Research Article
BibTex RIS Cite

Effectiveness of Native Entomopathogenic Fungus Isolate Adapted to Low Humidity Conditions on Tenebrio molitor (Coleoptera:Tenebrionidae)

Year 2024, Volume: 28 Issue: 4, 593 - 603, 15.12.2024
https://doi.org/10.29050/harranziraat.1530026

Abstract

Especially for pest management in low humidity environments such as storage conditions, it is of great importance to obtain entomopathogenic fungal isolates that can maintain their virulence despite low humidity conditions. In this study; It was aimed to obtain enthomopathogenic fungus isolate that maintains its virulence at low soil moisture conditions using Tenebrio molitor from soil samples that have undergone standard soil analysis. In this context, fungal growth was observed in 4 soil samples without increasing the soil moisture at low relative humidity in 16 soil samples examined. As a result of morphological identification; It was observed that the isolates, which were found to be Beauveria bassiana, Cordyceps fumosorosea and two Metarhizium anisopliae species, caused 100% mortality on Tenebrio molitor larvae in petri dishes with bioassay studies. Beauveria bassiana isolate, on which mycelial development was observed on cadavers, was tested at 5 different spore densities in sterile soil conditions in plastic containers; On the 9th day; 108, 107, 106, 105, 104 conidia ml-1 doses were found to be 60%, 23.34%, 19.34%, 12.15% and 14.17%, respectively, while at the end of 18 days these rates were determined as 64%, 43.34%, 19.34%, 15.72% and 14.17%. The mortality rate in the control group was 0%. It is thought that the use of the isolate obtained at 108 conidia ml-1 and higher densities has an important potential for other studies to be conducted in low humidity conditions such as food storage and that detailed studies are needed.

