Research Article
BibTex RIS Cite

Farklı sulama seviyelerinin ve sulama aralıklarının pamuk yetiştiriciliği üzerindeki etkileri: Verim, verim bileşenleri ve lif kalitesi parametreleri üzerine bir çalışma

Year 2023, Volume: 27 Issue: 3, 293 - 305, 27.09.2023
https://doi.org/10.29050/harranziraat.1323064

Abstract

Bu çalışma sulama suyu aralığı ve kısıntılı sulamanın pamuk (Gossypium hirsutum L.) kütlü verimi, lif kalitesi ve su etkinliği üzerine etkisini incelemek amacıyla Türkiye’nin Şanlıurfa ilinde 2020 ve 2021 yıllarında yürütülmüştür. Araştırma tesadüf bloklarında bölünmüş parseller deneme desenine göre 3 tekerrürlü olarak yürütülmüştür. Çalışmada, ana konu olarak üç sulama aralığı (D1: 4 gün, D2: 8 ve D3: 12 gün), alt konu olarak ise damla sulama yöntemi kullanılarak Class A pan’a bağlı olarak üç sulama suyu seviyesi (I1: %150, I2: %120 ve I3: %90) ele alınmıştır. Araştırmada bitki su tüketimi (evapotranspirasyon) ilk yıl 693-1153 mm arasında değişirken ikinci yıl ise 716 ile 1126 mm arasında değişmiştir. Sulama aralığı ve kısıntılı sulama, pamuk kütlü verimi, pamuk koza ağırlığı ve çırçır randımanı üzerinde istatiksel olarak önemli etkisi olmuştur. En yüksek pamuk kütlü verimi, pamuk koza ağırlığı ve çırçır randımanı 4 gün sulama aralığı ve sulama suyu seviyesi %150 olan konudan (D1-I1) elde edilirken, en düşük değerler ise 12 gün sulama aralığı ve sulama suyu seviyesi %90 olan konudan (D3-I3) elde edilmiştir. Ancak, sulama aralığı ve kısıntılı sulamanın 100 tohum ağırlığı, lif inceliği, lif uzunluğu ve lif mukavemeti üzerinde istatiksel olarak önemli etkisi olmamıştır. Araştırmanın her iki yılında, su kullanım etkinliği (WP) 0.32-0.55 kg m-3, sulama suyu kullanım etkinliği (IWP) ise 0.33-0.59 kg m-3 arasında değiştiği ve çalışmanın her iki yılında da benzer sonuçların alındığı saptanmıştır. Araştırma sonuçlarına göre, en yüksek pamuk verimini ve kalitesini elde etmek için damla sulama ile 4 günlük sulama aralığında toplam sezonluk 1062 mm sulama suyunun uygulanması önerilmektedir.

Supporting Institution

Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

20044

Thanks

Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi'ne bu projeye desteklerinden dolayı teşekkür ederiz.

