Research Article
BibTex RIS Cite

Rhizoctonia solani'nin mücadelesinde At Kestanesi ağacından izole edilen Fusarium oxysporum'un endofit olarak antagonistik potansiyelinin in-vitro koşullarda belirlenmesi

Year 2024, Volume: 28 Issue: 4, 550 - 563, 15.12.2024
https://doi.org/10.29050/harranziraat.1524993

Abstract

Endofitik mikroorganizmalar, konakçılarıyla simbiyotik ilişkiler kurarak bitki patojenlerine karşı koruma gibi çeşitli avantajlar sağlamaktadırlar. Toprak kaynaklı patojenler, birçok bitki türünde yıkıcı bir enfeksiyon kaynağı haline gelmiştir. Ancak, bu toprak kaynaklı patojenlerin mücadelesinde kullanılan çevre dostu yaklaşımlar sınırlıdır. Bu çalışma, fungal endofitik mikroorganizma (Fusarium oxysporum) kullanarak toprak kaynaklı patojeni olanı Rhizoctonia solani’nın mücadelesi amaçlamıştır. Endofitik mikroorganizma, at kestanesi ağacının yapraklarından izole edilmiştir. R. solani, kök çürüklüğü ve fide devrilmesi belirtileri gösteren sebze bitkilerinden elde edilmiştir. Hem endofitik mikroorganizma hem de patojen uygun kültür ortamlarında yetiştirilmiştir. Toplanan endofitik mikroorganizmanın toprak kaynaklı patojen üzerindeki antagonistik aktivitesi, in-vitro koşulları altında ortalama inhibisyon bölgesi tekniği ile kontrol edilmiştir. Çeşitlilik indeksleri ve izolasyon sıklığı analizi, bu ağaç türünün çeşitli bir endofitik yelpazeye sahip olduğunu ortaya koymuştur. Endofitik mikroorganizmaların toprak kaynaklı patojene (R. solani) karşı antagonistik aktivitesini değerlendiren çift kültür deneyi, endofitik mikroorganizmanın, değerlendirme zamanlarının ve endofitik mikroorganizma ile değerlendirme zamanları arasındaki etkileşimin patojen koloni boyutu üzerinde önemli (P <0.001) bir etkisi olduğunu ortaya koymuştur. Endofitik mikroorganizma, inokülasyondan sonraki 11 ve 15 günler dışında, kontrol grubuna kıyasla patojen gelişiminde önemli bir azalma göstermiştir. Veriler, F. oxysporum'un endofitik potansiyele sahip olduğunu ve diğer toprak kaynaklı hastalıklara karşı potansiyel biyolojik mücadele ajanları olarak araştırılabileceğini göstermektedir.

Supporting Institution

Sakarya University of Applied Sciences

Project Number

BAP-179-2023, Sakarya University of Applied Sciences, Sakarya, Türkiye.