References

  • Acheampong, M., Hill, M., Moore, S. & Coombes, C. (2020). UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biology, 124(5), 304–310. DOI: https://doi.org/10.1016/j.funbio.2019.08.009
  • Ayvaz, A., Albayrak, S., & Karaborklu, S. (2008). Gamma radiation sensitivity of the eggs, larvae and pupae of Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Management Science, 64: 505–512. DOI: 10.1002/ps.1526
  • Baki, D., Kırışık, M., & Erler, F. (2020). Antalya İli topraklarından Galleria mellonella kullanılarak izole edilen potansiyel entomopatojen fungus izolatlarının Myzus persicae’e etkilerinin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi, 11(1), 43-54. DOI: https://doi.org/10.31019/tbmd.620116
  • Bayındır Erol, A., Erdoğan, O., & Sevinç, M. S. (2024). Efficacy of Beauveria bassiana (Bals.) Vuill. Isolates on Dried Fruit Moth (Plodia interpunctella [Lepidoptera: pyralidae]). Black Sea Journal of Agriculture, 7(1), 77-81. https://doi.org/10.47115/bsagriculture.1393389
  • Boulard, T., Mermier, M., Fargues, J., Smits, N., Rougier, M. & Roy, J. C. (2002). Tomato leaf boundary layer climate: implications for microbiological whitefly control in greenhouses. Agricultural and Forest Meteorology, 110(3),159-176. DOI: https://doi.org/10.1016/S0168-1923(01)00292-1
  • Chergui S., K. Boudjemaa, A. Benzehra & Karaca I, 2020. Pathogenicity of indigenous Beauveria bassiana (Balsamo) against Ceratitis capitata Wiedemann (Diptera: Tephritidae) under laboratory conditions. Egyptian Journal of Biological Pest Control, 30(1): 1-7. DOI: https://doi.org/10.1186/s41938-020-00331-z
  • Dash, C. K., Bamisile, B. S., Keppanan, R., Qasim, M., Lin, Y., Islam, S. U., Hussain, M. & Wang, L. (2018). Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: tetranychidae). Microbial Pathogenesis, 125: 385–392. DOI: https://doi.org/10.1016/j.micpath.2018.09.044
  • Delcour, I., Spanoghe, P. & Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. Food Research International, 68,7–15. https://doi.org/10.1016/j.foodres.2014.09.030
  • ilenberg, J. (2006). Concepts and visions of biological control. In: Eilenberg J, Hokkanen HMT (eds) An Ecological and Societal Approach to Biological Control. Springer, Dordrecht, pp 1–11
  • Eken, C., 2011. Isolation, Identification and Preservation of Entomopathogenic Fungi. In: Borgio, J.F., Sahayaraj, K. and Susurluk, I.A. (Eds.), Microbial Insecticides, Principles and Applications. Nova Science Publishers Inc., New York, USA, pp. 1-28
  • FAO/IAEA, 2019. Use of entomopathogenic fungi for fruit fly control in area-wide SIT programmes (Ed: A. Villaseñor, S. Flores, S. E. Campos, J. Toledo, P. Montoya, P. Liedo & W. Enkerlin, Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna. 43 pp.
  • Fargues, J., Smits, N., Rougier, M., Boulard, T., Ridray, G., Lagier, J., Jeannequin, B., Fatnassi, H. & Mermier, M. (2005). Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean greenhouse tomato. Biologycal Control, 32:461–472. https://doi.org/10.1016/j.biocontrol.2004.12.008
  • Fernández-Bravo, M., Flores-León, A., Calero-López, S., Gutiérrez-Sánchez, F., Valverde-García, P, & Quesada-Moraga, E. (2017) UV-B radiation-related effects on conidial inactivation and virulence against Ceratitis capitata (Wiedemann) (Diptera; Tephritidae) of phylloplane and soil Metarhizium sp. Strains. Journal of Invertebrate Pathology, 148:142–151. https://doi.org/10.1016/j.jip.2017.06.012
  • Foth, H.D., (1984). Fundamentals of Soil Science. 7th edition. John Wiley and Sons Inc., New York, pp: 434
  • García-Fernández, P., Santiago-Álvarez, C. & Quesada-Moraga, E. (2008). Pathogenicity and thermal biology of mitosporic fungi as potential microbial control agents of Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of honey bee, Apis mellifera (Hymenoptera: Apidae). Apidologie 39:662–673. DOI: https://doi.org/10.1051/apido:2008049
  • Hall, G.V., D Souza, R.M., & Kirk, M.D. (2002). Foodborne disease in the new millennium: Out of the frying pan and into the fire? Medical Journal of Australia, 177(11/12), 614–619. DOI: 10.5694/j.1326-5377.2002.tb04984.x
  • Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158–2162. DOI: 10.1126/science.1063699
  • Humber, R. A. (1997). Fungi: identification. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, San Diego, Chapter V-3, 153–185.
  • Humber, R. A. 1998. Entomopathogenic fungal identification. APS/ESA Joint Annual Meeting 8-12 November, Las Vegas, NV.
  • IBM Corp. (2010). SPSS Statistics for Windows. IBM Corp, Armonk, NY.
  • Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol, 55:129–145. https://doi.org/10.1007/s10526-009-9240-y
  • Jarmuł-Pietraszczyk, J., Kamionek, M. & Kania, I., (2011). Occurrence of Entomjaopathogenic Fungi in Selected Parks and Urban Forests Of The Warsaw District Ursynow. Ecologycal Chemistry And Engineering A, 18(11), 1571–1574.
  • Jaronski, S. T (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol, 55:159–185. https://doi.org/10.1007/s10526-009-9248-3
  • Keskin, Y., Karabörklü, S., & Altın, N. (2019). Bazı Yerel Entomopatojen Fungusların Toprak Koşullarındaki Etkinliklerinin Tenebrio molitor L. (Col.: Tenebrionidae) Larvaları Kullanılarak Araştırılması. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 2(1), 26-31.
  • Keyser, C. A., Henrik, H., Steinwender, B. M. & Meyling, N. V. (2015). Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiology, 15, 249.