References

  • Akın, S., Şimşek, M., Sarıoğlu, A., & Keskiner, A. D. (2020). Mikoriza uygulaması ve farklı sulama seviyelerinin geç dönemde yetiştirilen hıyarın verim ve verim bileşenleri üzerine etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 24(2), 241–249. doi: 10.29050/harranziraat.660670
  • Ali, M. A., Farooq, J., Batool, A., Zahoor, A., Azeem, F., Mahmood, A., & Jabran, K. (2019). Cotton Production in Pakistan. In Cotton Production (Issue May, pp. 249-276.).
  • Amanov, B., Muminov, K., Samanov, S., Abdiev, F., Arslanov, D., & Tursunova, N. (2022). Cotton Introgressive Lines Assessment Through Seed Cotton Yield and Fiber Quality Characteristics. Sabrao Journal of Breeding and Genetics, 54(2), 321–330. doi: 10.54910/sabrao2022.54.2.9
  • Arnell, N. W. (2018). Climate change and global water. Global Environmental Change, 9, 31–49.
  • Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169–183. doi: 10.1016/j.biotechadv.2009.11.005
  • Basal, H., Dagdelen, N., Unay, A., & Yilmaz, E. (2009). Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality. Journal of Agronomy and Crop Science, 195(1), 19–29. doi: 10.1111/j.1439-037X.2008.00340.x
  • Bhat, T. A. (2014). An Analysis of Demand and Supply of Water in India. Journal of Environment and Earth Science, 4(11), 67–72. doi: 10.15373/22778179/may2014/31
  • Blanke, A., Rozelle, S., Lohmar, B., Wang, J., & Huang, J. (2007). Water saving technology and saving water in China. Agricultural Water Management, 87(2), 139–150. doi: 10.1016/j.agwat.2006.06.025
  • Bölük, E. (2016). Aydeniz İklim Siniflandirmasina Göre Türkiye İklimi. In Aydeniz İklim Sınıflandırmasına Göre Türkiye İklimi (p. 18).
  • Boretti, A., & Rosa, L. (2019). Reassessing the projections of the World Water Development Report. Npj Clean Water, 2(1). doi: 10.1038/s41545-019-0039-9
  • Campbell, B. T., Saha, S., Percy, R., Frelichowski, J., Jenkins, J. N., Park, W., Mayee, C. D., Gotmare, V., Dessauw, D., Giband, M., Du, X., Jia, Y., Constable, G., Dillon, S., Abdurakhmonov, I. Y., Abdukarimov, A., Rizaeva, S. M., Adullaev, A., Barroso, P. A. V., … Podolnaya, L. (2010). Status of the global cotton germplasm resources. Crop Science, 50(4), 1161–1179. doi: 10.2135/cropsci2009.09.0551
  • Cetin, O., & Bilgel, L. (2002). Effects of different irrigation methods on shedding and yield of cotton. Agricultural Water Management, 54(1), 1–15. doi: 10.1016/S0378-3774(01)00138-X
  • Çetin, Ö., Üzen, N., Temiz, M. G., & Altunten, H. (2021). Improving cotton yield, water use and net income in different drip irrigation systems using real-time crop evapotranspiration. Polish Journal of Environmental Studies, 30(5), 4463–4474. doi: 10.15244/pjoes/133238
  • Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G., & Gautam, R. (2006). The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics, 60(1), 186–203. doi: 10.1016/j.ecolecon.2005.11.027
  • Chartzoulakis, K., & Bertaki, M. (2015). Sustainable Water Management in Agriculture under Climate Change. Agriculture and Agricultural Science Procedia, 4, 88–98. doi: 10.1016/j.aaspro.2015.03.011
  • Daǧdelen, N., Başal, H., Yilmaz, E., Gürbüz, T., & Akçay, S. (2009). Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agricultural Water Management, 96(1), 111–120. doi: 10.1016/j.agwat.2008.07.003
  • Dağdelen, N., Başal, H., Yılmaz, E., Gürbüz, T., & Akçay, S. (2009). Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agricultural Water Management, 96(1), 111–120. doi: 10.1016/j.agwat.2008.07.003
  • Darouich, H. M., Pedras, C. M. G., Gonçalves, J. M., & Pereira, L. S. (2014). Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosystems Engineering, 122, 74–90. doi: 10.1016/j.biosystemseng.2014.03.010
  • Domingo, M. C. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications, 35(6), 1879–1890. doi: 10.1016/j.jnca.2012.07.012
  • Enebe, M. C., & Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant toleranc. Applied Microbiology and Biotechnology, 102(18), 7821–7835.
  • Ertek, A., & Kanber, R. (2000). Pamukta Uygun Sulama Dozu ve Aralığının Pan-Evaporasyon Yöntemiyle Belirlenmesi. Turkish Journal of Agriculture and Forestry, 24, 293–300.
  • Fageria, N. K., Baligar, V. C., & Clark, R. (2006). Physiology of Crop Production. st ed.; CRC Press: New York, NY, USA,.
  • Fan, Y., Wang, C., & Nan, Z. (2018). Determining water use efficiency of wheat and cotton: A meta-regression analysis. Agricultural Water Management, 199, 48–60. doi: 10.1016/j.agwat.2017.12.006
  • Fayiga, A. O., Ipinmoroti, M. O., & Chirenje, T. (2018). Environmental pollution in Africa. In Environment, Development and Sustainability (Vol. 20, Issue 1). Springer Netherlands. doi: 10.1007/s10668-016-9894-4