References

  • Adnan, M., Zheng, W., Islam, W., Arif, M., Abubakar, Y. S., Wang, Z., & Lu, G. (2017). Carbon catabolite repression in filamentous fungi. International Journal of Molecular Sciences, 19(1), 48.
  • Akber, M. A., & Fang, X. (2024). Research Progress on Diseases Caused by the Soil-Borne Fungal Pathogen Rhizoctonia solani in Alfalfa. Agronomy, 14(7), 1483.
  • Arif, M. (2024). Unraveling the diversity and spatial distribution of Soil-borne Fungal Mycobiomes with response to environmental parameters, cropping schemes and cropping seasons. Journal of Agricultural Biotechnology, 5(1), 19-32.
  • Arif, M., Fawaz, M. S., Zuan, A. T. K., Shah, R. U., Ullah, R., Elshehawi, A. M., Al-Sadi, A. M., Ullah, M. I., Güldür, M. E., & Alotaibi, S. S. (2021). The impact of different biochars on Stemphylium leaf blight (SLB) suppression and productivity of onion (Allium cepa L.). Journal of King Saud University-Science, 33(7), 101575.
  • Athira, S., & Anith, K. (2020). Plant growth promotion and suppression of bacterial wilt incidence in tomato by rhizobacteria, bacterial endophytes and the root endophytic fungus Piriformospora indica. Indian Phytopathology, 73(4), 629-642.
  • Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J., Profizi, C., & Baillieul, F. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research, 202, 11-20.
  • Compant, S., Cassan, F., Kostić, T., Johnson, L., Brader, G., Trognitz, F., & Sessitsch, A. (2024). Harnessing the plant microbiome for sustainable crop production. Nature Reviews Microbiology, 1-15.
  • Cucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological control, 142, 104158.
  • De Lamo, F. J., & Takken, F. L. (2020). Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Frontiers in Plant Science, 11, 37.
  • Ezrari, S., Legrifi, I., Taoussi, M., Khadiri, M., Belabess, Z., & Lahlali, R. (2024). Plant–Pathogen Interactions and Global Food Security. In Plant Pathogen Interaction (pp. 11-52). Springer.
  • Galindo-Solís, J. M., & Fernández, F. J. (2022). Endophytic fungal terpenoids: Natural role and bioactivities. Microorganisms, 10(2), 339.
  • Gautam, A. K., & Avasthi, S. (2019). Fungal endophytes: potential biocontrol agents in agriculture. In Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology (pp. 241-283). Elsevier.
  • Ghazali, H. M. Z. U., Akram, S., Fatima, I., Hussain, M., Hameed, A., Arif, M., Ahmed, M. A., Al-Ghamdi, A. A., Elshikh, M. S., & Alrashidi, B. O. O. (2022). Fungi species causing dieback and wilt diseases in shisham [Dalbergia sissoo (Roxb)] and impact of various fungicides on their management. Journal of King Saud University-Science, 34(4), 101970.
  • Hamzah, T. N. T., Lee, S. Y., Hidayat, A., Terhem, R., Faridah-Hanum, I., & Mohamed, R. (2018). Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Frontiers in microbiology, 9, 1707.
  • Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and molecular biology reviews, 79(3), 293-320.
  • Imazaki, I., & Kadota, I. (2015). Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS microbiology ecology, 91(9), fiv098.
  • Jaber, L. R., & Alananbeh, K. M. (2018). Fungal entomopathogens as endophytes reduce several species of Fusarium causing crown and root rot in sweet pepper (Capsicum annuum L.). Biological control, 126, 117-126.
  • Kara, M., & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46.
  • Kaur, R., Kaur, J., & Singh, R. S. (2011). Nonpathogenic Fusarium as a biological control agent. Plant Pathology Journal, 9(3), 79-91.
  • Kour, A., Shawl, A. S., Rehman, S., Sultan, P., Qazi, P. H., Suden, P., Khajuria, R. K., & Verma, V. (2008). Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World Journal of Microbiology and Biotechnology, 24, 1115-1121.
  • Larran, S., Simon, M. R., Moreno, M. V., Siurana, M. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological control, 92, 17-23.
  • Maciá‐Vicente, J., Rosso, L., Ciancio, A., Jansson, H. B., & Lopez‐Llorca, L. (2009). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Annals of Applied Biology, 155(3), 391-401.
  • McCully, M. E. (2001). Niches for bacterial endophytes in crop plants: a plant biologist's view. Functional Plant Biology, 28(9), 983-990.
  • Meshram, S., & Adhikari, T. B. (2024). Microbiome-Mediated Strategies to Manage Major Soil-Borne Diseases of Tomato. Plants, 13(3), 364.
  • Nikitin, D. A., Ivanova, E. A., Semenov, M. V., Zhelezova, A. D., Ksenofontova, N. A., Tkhakakhova, A. K., & Kholodov, V. A. (2023). Diversity, ecological characteristics and identification of some problematic phytopathogenic Fusarium in soil: a review. Diversity, 15(1), 49.
  • Oraon, S., Padamini, R., Shahni, Y. S., Das, N., Sinha, D., Sujatha, G., Singh, O. B., & Karanwal, R. (2024). Impact of Emerging Pathogens in Crop Production. Microbiology Research Journal International, 34(7), 80-92.
  • Parsa, S., Ortiz, V., & Vega, F. E. (2013). Establishing fungal entomopathogens as endophytes: towards endophytic biological control. JoVE (Journal of Visualized Experiments)(74), e50360.
  • Pérez, L. I., Gundel, P. E., & Omacini, M. (2016). Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens? Plant and Soil, 405, 289-298.
  • Rabiey, M., Hailey, L. E., Roy, S. R., Grenz, K., Al-Zadjali, M. A., Barrett, G. A., & Jackson, R. W. (2019). Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health? European Journal of Plant Pathology, 155, 711-729.
  • Rafiq, M., Shoaib, A., Javaid, A., Perveen, S., Umer, M., Arif, M., & Cheng, C. (2024). Exploration of resistance level against Black Scurf caused by Rhizoctonia solani in different cultivars of potato. Plant Stress, 12, 100476.
  • Rashid, S., Charles, T. C., & Glick, B. R. (2012). Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 61, 217-224.
  • Rashmi, M., Kushveer, J., & Sarma, V. (2019). A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere, 10(1), 798-1079.
  • Safaie, N., Salehi, M., Felegari, M., Farhadi, S., Karimzadeh, S., Asadi, S., Yang, J.-L., & Naghavi, M. R. (2024). Culture-based diversity of endophytic fungi of three species of Ferula grown in Iran. Frontiers in Microbiology, 15, 1363158.
  • Sahu, P. K., Tilgam, J., Mishra, S., Hamid, S., Gupta, A., K, J., Verma, S. K., & Kharwar, R. N. (2022). Surface sterilization for isolation of endophytes: Ensuring what (not) to grow. Journal of Basic Microbiology, 62(6), 647-668.
  • Schouten, A. (2019). Endophytic fungi: definitions, diversity, distribution and their significance in plant life. In Endophyte biotechnology: potential for agriculture and pharmacology (pp. 6-31). CABI Wallingford UK.
  • Singh, R., & Dubey, A. K. (2018). Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in microbiology, 9, 1767.
  • Song, J., Pongnak, W., & Soytong, K. (2016). Isolation and identification of endophytic fungi from 10 species palm trees. International J Agric Technol, 12(2), 349-363.
  • Tripathi, A., Maurya, S., Pandey, K., & Behera, T. (2024). Global Scenario of Vegetable Fungal Diseases. Vegetable Science, 51, 54-65.
  • Waheeda, K., & Shyam, K. (2017). Formulation of novel surface sterilization method and culture media for the isolation of endophytic actinomycetes from medicinal plants and its antibacterial activity. J Plant Pathol Microbiol, 8(399), 2.
  • Wani, Z. A., Ashraf, N., Mohiuddin, T., & Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied microbiology and biotechnology, 99, 2955-2965.
  • Xiong, X., Zeng, J., Ning, Q., Liu, H., Bu, Z., Zhang, X., Zeng, J., Zhuo, R., Cui, K., & Qin, Z. (2024). Ferroptosis induction in host rice by endophyte OsiSh-2 is necessary for mutualism and disease resistance in symbiosis. Nature communications, 15(1), 5012.
  • Zakaria, L., & Aziz, W. N. W. (2018). Molecular identification of endophytic fungi from banana leaves (Musa spp.). Tropical life sciences research, 29(2), 201.