  • Kılıç, E. Erzincan’da Entomopatojen Fungusların Oluşumuna ve Dağılımına Etki Eden Toprak Faktörleri. Avrupa Bilim ve Teknoloji Dergisi, 23, 875-881. DOI: https://doi.org/10.31590/ejosat.895773
  • Lepetz, V., Massot, M., Schmeller, D.S., & Clobert, J. (2009). Biodiversity monitoring: Some proposals to adequately study species' responses to climate change. Biodiversity and Conservation, 18(12), 3185–3203.
  • Lu H. L. & St Leger, R. J. (2016). Insect immunity to entomopathogenic fungi. Advances in Genetics, 94: 251–285. DOI: https://doi.org/10.1016/bs.adgen.2015.11.002
  • Medo, J., Cagánˇ, L’., 2011. Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biological Control, 59, 200– 208. DOI: https://doi.org/10.1016/j.biocontrol.2011.07.020
  • Meyling, N.V., Arthur, S., Pedersen, K.E., Dhakal, S., Cedergreen, N., Fredensborg, B.L. (2018). Implications of sequence and timing of exposure for synergy between the pyrethroid insecticide alpha‐ cypermethrin and the entomopathogenic fungus Beauveria bassiana. Pest Management Science, 74: 2488–2495. DOI: https://doi.org/10.1002/ps.4926
  • Ortiz-Urquiza A & Keyhani, N. O. (2013). Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects, 4(3); 357–374. DOI: https://doi.org/10.3390/insects4030357
  • Qayyum, M. A., Saeed, S., Wakil, W., Nawaz, A., Iqbal, N., Yasin, M., Chaurdhry, M. A., Bashir, M. A., Ahmed, N., Riaz, H., Bilal, H., Hashem, M. & Alamri, S. (2021). Diversity and correlation of entomopathogenic and associated fungi with soil factors. Journal of King Saud University-Science, 33(6), 101520. DOI: https://doi.org/10.1016/j.jksus.2021.101520
  • Quesada-Moraga, E., González-Mas, N., Yousef-Yousef, M., Garrido-Jurado, I. & Fernández-Bravo, M. (2024). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. Journal of Pest Science, 97, 1–15 (2024). DOI: https://doi.org/10.1007/s10340-023-01622-8
  • Quesada-Moraga, E., Maranhao, E. A. A., Valverde-García, P. & Santiago-Álvarez, C. (2006). Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements and toxicogenic activity. Biological Control, 36:274–287. DOI: https://doi.org/10.1016/j.biocontrol.2005.09.022
  • Quesada-Moraga, E., Navas-Cortés, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A. & Santiago-Álvarez, C. (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, 111:947–966. https://doi.org/10.1016/j.mycres.2007.06.006
  • Rath, A.C., (2000). The use of entomopathogenic fungi for control of termites. Biocontrol Science and Technology, 10: 563-581. DOI: https://doi.org/10.1080/095831500750016370
  • Rodríguez-Gómez, D., Loera, O., Saucedo-Castañeda, G. & Viniegra-González, G. (2009) Substrate influence on physiology and virulence of Beauveria bassiana acting on larvae and adults of Tenebrio molitor. World Journal of Microbiology and Biotechnology, 25:513–518.
  • Rosenzweig, C., Iglesias, A., Yang, X., Epstein, P.R., & Chivian, E. (2001). Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health, 2(2), 90–104.
  • Rumbos, C. I. & Athanassiou, C. G. (2017). Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities? Journal of Pest Science, 90:839–854. https://doi.org/10.1007/s10340-017-0849-9
  • Samson, R. A. (1974). Paecilomyces and some allied hypomycetes. Studies in Mycology, 6: 1- 119.
  • Samson, R.A., H.C. Evans, & J.P. Latge 1988. Atlas of entomopathogenic fungi. SpringerVerlag, New York.
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 430:430–439. DOI: https://doi.org/10.1038/s41559-018-0793-y
  • Scholte E. J., B. G. J. Knols, R. A. Samson & W. Takken, (2004). Entomopathogenic fungi for mosquito control: a review. Journal of Insect Science, 4(1): 1–24.
  • Sevinç, M. S., & İ. Karaca, (2024). Environmental persistence of the conidia of native entomopathogenic fungi and their efficiency on Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae). Turkish Journal of Entomology, 48(3), 327-342. https://doi.org/10.16970/entoted.1498947
  • Shah P. A. & J. K. Pell, (2003). Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61(5): 413–423.
  • Singh, C. B., Fielke, J. M. (2017). Recent developments in stored grain sensors, monitoring and management technology. IEEE Instrumentation & Measurement Magazine, 20:32–55. DOI: https://doi.org/10.1109/MIM.2017.7951690
  • TSE. (1990). Topraklar- Suyla Doygunluk Tayini. TS 8333/Nisan-1990, Standardı, Türk Stantları Enstitüsü, Ankara.
  • Uzman, D., Pliestera, J., Leyerb, I., Entlingc, M. H. & Reinekea, A. (2019). Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils. Applied Soil Ecology, 133:89–97. https://doi.org/10.1016/j.apsoil.2018.09.004
  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monz´on, A. B., Ownley, H., Pell, J. K. , Rangel, D. E. N. & Roy, H. E. , (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2(4):149–159. DOI: https://doi.org/10.1016/j.funeco.2009.05.001
  • Vega, F. E., Meyling, N. V., Luangsa-ard, J. J. & Blackwell, M. (2012). Fungal entomopathogens. In: Vega FE, Kaya HK (eds) Insect Pathology. 2nd edition. Academic Press, Cambridge, pp. 171–220. DOI: https://doi.org/10.1016/B978-0-12-384984-7.00006-3
  • Wang, Y. S., Huang, Y. J., Chen, W. C., & Yen, J. H. (2009). Effect of carbendazim and pencycuron on soil bacterial community. Journal of Hazardous Materials, 172(1), 84–91. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.142
  • Zettler, J. L., Arthur, F. H. (2000). Chemical control of stored product insects with fumigants and residual treatments. Crop Protection, 19: 577–582. DOI: https://doi.org/10.1016/S0261-2194(00)00075-2