  • García-Ruiz, J. M., López-Moreno, I. I., Vicente-Serrano, S. M., Lasanta-Martínez, T., & Beguería, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3–4), 121–139. doi: 10.1016/j.earscirev.2011.01.006
  • Harmsen, E. W., Miller, N. L., Schlegel, N. J., & Gonzalez, J. E. (2009). Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico. Agricultural Water Management, 96(7), 1085–1095. doi: 10.1016/j.agwat.2009.02.006
  • Hunsaker, D. J., French, A. N., Waller, P. M., Bautista, E., Thorp, K. R., Bronson, K. F., & Andrade-Sanchez, P. (2015). Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA. Agricultural Water Management, 159, 209–224. doi: 10.1016/j.agwat.2015.06.016
  • Hussein, F., Janat, M., & Yakoub, A. (2011). Assessment of yield and water use efficiency of drip-irrigated cotton (Gossypium hirsutum L.) as affected by deficit irrigation. Turkish Journal of Agriculture and Forestry, 35(6), 611–621. doi: 10.3906/tar-1008-1138
  • Keller, J., & Bliesner, R. D. (1990). Sprinkle and Trickle Irrigation. 115 Fifth Avenue, New York, NY 10003, USA: Chapman and Hall.
  • Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1), 1–17. doi: 10.1186/s40659-018-0198-z
  • Khor, L. Y., & Feike, T. (2017). Economic sustainability of irrigation practices in arid cotton production. Water Resources and Economics, 20(September), 40–52. doi: 10.1016/j.wre.2017.10.004
  • Kirda, C. (2002). Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In In Deficit Irrigation Practices; Food and Agriculture Organization of the United Nations, Ed.; FAO: Rome, Italy, 2002; Water Rep. Pap. 2002, 22, 3–11 (Vol. 22, pp. 3–11). Rome, Italy. doi: 10.3390/agronomy10081120
  • Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. doi: 10.1016/j.agwat.2014.07.012
  • Lu, S., Bai, X., Li, W., & Wang, N. (2019). Impacts of climate change on water resources and grain production. Technological Forecasting and Social Change, 143(July 2018), 76–84. doi: 10.1016/j.techfore.2019.01.015
  • Lv, H., Yang, L., Zhou, J., Zhang, X., Wu, W., Li, Y., & Jiang, D. (2020). Water resource synergy management in response to climate change in China: From the perspective of urban metabolism. Resources, Conservation and Recycling, 163(May), 105095. doi: 10.1016/j.resconrec.2020.105095
  • Mahmoud, S. H., Adamowski, J., Alazba, A. A., & El-Gindy, A. M. (2016). Rainwater harvesting for the management of agricultural droughts in arid and semi-arid regions. Paddy and Water Environment, 14(1), 231–246. doi: 10.1007/s10333-015-0493-z
  • Mert, M. (2005). Irrigation of cotton cultivars improves seed cotton yield, yield components and fibre properties in the Hatay region, Turkey. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 55(1), 44–50. doi: 10.1080/09064710510008658
  • Munk, D. S., Wroble, J., Snyder, R. L., Robb, J., & Hutmacher, R. (2004). Comparative evaluation of pima and upland cotton transpiration in the san joaquin valley. Acta Hortic., 664, 419–426.
  • Muzammil, M., Zahid, A., & Breuer, L. (2020). Water resources management strategies for irrigated agriculture in the indus basin of Pakistan. Water (Switzerland), 12(5). doi: 10.3390/w12051429
  • Nagase, A., & Dunnett, N. (2012). Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landscape and Urban Planning, 104(3–4), 356–363. doi: 10.1016/j.landurbplan.2011.11.001
  • Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072. doi: 10.1126/science.1128845
  • Onder, D., Akiscan, Y., Onder, S., & Mert, M. (2009). Effect of different irrigation water level on cotton yield and yield components. African Journal of Biotechnology, 8(8), 1536–1544.
  • Oweis, T. Y., Farahani, H. J., & Hachum, A. Y. (2011). Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria. Agricultural Water Management, 98(8), 1239–1248. doi: 10.1016/j.agwat.2011.02.009
  • Papastylianou, P. T., & Argyrokastritis, I. G. (2014). Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions. Agricultural Water Management, 142, 127–134. doi: 10.1016/j.agwat.2014.05.005
  • Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482–493. doi: 10.1016/j.jhydrol.2015.05.003
  • Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175–206. doi: 10.1016/S0378-3774(02)00075-6
  • Pereira, L. S., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108, 39– 51. doi: 10.1016/j.agwat.2011.08.022
  • Pettigrew, W. T. (2004). Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 96(2), 377–383. doi: 10.2134/agronj2004.3770
  • Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., & Nandagopal, S. (2007). Water resources: Agricultural and environmental issues. Food, Energy, and Society, Third Edition, 54(10), 183–200. doi: 10.1201/9781420046687