Antagonistic potential of Fusarium oxysporum as an endophyte isolated from Horse-chestnut tree in the management of Rhizoctonia solani under in-vitro conditions

Year 2024, Volume: 28 Issue: 4, 550 - 563, 15.12.2024
https://doi.org/10.29050/harranziraat.1524993

Abstract

Symbiotic relationships are established by endophytic microorganisms with their host, resulting in the provision of diverse advantages, such as protection against plant pathogens. Soil-borne pathogens have become a devastating source of infection in many plant species. The environmentally friendly approaches are scare in managing these soil-borne pathogens. This study was aimed to manage one soil-borne pathogen (Rhizoctonia solani) by employing another fungal endophyte (Fusarium oxysporum) via mean inhibition zone technique. The fungal endophyte was isolated from horse-chestnut tree leaves. The R. solani was extracted from the vegetable’s plants showing typical symptoms of root rot and damping off. Both endophyte and pathogen were grown on suitable culture media. The antagonistic activity of collected endophyte for soil-borne pathogen was checked via mean inhibition zone technique under in-vitro condition. The diversity indices and isolation frequency analysis revealed that this tree specie has versatile endophytic range. The results from the dual culture experiment assessing the antagonistic activity of endophyte against the soil-borne pathogen (R. solani) revealed a significant (P <0.001) impact of the endophyte, evaluation times, and the interaction between endophyte and evaluation times on the size of the pathogen colony. The endophyte exhibited a substantial decrease in pathogen development compared to the control, except between days 11 and 15 after inoculation. The data indicate that F. oxysporum contains endophytic potential, which might be investigated for potential biocontrol agents against other soil-borne diseases.

Project Number

BAP-179-2023, Sakarya University of Applied Sciences, Sakarya, Türkiye.