Düşük Nem Koşullarına Adapte Yerli Entomopatojen Fungus İzolatının Tenebrio molitor (Coleoptera:Tenebrionidae) Üzerindeki Etkinliği

Year 2024, Volume: 28 Issue: 4, 593 - 603, 15.12.2024
https://doi.org/10.29050/harranziraat.1530026

Abstract

Düşük nemli ortamlarda özellikle depolama koşullarında yapılacak olan mücadele için düşük nemde virülensliğini sürdüren fungus izolatları elde etmek önemlidir. Bu çalışmada; standart toprak analizi yapılmış toprak örneklerinin, Tenebrio molitor kullanılarak düşük toprak nemi koşullarında virülensliğini sürdüren entomopatojen fungus izolatı elde etmek amaçlanmıştır. Bu kapsamda incelenen 16 toprak örneğinde, düşük bağıl nemde toprak nemi artırılmadan 4 toprak örneğinde fungal gelişim görülmüştür. Morfolojik tanılama sonucu; Beauveria bassiana, Cordyceps fumosorosea ve iki adetinin de Metarhizium anisopliae türü olduğu görülen izolatların, Tenebrio molitor larvaları üzerinde petri kaplarında biyoassay çalışmaları ile %100 ölüme sebep olduğu görülmüştür. Kadavra üzerinde misel gelişimi görülen Beauveria bassiana izolatı, plastik kaplarda steril toprak koşullarında 5 farklı spor yoğunluğunda denenmiş; 108 , 107, 106, 105, 104 konidi ml-1 dozları 9. günde sırasıyla; %60, %23.34, %19.34, %12.15 ve %14.17 bulunurken, 18 gün sonunda ise bu oranlar; %64; %43.34; %19.34; %15.72 ve %14.17 olarak tespit edilmiştir. Kontrol grubunda ölüm oranı; %0’ dır. Elde edilen izolatın 108 konidi ml-1 ve daha yüksek yoğunlukta kullanımının gıda depolama gibi düşük nem koşullarında yapılacak diğer çalışmalar için önemli bir potansiyeli olduğu ve detaylı çalışmalara ihtiyaç duyulduğu düşünülmektedir.

Thanks

Yazarlar; Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Meyvecilik Araştırma Enstitüsü Müdürlüğüne teşekkür ederler.