  • Rao, S. S., Tanwar, S. P. S., & Regar, P. L. (2016). Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment. Agricultural Water Management, 169, 14–25. doi: 10.1016/j.agwat.2016.02.008
  • Ritchie, G. L., Bednarz, C. W., Jost, P. H., & Steve M. Brown. (2007). Cotton Growth and Development. In University of Georgia: Vol. Bulletin; (Issue 3). Athens, GA, USA. doi: 10.32473/edis-ag235-2005
  • Sampathkumar, T., Pandian, B. J., Rangaswamy, M. V., Manickasundaram, P., & Jeyakumar, P. (2013). Influence of deficit irrigation on growth, yield and yield parameters of cotton-maize cropping sequence. Agricultural Water Management, 130, 90–102. doi: 10.1016/j.agwat.2013.08.018
  • Sarı, Ö., & Dağdelen, N. (2010). Damla Sulama Yöntemiyle Sulanan Pamukta Farklı Lateral Aralıklarının Pamuk Su-Verim İlişkileri Üzerine Etkisi. ADÜ Ziraat Fakültesi Dergisi, 7(1), 41–48.
  • Sawan, Z. M., Mahmoud, M. H., & El-Guibali, A. H. (2008). Influence of potassium fertilization and foliar application of zinc and phosphorus on growth, yield components, yield and fiber properties of Egyptian cotton (Gossypium barbadense L.). Journal of Plant Ecology, 1(4), 259–270. doi: 10.1093/jpe/rtn021
  • Shahzad, A. N., Rizwan, M., Asghar, M. G., Qureshi, M. K., Bukhari, S. A. H., Kiran, A., & Wakeel, A. (2019). Early maturing Bt cotton requires more potassium fertilizer under water deficiency to augment seed-cotton yield but not lint quality. Scientific Reports, 9(1), 1–10. doi: 10.1038/s41598-019-43563-2
  • Simonne, E. H., Dukes, M. D., & Haman, D. Z. (2004). Principles and Practices of Irrigation Management for Vegetables. In In: Simonne, O.A. (Ed.), Vegetable Production Guide for Florida (pp. 33–39). University of Florida, Gainesville, FL. doi: 10.32473/edis-cv297-2021
  • Singh, Y., Rao, S. S., & Regar, P. L. (2010). Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment. Agricultural Water Management, 97(7), 965–970. doi: 10.1016/j.agwat.2010.01.028
  • Tuong, T. P., & Bouman, B. A. M. (2000). Field water mangement to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management, 1615, 1–20.
  • Tüzel, I. H., & Ul, M. A. (2003). Pamuk Sulaması. İzmir.
  • Uniyal, B., & Dietrich, J. (2019). Modifying Automatic Irrigation in SWAT for Plant Water Stress scheduling. Agricultural Water Management, 223(June), 105714. doi: 10.1016/j.agwat.2019.105714
  • Ünlü, M., Kanber, R., Koç, D. L., Tekin, S., & Kapur, B. (2011). Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agricultural Water Management, 98(4), 597–605. doi: 10.1016/j.agwat.2010.10.020
  • Van Rossum, M. W. P. C., Alberda, M., & Van Der Plas, L. H. W. (1997). Role of oxidative damage in tulip bulb scale micropropagation. Plant Science, 130(2), 207–216. doi: 10.3906/tar-9908-18
  • Wegier, A., Alavez, V., & Piñero, D. (2016). Cotton: Traditional and Modern Uses. 439–456. doi: 10.1007/978-1-4614-6669-7_18
  • Witt, T. W., Ulloa, M., Schwartz, R. C., & Ritchie, G. L. (2020). Response to deficit irrigation of morphological, yield and fiber quality traits of upland (Gossypium hirsutum L.) and Pima (G. barbadense L.) cotton in the Texas High Plains. Field Crops Research, 249(October 2019), 107759. doi: 10.1016/j.fcr.2020.107759
  • Yang, C., Luo, Y., Sun, L., & Wu, N. (2015). Effect of Deficit Irrigation on the Growth, Water Use Characteristics and Yield of Cotton in Arid Northwest China. Pedosphere, 25(6), 910–924. doi: 10.1016/S1002-0160(15)30071-0
  • Yazar, A., Sezen, S. M., & Sesveren, S. (2002). LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey. Agricultural Water Management, 54(3), 189–203. doi: 10.1016/S0378-3774(01)00179-2
  • Yilmaz, E., Gürbüz, T., Dağdelen, N., & Wzorek, M. (2021). Impacts of different irrigation water levels on the yield, water use efficiency, and fiber quality properties of cotton (Gossypium hirsutum L.) irrigated by drip systems. Euro-Mediterranean Journal for Environmental Integration, 6(2), 1–7. doi: 10.1007/s41207-021-00264-5
  • Yuan, B. Z., Nishiyama, S., & Kang, Y. (2003). Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agricultural Water Management, 63(3), 153–167. doi: 10.1016/S0378-3774(03)00174-4
  • Zhang, D., Luo, Z., Liu, S., Li, W., WeiTang, & Dong, H. (2016). Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research, 197, 1–9. doi: 10.1016/j.fcr.2016.06.003
  • Zhang, T., Zou, Y., Kisekka, I., Biswas, A., & Cai, H. (2021). Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area. Agricultural Water Management, 243(September 2020), 106497. doi: 10.1016/j.agwat.2020.106497