References

  • Adnan, M., Zheng, W., Islam, W., Arif, M., Abubakar, Y. S., Wang, Z., & Lu, G. (2017). Carbon catabolite repression in filamentous fungi. International Journal of Molecular Sciences, 19(1), 48.
  • Akber, M. A., & Fang, X. (2024). Research Progress on Diseases Caused by the Soil-Borne Fungal Pathogen Rhizoctonia solani in Alfalfa. Agronomy, 14(7), 1483.
  • Arif, M. (2024). Unraveling the diversity and spatial distribution of Soil-borne Fungal Mycobiomes with response to environmental parameters, cropping schemes and cropping seasons. Journal of Agricultural Biotechnology, 5(1), 19-32.
  • Arif, M., Fawaz, M. S., Zuan, A. T. K., Shah, R. U., Ullah, R., Elshehawi, A. M., Al-Sadi, A. M., Ullah, M. I., Güldür, M. E., & Alotaibi, S. S. (2021). The impact of different biochars on Stemphylium leaf blight (SLB) suppression and productivity of onion (Allium cepa L.). Journal of King Saud University-Science, 33(7), 101575.
  • Athira, S., & Anith, K. (2020). Plant growth promotion and suppression of bacterial wilt incidence in tomato by rhizobacteria, bacterial endophytes and the root endophytic fungus Piriformospora indica. Indian Phytopathology, 73(4), 629-642.
  • Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J., Profizi, C., & Baillieul, F. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research, 202, 11-20.
  • Compant, S., Cassan, F., Kostić, T., Johnson, L., Brader, G., Trognitz, F., & Sessitsch, A. (2024). Harnessing the plant microbiome for sustainable crop production. Nature Reviews Microbiology, 1-15.
  • Cucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological control, 142, 104158.
  • De Lamo, F. J., & Takken, F. L. (2020). Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Frontiers in Plant Science, 11, 37.
  • Ezrari, S., Legrifi, I., Taoussi, M., Khadiri, M., Belabess, Z., & Lahlali, R. (2024). Plant–Pathogen Interactions and Global Food Security. In Plant Pathogen Interaction (pp. 11-52). Springer.
  • Galindo-Solís, J. M., & Fernández, F. J. (2022). Endophytic fungal terpenoids: Natural role and bioactivities. Microorganisms, 10(2), 339.
  • Gautam, A. K., & Avasthi, S. (2019). Fungal endophytes: potential biocontrol agents in agriculture. In Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology (pp. 241-283). Elsevier.
  • Ghazali, H. M. Z. U., Akram, S., Fatima, I., Hussain, M., Hameed, A., Arif, M., Ahmed, M. A., Al-Ghamdi, A. A., Elshikh, M. S., & Alrashidi, B. O. O. (2022). Fungi species causing dieback and wilt diseases in shisham [Dalbergia sissoo (Roxb)] and impact of various fungicides on their management. Journal of King Saud University-Science, 34(4), 101970.
  • Hamzah, T. N. T., Lee, S. Y., Hidayat, A., Terhem, R., Faridah-Hanum, I., & Mohamed, R. (2018). Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Frontiers in microbiology, 9, 1707.
  • Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and molecular biology reviews, 79(3), 293-320.
  • Imazaki, I., & Kadota, I. (2015). Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS microbiology ecology, 91(9), fiv098.
  • Jaber, L. R., & Alananbeh, K. M. (2018). Fungal entomopathogens as endophytes reduce several species of Fusarium causing crown and root rot in sweet pepper (Capsicum annuum L.). Biological control, 126, 117-126.
  • Kara, M., & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46.
  • Kaur, R., Kaur, J., & Singh, R. S. (2011). Nonpathogenic Fusarium as a biological control agent. Plant Pathology Journal, 9(3), 79-91.
  • Kour, A., Shawl, A. S., Rehman, S., Sultan, P., Qazi, P. H., Suden, P., Khajuria, R. K., & Verma, V. (2008). Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World Journal of Microbiology and Biotechnology, 24, 1115-1121.
  • Larran, S., Simon, M. R., Moreno, M. V., Siurana, M. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological control, 92, 17-23.
  • Maciá‐Vicente, J., Rosso, L., Ciancio, A., Jansson, H. B., & Lopez‐Llorca, L. (2009). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Annals of Applied Biology, 155(3), 391-401.
  • McCully, M. E. (2001). Niches for bacterial endophytes in crop plants: a plant biologist's view. Functional Plant Biology, 28(9), 983-990.
  • Meshram, S., & Adhikari, T. B. (2024). Microbiome-Mediated Strategies to Manage Major Soil-Borne Diseases of Tomato. Plants, 13(3), 364.