References

  • Acheampong, M., Hill, M., Moore, S. & Coombes, C. (2020). UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biology, 124(5), 304–310. DOI: https://doi.org/10.1016/j.funbio.2019.08.009
  • Ayvaz, A., Albayrak, S., & Karaborklu, S. (2008). Gamma radiation sensitivity of the eggs, larvae and pupae of Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Management Science, 64: 505–512. DOI: 10.1002/ps.1526
  • Baki, D., Kırışık, M., & Erler, F. (2020). Antalya İli topraklarından Galleria mellonella kullanılarak izole edilen potansiyel entomopatojen fungus izolatlarının Myzus persicae’e etkilerinin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi, 11(1), 43-54. DOI: https://doi.org/10.31019/tbmd.620116
  • Bayındır Erol, A., Erdoğan, O., & Sevinç, M. S. (2024). Efficacy of Beauveria bassiana (Bals.) Vuill. Isolates on Dried Fruit Moth (Plodia interpunctella [Lepidoptera: pyralidae]). Black Sea Journal of Agriculture, 7(1), 77-81. https://doi.org/10.47115/bsagriculture.1393389
  • Boulard, T., Mermier, M., Fargues, J., Smits, N., Rougier, M. & Roy, J. C. (2002). Tomato leaf boundary layer climate: implications for microbiological whitefly control in greenhouses. Agricultural and Forest Meteorology, 110(3),159-176. DOI: https://doi.org/10.1016/S0168-1923(01)00292-1
  • Chergui S., K. Boudjemaa, A. Benzehra & Karaca I, 2020. Pathogenicity of indigenous Beauveria bassiana (Balsamo) against Ceratitis capitata Wiedemann (Diptera: Tephritidae) under laboratory conditions. Egyptian Journal of Biological Pest Control, 30(1): 1-7. DOI: https://doi.org/10.1186/s41938-020-00331-z
  • Dash, C. K., Bamisile, B. S., Keppanan, R., Qasim, M., Lin, Y., Islam, S. U., Hussain, M. & Wang, L. (2018). Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: tetranychidae). Microbial Pathogenesis, 125: 385–392. DOI: https://doi.org/10.1016/j.micpath.2018.09.044
  • Delcour, I., Spanoghe, P. & Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. Food Research International, 68,7–15. https://doi.org/10.1016/j.foodres.2014.09.030
  • ilenberg, J. (2006). Concepts and visions of biological control. In: Eilenberg J, Hokkanen HMT (eds) An Ecological and Societal Approach to Biological Control. Springer, Dordrecht, pp 1–11
  • Eken, C., 2011. Isolation, Identification and Preservation of Entomopathogenic Fungi. In: Borgio, J.F., Sahayaraj, K. and Susurluk, I.A. (Eds.), Microbial Insecticides, Principles and Applications. Nova Science Publishers Inc., New York, USA, pp. 1-28
  • FAO/IAEA, 2019. Use of entomopathogenic fungi for fruit fly control in area-wide SIT programmes (Ed: A. Villaseñor, S. Flores, S. E. Campos, J. Toledo, P. Montoya, P. Liedo & W. Enkerlin, Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna. 43 pp.
  • Fargues, J., Smits, N., Rougier, M., Boulard, T., Ridray, G., Lagier, J., Jeannequin, B., Fatnassi, H. & Mermier, M. (2005). Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean greenhouse tomato. Biologycal Control, 32:461–472. https://doi.org/10.1016/j.biocontrol.2004.12.008
  • Fernández-Bravo, M., Flores-León, A., Calero-López, S., Gutiérrez-Sánchez, F., Valverde-García, P, & Quesada-Moraga, E. (2017) UV-B radiation-related effects on conidial inactivation and virulence against Ceratitis capitata (Wiedemann) (Diptera; Tephritidae) of phylloplane and soil Metarhizium sp. Strains. Journal of Invertebrate Pathology, 148:142–151. https://doi.org/10.1016/j.jip.2017.06.012
  • Foth, H.D., (1984). Fundamentals of Soil Science. 7th edition. John Wiley and Sons Inc., New York, pp: 434
  • García-Fernández, P., Santiago-Álvarez, C. & Quesada-Moraga, E. (2008). Pathogenicity and thermal biology of mitosporic fungi as potential microbial control agents of Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of honey bee, Apis mellifera (Hymenoptera: Apidae). Apidologie 39:662–673. DOI: https://doi.org/10.1051/apido:2008049