The effects of different irrigation levels and irrigation intervals on cotton cultivation: A study on yield, yield components, and fiber quality parameters

Year 2023, Volume: 27 Issue: 3, 293 - 305, 27.09.2023
https://doi.org/10.29050/harranziraat.1323064

Abstract

This study was conducted for investigating the impact of irrigation interval and deficit irrigation on seed cotton yield, fiber quality, and water productivity of cotton (Gossypium hirsutum L.) in the Şanlıurfa province of Türkiye during the years 2020 and 2021. The experiment was conducted using a randomized complete block design with split plots. The main plots included three irrigation intervals (D1: 4 day, D2: 8 day, and D3: 12 day), while the sub-plots consisted of three irrigation levels (I1: %150, I2: %120, and I3: %90) considered by Class A pan evaporation using the drip irrigation method. The study resulted in that the crop evapotranspiration varied from 693 to 1153 mm in 2020 and from 716 to 1126 mm in 2021, respectively. Irrigation interval and deficit irrigation had a statistically significant effect on seed cotton yield, seed cotton weight, and ginning outturn in both years of the study. The highest seed cotton yield, seed cotton weight, and lint yield were obtained from the treatment with a 4-day irrigation interval and irrigation water level at 150% (D1-I1), while the lowest values were obtained from the treatment with a 12-day irrigation interval and irrigation water level at 90% (D3-I3). However, irrigation interval and deficit irrigation did not have a statistically significant effect on 100-seed weight, fiber fineness, fiber length, and fiber strength in both years of the study. In the study, water use productivity (WP) ranged from 0.32 to 0.55 kg m-3, while irrigation water use productivity (IWP) ranged from 0.33 to 0.59 kg m-3, and similar results were obtained in both years of the research. According to the research findings, to achieve the highest cotton yield and quality, an irrigation interval of 4 days and a total seasonal irrigation water of 1062 mm are recommended.

