahin, A. A., & Abu El-Naga, S. A. (2011). Physiological races diversity and virulence of Puccinia striiformis tritici at both seedling and adult plant stages of wheat in Egypt. Arab J Plant Protect 29: 90-94.
  • Singh, R., Herrera-Foessel, S., Huerta-Espino, J., Singh, S., Bhavani, S. & Lan, C. (2014). Progress towards genetics and breeding for minor genes-based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. J. Integr. Agric. 13, 255–261. DOI: 10.1016/S2095-3119(13) 60649-8.
  • Tekin, M., Cat, A., Akan, K., Bulut, H., & Akar, T. (2022). Evaluation of resistance of Turkish bread wheat (Triticum aestivum) varieties to recently emerged Puccinia striiformis f. sp. tritici races. Physiological and Molecular Plant Pathology, 101928.
  • Torabi, M., Mardoukhi, V., Nazari, K., Afshari, F., Forootan, A. R., Ramai, M. A., Golzar, H., & Kashani, A. S. (1995). Effectiveness of Wheat Yellow Rust Resistance Genes in Different Parts of Iran. Cereal Rusts Powdery Mildews Bull. 23: 9-12
  • Wang, M., & Chen, X. (2017). Stripe Rust Resistance. In: X M Chen and Z S Kang (eds.), Stripe Rust. Springer.
  • Wellings, C., Singh, R. P., McIntosh, R. A., & Pretorius, Z. A. (2004). “The development and application of near isogenic lines for the stripe (yellow) rust pathosystem,” in Cereal Rusts Powdery Mildews Bulletin.
  • Wellings, C. R., & Park, R. F. (2006). Global perspectives in wheat yellow rust: Meeting the challenges of dynamic shifts in pathogen populations. In: 3rd regional yellow rust workshop, Uzbekistan.
  • Wellings, C. R. (2011). Global status of stripe rust: a review of historical and current threats. Euphytica 179, 129–141.
  • Yang, W., & Daqun, L. (2004). Advances in localization and molecular markers of wheat leaf rust resistance genes. Agricultural Sciences in China, 3: 770-79.
  • Youssef, I. A. M., Abualy, A. A. M., El-Salamoni, I. A., Doaa, R., & Abu El-Naga, S. A. (2008). Identification of physiologic races of stripe rust and postulation of resistance genes in certain Egyptian wheat cultivars. Egypt J Appl Sci 21: 404-418.
There are 39 citations in total.

Details

Primary Language English
Subjects Botany
Journal Section Araştırma Makaleleri
Authors

Emrah Koç 0000-0003-3024-8691

Emine Burcu Turgay 0000-0003-1150-4901

Fehmi Kozveren 0000-0001-9154-3948

Beyhan Akın 0000-0002-2721-9577

Publication Date March 24, 2023
Submission Date September 21, 2022
Published in Issue Year 2023 Volume: 27 Issue: 1

Cite

APA Koç, E., Turgay, E. B., Kozveren, F., Akın, B. (2023). Identification of genetic immunity to the warrior race and local population of stripe rust using conventional techniques in winter wheat genotypes. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(1), 30-41. https://doi.org/10.29050/harranziraat.1177052

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.