  • Hall, G.V., D Souza, R.M., & Kirk, M.D. (2002). Foodborne disease in the new millennium: Out of the frying pan and into the fire? Medical Journal of Australia, 177(11/12), 614–619. DOI: 10.5694/j.1326-5377.2002.tb04984.x
  • Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158–2162. DOI: 10.1126/science.1063699
  • Humber, R. A. (1997). Fungi: identification. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, San Diego, Chapter V-3, 153–185.
  • Humber, R. A. 1998. Entomopathogenic fungal identification. APS/ESA Joint Annual Meeting 8-12 November, Las Vegas, NV.
  • IBM Corp. (2010). SPSS Statistics for Windows. IBM Corp, Armonk, NY.
  • Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol, 55:129–145. https://doi.org/10.1007/s10526-009-9240-y
  • Jarmuł-Pietraszczyk, J., Kamionek, M. & Kania, I., (2011). Occurrence of Entomjaopathogenic Fungi in Selected Parks and Urban Forests Of The Warsaw District Ursynow. Ecologycal Chemistry And Engineering A, 18(11), 1571–1574.
  • Jaronski, S. T (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol, 55:159–185. https://doi.org/10.1007/s10526-009-9248-3
  • Keskin, Y., Karabörklü, S., & Altın, N. (2019). Bazı Yerel Entomopatojen Fungusların Toprak Koşullarındaki Etkinliklerinin Tenebrio molitor L. (Col.: Tenebrionidae) Larvaları Kullanılarak Araştırılması. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 2(1), 26-31.
  • Keyser, C. A., Henrik, H., Steinwender, B. M. & Meyling, N. V. (2015). Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiology, 15, 249.
  • Kılıç, E. Erzincan’da Entomopatojen Fungusların Oluşumuna ve Dağılımına Etki Eden Toprak Faktörleri. Avrupa Bilim ve Teknoloji Dergisi, 23, 875-881. DOI: https://doi.org/10.31590/ejosat.895773
  • Lepetz, V., Massot, M., Schmeller, D.S., & Clobert, J. (2009). Biodiversity monitoring: Some proposals to adequately study species' responses to climate change. Biodiversity and Conservation, 18(12), 3185–3203.
  • Lu H. L. & St Leger, R. J. (2016). Insect immunity to entomopathogenic fungi. Advances in Genetics, 94: 251–285. DOI: https://doi.org/10.1016/bs.adgen.2015.11.002
  • Medo, J., Cagánˇ, L’., 2011. Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biological Control, 59, 200– 208. DOI: https://doi.org/10.1016/j.biocontrol.2011.07.020
  • Meyling, N.V., Arthur, S., Pedersen, K.E., Dhakal, S., Cedergreen, N., Fredensborg, B.L. (2018). Implications of sequence and timing of exposure for synergy between the pyrethroid insecticide alpha‐ cypermethrin and the entomopathogenic fungus Beauveria bassiana. Pest Management Science, 74: 2488–2495. DOI: https://doi.org/10.1002/ps.4926
  • Ortiz-Urquiza A & Keyhani, N. O. (2013). Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects, 4(3); 357–374. DOI: https://doi.org/10.3390/insects4030357
  • Qayyum, M. A., Saeed, S., Wakil, W., Nawaz, A., Iqbal, N., Yasin, M., Chaurdhry, M. A., Bashir, M. A., Ahmed, N., Riaz, H., Bilal, H., Hashem, M. & Alamri, S. (2021). Diversity and correlation of entomopathogenic and associated fungi with soil factors. Journal of King Saud University-Science, 33(6), 101520. DOI: https://doi.org/10.1016/j.jksus.2021.101520
  • Quesada-Moraga, E., González-Mas, N., Yousef-Yousef, M., Garrido-Jurado, I. & Fernández-Bravo, M. (2024). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. Journal of Pest Science, 97, 1–15 (2024). DOI: https://doi.org/10.1007/s10340-023-01622-8
  • Quesada-Moraga, E., Maranhao, E. A. A., Valverde-García, P. & Santiago-Álvarez, C. (2006). Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements and toxicogenic activity. Biological Control, 36:274–287. DOI: https://doi.org/10.1016/j.biocontrol.2005.09.022
  • Quesada-Moraga, E., Navas-Cortés, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A. & Santiago-Álvarez, C. (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, 111:947–966. https://doi.org/10.1016/j.mycres.2007.06.006