Project Number

20044

References

  • Akın, S., Şimşek, M., Sarıoğlu, A., & Keskiner, A. D. (2020). Mikoriza uygulaması ve farklı sulama seviyelerinin geç dönemde yetiştirilen hıyarın verim ve verim bileşenleri üzerine etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 24(2), 241–249. doi: 10.29050/harranziraat.660670
  • Ali, M. A., Farooq, J., Batool, A., Zahoor, A., Azeem, F., Mahmood, A., & Jabran, K. (2019). Cotton Production in Pakistan. In Cotton Production (Issue May, pp. 249-276.).
  • Amanov, B., Muminov, K., Samanov, S., Abdiev, F., Arslanov, D., & Tursunova, N. (2022). Cotton Introgressive Lines Assessment Through Seed Cotton Yield and Fiber Quality Characteristics. Sabrao Journal of Breeding and Genetics, 54(2), 321–330. doi: 10.54910/sabrao2022.54.2.9
  • Arnell, N. W. (2018). Climate change and global water. Global Environmental Change, 9, 31–49.
  • Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169–183. doi: 10.1016/j.biotechadv.2009.11.005
  • Basal, H., Dagdelen, N., Unay, A., & Yilmaz, E. (2009). Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality. Journal of Agronomy and Crop Science, 195(1), 19–29. doi: 10.1111/j.1439-037X.2008.00340.x
  • Bhat, T. A. (2014). An Analysis of Demand and Supply of Water in India. Journal of Environment and Earth Science, 4(11), 67–72. doi: 10.15373/22778179/may2014/31
  • Blanke, A., Rozelle, S., Lohmar, B., Wang, J., & Huang, J. (2007). Water saving technology and saving water in China. Agricultural Water Management, 87(2), 139–150. doi: 10.1016/j.agwat.2006.06.025
  • Bölük, E. (2016). Aydeniz İklim Siniflandirmasina Göre Türkiye İklimi. In Aydeniz İklim Sınıflandırmasına Göre Türkiye İklimi (p. 18).
  • Boretti, A., & Rosa, L. (2019). Reassessing the projections of the World Water Development Report. Npj Clean Water, 2(1). doi: 10.1038/s41545-019-0039-9
  • Campbell, B. T., Saha, S., Percy, R., Frelichowski, J., Jenkins, J. N., Park, W., Mayee, C. D., Gotmare, V., Dessauw, D., Giband, M., Du, X., Jia, Y., Constable, G., Dillon, S., Abdurakhmonov, I. Y., Abdukarimov, A., Rizaeva, S. M., Adullaev, A., Barroso, P. A. V., … Podolnaya, L. (2010). Status of the global cotton germplasm resources. Crop Science, 50(4), 1161–1179. doi: 10.2135/cropsci2009.09.0551
  • Cetin, O., & Bilgel, L. (2002). Effects of different irrigation methods on shedding and yield of cotton. Agricultural Water Management, 54(1), 1–15. doi: 10.1016/S0378-3774(01)00138-X
  • Çetin, Ö., Üzen, N., Temiz, M. G., & Altunten, H. (2021). Improving cotton yield, water use and net income in different drip irrigation systems using real-time crop evapotranspiration. Polish Journal of Environmental Studies, 30(5), 4463–4474. doi: 10.15244/pjoes/133238
  • Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G., & Gautam, R. (2006). The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics, 60(1), 186–203. doi: 10.1016/j.ecolecon.2005.11.027
  • Chartzoulakis, K., & Bertaki, M. (2015). Sustainable Water Management in Agriculture under Climate Change. Agriculture and Agricultural Science Procedia, 4, 88–98. doi: 10.1016/j.aaspro.2015.03.011
  • Daǧdelen, N., Başal, H., Yilmaz, E., Gürbüz, T., & Akçay, S. (2009). Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agricultural Water Management, 96(1), 111–120. doi: 10.1016/j.agwat.2008.07.003
  • Dağdelen, N., Başal, H., Yılmaz, E., Gürbüz, T., & Akçay, S. (2009). Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agricultural Water Management, 96(1), 111–120. doi: 10.1016/j.agwat.2008.07.003
  • Darouich, H. M., Pedras, C. M. G., Gonçalves, J. M., & Pereira, L. S. (2014). Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosystems Engineering, 122, 74–90. doi: 10.1016/j.biosystemseng.2014.03.010
  • Domingo, M. C. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications, 35(6), 1879–1890. doi: 10.1016/j.jnca.2012.07.012
  • Enebe, M. C., & Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant toleranc. Applied Microbiology and Biotechnology, 102(18), 7821–7835.
  • Ertek, A., & Kanber, R. (2000). Pamukta Uygun Sulama Dozu ve Aralığının Pan-Evaporasyon Yöntemiyle Belirlenmesi. Turkish Journal of Agriculture and Forestry, 24, 293–300.
  • Fageria, N. K., Baligar, V. C., & Clark, R. (2006). Physiology of Crop Production. st ed.; CRC Press: New York, NY, USA,.
  • Fan, Y., Wang, C., & Nan, Z. (2018). Determining water use efficiency of wheat and cotton: A meta-regression analysis. Agricultural Water Management, 199, 48–60. doi: 10.1016/j.agwat.2017.12.006
  • Fayiga, A. O., Ipinmoroti, M. O., & Chirenje, T. (2018). Environmental pollution in Africa. In Environment, Development and Sustainability (Vol. 20, Issue 1). Springer Netherlands. doi: 10.1007/s10668-016-9894-4
  • García-Ruiz, J. M., López-Moreno, I. I., Vicente-Serrano, S. M., Lasanta-Martínez, T., & Beguería, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3–4), 121–139. doi: 10.1016/j.earscirev.2011.01.006