  • Nikitin, D. A., Ivanova, E. A., Semenov, M. V., Zhelezova, A. D., Ksenofontova, N. A., Tkhakakhova, A. K., & Kholodov, V. A. (2023). Diversity, ecological characteristics and identification of some problematic phytopathogenic Fusarium in soil: a review. Diversity, 15(1), 49.
  • Oraon, S., Padamini, R., Shahni, Y. S., Das, N., Sinha, D., Sujatha, G., Singh, O. B., & Karanwal, R. (2024). Impact of Emerging Pathogens in Crop Production. Microbiology Research Journal International, 34(7), 80-92.
  • Parsa, S., Ortiz, V., & Vega, F. E. (2013). Establishing fungal entomopathogens as endophytes: towards endophytic biological control. JoVE (Journal of Visualized Experiments)(74), e50360.
  • Pérez, L. I., Gundel, P. E., & Omacini, M. (2016). Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens? Plant and Soil, 405, 289-298.
  • Rabiey, M., Hailey, L. E., Roy, S. R., Grenz, K., Al-Zadjali, M. A., Barrett, G. A., & Jackson, R. W. (2019). Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health? European Journal of Plant Pathology, 155, 711-729.
  • Rafiq, M., Shoaib, A., Javaid, A., Perveen, S., Umer, M., Arif, M., & Cheng, C. (2024). Exploration of resistance level against Black Scurf caused by Rhizoctonia solani in different cultivars of potato. Plant Stress, 12, 100476.
  • Rashid, S., Charles, T. C., & Glick, B. R. (2012). Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 61, 217-224.
  • Rashmi, M., Kushveer, J., & Sarma, V. (2019). A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere, 10(1), 798-1079.
  • Safaie, N., Salehi, M., Felegari, M., Farhadi, S., Karimzadeh, S., Asadi, S., Yang, J.-L., & Naghavi, M. R. (2024). Culture-based diversity of endophytic fungi of three species of Ferula grown in Iran. Frontiers in Microbiology, 15, 1363158.
  • Sahu, P. K., Tilgam, J., Mishra, S., Hamid, S., Gupta, A., K, J., Verma, S. K., & Kharwar, R. N. (2022). Surface sterilization for isolation of endophytes: Ensuring what (not) to grow. Journal of Basic Microbiology, 62(6), 647-668.
  • Schouten, A. (2019). Endophytic fungi: definitions, diversity, distribution and their significance in plant life. In Endophyte biotechnology: potential for agriculture and pharmacology (pp. 6-31). CABI Wallingford UK.
  • Singh, R., & Dubey, A. K. (2018). Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in microbiology, 9, 1767.
  • Song, J., Pongnak, W., & Soytong, K. (2016). Isolation and identification of endophytic fungi from 10 species palm trees. International J Agric Technol, 12(2), 349-363.
  • Tripathi, A., Maurya, S., Pandey, K., & Behera, T. (2024). Global Scenario of Vegetable Fungal Diseases. Vegetable Science, 51, 54-65.
  • Waheeda, K., & Shyam, K. (2017). Formulation of novel surface sterilization method and culture media for the isolation of endophytic actinomycetes from medicinal plants and its antibacterial activity. J Plant Pathol Microbiol, 8(399), 2.
  • Wani, Z. A., Ashraf, N., Mohiuddin, T., & Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied microbiology and biotechnology, 99, 2955-2965.
  • Xiong, X., Zeng, J., Ning, Q., Liu, H., Bu, Z., Zhang, X., Zeng, J., Zhuo, R., Cui, K., & Qin, Z. (2024). Ferroptosis induction in host rice by endophyte OsiSh-2 is necessary for mutualism and disease resistance in symbiosis. Nature communications, 15(1), 5012.
  • Zakaria, L., & Aziz, W. N. W. (2018). Molecular identification of endophytic fungi from banana leaves (Musa spp.). Tropical life sciences research, 29(2), 201.
There are 42 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Araştırma Makaleleri
Authors

Muhammad Arif 0000-0002-8631-4873

Project Number BAP-179-2023, Sakarya University of Applied Sciences, Sakarya, Türkiye.
Early Pub Date December 14, 2024
Publication Date December 15, 2024
Submission Date July 30, 2024
Acceptance Date October 3, 2024
Published in Issue Year 2024 Volume: 28 Issue: 4

Cite

APA Arif, M. (2024). Antagonistic potential of Fusarium oxysporum as an endophyte isolated from Horse-chestnut tree in the management of Rhizoctonia solani under in-vitro conditions. Harran Tarım Ve Gıda Bilimleri Dergisi, 28(4), 550-563. https://doi.org/10.29050/harranziraat.1524993

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.