  • Rath, A.C., (2000). The use of entomopathogenic fungi for control of termites. Biocontrol Science and Technology, 10: 563-581. DOI: https://doi.org/10.1080/095831500750016370
  • Rodríguez-Gómez, D., Loera, O., Saucedo-Castañeda, G. & Viniegra-González, G. (2009) Substrate influence on physiology and virulence of Beauveria bassiana acting on larvae and adults of Tenebrio molitor. World Journal of Microbiology and Biotechnology, 25:513–518.
  • Rosenzweig, C., Iglesias, A., Yang, X., Epstein, P.R., & Chivian, E. (2001). Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health, 2(2), 90–104.
  • Rumbos, C. I. & Athanassiou, C. G. (2017). Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities? Journal of Pest Science, 90:839–854. https://doi.org/10.1007/s10340-017-0849-9
  • Samson, R. A. (1974). Paecilomyces and some allied hypomycetes. Studies in Mycology, 6: 1- 119.
  • Samson, R.A., H.C. Evans, & J.P. Latge 1988. Atlas of entomopathogenic fungi. SpringerVerlag, New York.
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 430:430–439. DOI: https://doi.org/10.1038/s41559-018-0793-y
  • Scholte E. J., B. G. J. Knols, R. A. Samson & W. Takken, (2004). Entomopathogenic fungi for mosquito control: a review. Journal of Insect Science, 4(1): 1–24.
  • Sevinç, M. S., & İ. Karaca, (2024). Environmental persistence of the conidia of native entomopathogenic fungi and their efficiency on Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae). Turkish Journal of Entomology, 48(3), 327-342. https://doi.org/10.16970/entoted.1498947
  • Shah P. A. & J. K. Pell, (2003). Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61(5): 413–423.
  • Singh, C. B., Fielke, J. M. (2017). Recent developments in stored grain sensors, monitoring and management technology. IEEE Instrumentation & Measurement Magazine, 20:32–55. DOI: https://doi.org/10.1109/MIM.2017.7951690
  • TSE. (1990). Topraklar- Suyla Doygunluk Tayini. TS 8333/Nisan-1990, Standardı, Türk Stantları Enstitüsü, Ankara.
  • Uzman, D., Pliestera, J., Leyerb, I., Entlingc, M. H. & Reinekea, A. (2019). Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils. Applied Soil Ecology, 133:89–97. https://doi.org/10.1016/j.apsoil.2018.09.004
  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monz´on, A. B., Ownley, H., Pell, J. K. , Rangel, D. E. N. & Roy, H. E. , (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2(4):149–159. DOI: https://doi.org/10.1016/j.funeco.2009.05.001
  • Vega, F. E., Meyling, N. V., Luangsa-ard, J. J. & Blackwell, M. (2012). Fungal entomopathogens. In: Vega FE, Kaya HK (eds) Insect Pathology. 2nd edition. Academic Press, Cambridge, pp. 171–220. DOI: https://doi.org/10.1016/B978-0-12-384984-7.00006-3
  • Wang, Y. S., Huang, Y. J., Chen, W. C., & Yen, J. H. (2009). Effect of carbendazim and pencycuron on soil bacterial community. Journal of Hazardous Materials, 172(1), 84–91. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.142
  • Zettler, J. L., Arthur, F. H. (2000). Chemical control of stored product insects with fumigants and residual treatments. Crop Protection, 19: 577–582. DOI: https://doi.org/10.1016/S0261-2194(00)00075-2
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Entomology in Agriculture
Journal Section Araştırma Makaleleri
Authors

Mehmet Sedat Sevinç 0000-0001-9517-7631

Nuran Karatağ 0000-0003-4648-8227

Mesut Altındal 0000-0002-0332-6677

Early Pub Date December 14, 2024
Publication Date December 15, 2024
Submission Date August 9, 2024
Acceptance Date October 28, 2024
Published in Issue Year 2024 Volume: 28 Issue: 4

Cite

APA Sevinç, M. S., Karatağ, N., & Altındal, M. (2024). Düşük Nem Koşullarına Adapte Yerli Entomopatojen Fungus İzolatının Tenebrio molitor (Coleoptera:Tenebrionidae) Üzerindeki Etkinliği. Harran Tarım Ve Gıda Bilimleri Dergisi, 28(4), 593-603. https://doi.org/10.29050/harranziraat.1530026

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.