  • Harmsen, E. W., Miller, N. L., Schlegel, N. J., & Gonzalez, J. E. (2009). Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico. Agricultural Water Management, 96(7), 1085–1095. doi: 10.1016/j.agwat.2009.02.006
  • Hunsaker, D. J., French, A. N., Waller, P. M., Bautista, E., Thorp, K. R., Bronson, K. F., & Andrade-Sanchez, P. (2015). Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA. Agricultural Water Management, 159, 209–224. doi: 10.1016/j.agwat.2015.06.016
  • Hussein, F., Janat, M., & Yakoub, A. (2011). Assessment of yield and water use efficiency of drip-irrigated cotton (Gossypium hirsutum L.) as affected by deficit irrigation. Turkish Journal of Agriculture and Forestry, 35(6), 611–621. doi: 10.3906/tar-1008-1138
  • Keller, J., & Bliesner, R. D. (1990). Sprinkle and Trickle Irrigation. 115 Fifth Avenue, New York, NY 10003, USA: Chapman and Hall.
  • Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1), 1–17. doi: 10.1186/s40659-018-0198-z
  • Khor, L. Y., & Feike, T. (2017). Economic sustainability of irrigation practices in arid cotton production. Water Resources and Economics, 20(September), 40–52. doi: 10.1016/j.wre.2017.10.004
  • Kirda, C. (2002). Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In In Deficit Irrigation Practices; Food and Agriculture Organization of the United Nations, Ed.; FAO: Rome, Italy, 2002; Water Rep. Pap. 2002, 22, 3–11 (Vol. 22, pp. 3–11). Rome, Italy. doi: 10.3390/agronomy10081120
  • Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. doi: 10.1016/j.agwat.2014.07.012
  • Lu, S., Bai, X., Li, W., & Wang, N. (2019). Impacts of climate change on water resources and grain production. Technological Forecasting and Social Change, 143(July 2018), 76–84. doi: 10.1016/j.techfore.2019.01.015
  • Lv, H., Yang, L., Zhou, J., Zhang, X., Wu, W., Li, Y., & Jiang, D. (2020). Water resource synergy management in response to climate change in China: From the perspective of urban metabolism. Resources, Conservation and Recycling, 163(May), 105095. doi: 10.1016/j.resconrec.2020.105095
  • Mahmoud, S. H., Adamowski, J., Alazba, A. A., & El-Gindy, A. M. (2016). Rainwater harvesting for the management of agricultural droughts in arid and semi-arid regions. Paddy and Water Environment, 14(1), 231–246. doi: 10.1007/s10333-015-0493-z
  • Mert, M. (2005). Irrigation of cotton cultivars improves seed cotton yield, yield components and fibre properties in the Hatay region, Turkey. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 55(1), 44–50. doi: 10.1080/09064710510008658
  • Munk, D. S., Wroble, J., Snyder, R. L., Robb, J., & Hutmacher, R. (2004). Comparative evaluation of pima and upland cotton transpiration in the san joaquin valley. Acta Hortic., 664, 419–426.
  • Muzammil, M., Zahid, A., & Breuer, L. (2020). Water resources management strategies for irrigated agriculture in the indus basin of Pakistan. Water (Switzerland), 12(5). doi: 10.3390/w12051429
  • Nagase, A., & Dunnett, N. (2012). Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landscape and Urban Planning, 104(3–4), 356–363. doi: 10.1016/j.landurbplan.2011.11.001
  • Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072. doi: 10.1126/science.1128845
  • Onder, D., Akiscan, Y., Onder, S., & Mert, M. (2009). Effect of different irrigation water level on cotton yield and yield components. African Journal of Biotechnology, 8(8), 1536–1544.
  • Oweis, T. Y., Farahani, H. J., & Hachum, A. Y. (2011). Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria. Agricultural Water Management, 98(8), 1239–1248. doi: 10.1016/j.agwat.2011.02.009
  • Papastylianou, P. T., & Argyrokastritis, I. G. (2014). Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions. Agricultural Water Management, 142, 127–134. doi: 10.1016/j.agwat.2014.05.005
  • Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482–493. doi: 10.1016/j.jhydrol.2015.05.003
  • Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175–206. doi: 10.1016/S0378-3774(02)00075-6
  • Pereira, L. S., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108, 39– 51. doi: 10.1016/j.agwat.2011.08.022
  • Pettigrew, W. T. (2004). Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 96(2), 377–383. doi: 10.2134/agronj2004.3770
  • Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., & Nandagopal, S. (2007). Water resources: Agricultural and environmental issues. Food, Energy, and Society, Third Edition, 54(10), 183–200. doi: 10.1201/9781420046687
  • Rao, S. S., Tanwar, S. P. S., & Regar, P. L. (2016). Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment. Agricultural Water Management, 169, 14–25. doi: 10.1016/j.agwat.2016.02.008
  • Ritchie, G. L., Bednarz, C. W., Jost, P. H., & Steve M. Brown. (2007). Cotton Growth and Development. In University of Georgia: Vol. Bulletin; (Issue 3). Athens, GA, USA. doi: 10.32473/edis-ag235-2005
  • Sampathkumar, T., Pandian, B. J., Rangaswamy, M. V., Manickasundaram, P., & Jeyakumar, P. (2013). Influence of deficit irrigation on growth, yield and yield parameters of cotton-maize cropping sequence. Agricultural Water Management, 130, 90–102. doi: 10.1016/j.agwat.2013.08.018
  • Sarı, Ö., & Dağdelen, N. (2010). Damla Sulama Yöntemiyle Sulanan Pamukta Farklı Lateral Aralıklarının Pamuk Su-Verim İlişkileri Üzerine Etkisi. ADÜ Ziraat Fakültesi Dergisi, 7(1), 41–48.
  • Sawan, Z. M., Mahmoud, M. H., & El-Guibali, A. H. (2008). Influence of potassium fertilization and foliar application of zinc and phosphorus on growth, yield components, yield and fiber properties of Egyptian cotton (Gossypium barbadense L.). Journal of Plant Ecology, 1(4), 259–270. doi: 10.1093/jpe/rtn021
  • Shahzad, A. N., Rizwan, M., Asghar, M. G., Qureshi, M. K., Bukhari, S. A. H., Kiran, A., & Wakeel, A. (2019). Early maturing Bt cotton requires more potassium fertilizer under water deficiency to augment seed-cotton yield but not lint quality. Scientific Reports, 9(1), 1–10. doi: 10.1038/s41598-019-43563-2
  • Simonne, E. H., Dukes, M. D., & Haman, D. Z. (2004). Principles and Practices of Irrigation Management for Vegetables. In In: Simonne, O.A. (Ed.), Vegetable Production Guide for Florida (pp. 33–39). University of Florida, Gainesville, FL. doi: 10.32473/edis-cv297-2021
  • Singh, Y., Rao, S. S., & Regar, P. L. (2010). Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment. Agricultural Water Management, 97(7), 965–970. doi: 10.1016/j.agwat.2010.01.028
  • Tuong, T. P., & Bouman, B. A. M. (2000). Field water mangement to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management, 1615, 1–20.
  • Tüzel, I. H., & Ul, M. A. (2003). Pamuk Sulaması. İzmir.
  • Uniyal, B., & Dietrich, J. (2019). Modifying Automatic Irrigation in SWAT for Plant Water Stress scheduling. Agricultural Water Management, 223(June), 105714. doi: 10.1016/j.agwat.2019.105714
  • Ünlü, M., Kanber, R., Koç, D. L., Tekin, S., & Kapur, B. (2011). Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agricultural Water Management, 98(4), 597–605. doi: 10.1016/j.agwat.2010.10.020
  • Van Rossum, M. W. P. C., Alberda, M., & Van Der Plas, L. H. W. (1997). Role of oxidative damage in tulip bulb scale micropropagation. Plant Science, 130(2), 207–216. doi: 10.3906/tar-9908-18
  • Wegier, A., Alavez, V., & Piñero, D. (2016). Cotton: Traditional and Modern Uses. 439–456. doi: 10.1007/978-1-4614-6669-7_18
  • Witt, T. W., Ulloa, M., Schwartz, R. C., & Ritchie, G. L. (2020). Response to deficit irrigation of morphological, yield and fiber quality traits of upland (Gossypium hirsutum L.) and Pima (G. barbadense L.) cotton in the Texas High Plains. Field Crops Research, 249(October 2019), 107759. doi: 10.1016/j.fcr.2020.107759
  • Yang, C., Luo, Y., Sun, L., & Wu, N. (2015). Effect of Deficit Irrigation on the Growth, Water Use Characteristics and Yield of Cotton in Arid Northwest China. Pedosphere, 25(6), 910–924. doi: 10.1016/S1002-0160(15)30071-0
  • Yazar, A., Sezen, S. M., & Sesveren, S. (2002). LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey. Agricultural Water Management, 54(3), 189–203. doi: 10.1016/S0378-3774(01)00179-2
  • Yilmaz, E., Gürbüz, T., Dağdelen, N., & Wzorek, M. (2021). Impacts of different irrigation water levels on the yield, water use efficiency, and fiber quality properties of cotton (Gossypium hirsutum L.) irrigated by drip systems. Euro-Mediterranean Journal for Environmental Integration, 6(2), 1–7. doi: 10.1007/s41207-021-00264-5
  • Yuan, B. Z., Nishiyama, S., & Kang, Y. (2003). Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agricultural Water Management, 63(3), 153–167. doi: 10.1016/S0378-3774(03)00174-4
  • Zhang, D., Luo, Z., Liu, S., Li, W., WeiTang, & Dong, H. (2016). Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research, 197, 1–9. doi: 10.1016/j.fcr.2016.06.003
  • Zhang, T., Zou, Y., Kisekka, I., Biswas, A., & Cai, H. (2021). Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area. Agricultural Water Management, 243(September 2020), 106497. doi: 10.1016/j.agwat.2020.106497
There are 70 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Araştırma Makaleleri
Authors

Ali Fuat Tarı 0000-0001-9157-1682

Serhat Satış 0000-0002-1760-026X

Sabri Akın 0000-0002-9196-3157

Project Number 20044
Early Pub Date September 26, 2023
Publication Date September 27, 2023
Submission Date July 7, 2023
Published in Issue Year 2023 Volume: 27 Issue: 3

Cite

APA Tarı, A. F., Satış, S., & Akın, S. (2023). The effects of different irrigation levels and irrigation intervals on cotton cultivation: A study on yield, yield components, and fiber quality parameters. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(3), 293-305. https://doi.org/10.29050/harranziraat.1323064

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.