Research Article
BibTex RIS Cite

Türkiye'de yetiştirilen üç sığır ırkında ADH1C ve FASN genlerinde allel ve genotip frekanslarının araştırılması

Year 2025, Volume: 29 Issue: 1, 65 - 73
https://doi.org/10.29050/harranziraat.1571065

Abstract

Et verimi ve kalitesinin iyileştirilmesi için aday genler temelli seleksiyon programlarının geliştirilmesi, artan insan nüfusu ile azalan çiftlik hayvanı populasyonu arasındaki mevcut ikilemi aşmak için etkili bir yaklaşımdır. Sığırlarda et verimi ve kalitesiyle ilişkili olduğu bilinen ADH1C ve FASN genleri Doğu Anadolu Kırmızısı (DAK), Yerli Güney Sarısı (YGS) ve Siyah Alaca (SA) olarak bilinen ve Türkiye’de yetiştirilen üç farklı sığır ırkında incelenmiştir. Bu amaçla, her ırktan 37 hayvan allel spesifik polimeraz zincir reaksiyonu (AS-PZR) tekniğiyle genotiplendirilmiştir. Allel frekans dağılımı Türkiye yerli ırkları ile SA arasında önemli şekilde farklılık göstermiştir. ADH1C polimorfizmi bakımından C allel frekansı 0.014 (DAK) ile 0.311 (SA), T allel frekansı ise 0.689 (HF) ile 0.986 (DAK) aralığında değişmiştir. YGS ırkında C ve T allel frekansı sırasıyla 0.068 ve 0.932 olarak hesaplanmıştır. FASN gene polimorfizmi bakımından bütün populasyonlarda en çok görülen allel G bulunmuştur. En düşük (0.014) ve en yüksek (0.365) A allel frekansı sırasıyla DAK ve SA ırkında tespit edilirken, G allel frekansının 0.027 (DAK) ile 0.635 (SA) aralığında değiştiği belirlenmiştir. Yerli ırklarla kıyaslandığında, SA ırkında daha fazla heterozigotluk belirlenmiştir. Toplam genetik varyasyonun büyük bir kısmı (%67) bireyler arasındaki farklılıktan kaynaklanmıştır. Genetik mesafe temelli filogenetik analiz yoluyla ADH1C and FASN genlerindeki varyasyonların yerli Anadolu sığırlarının SA ırkından olan farklılığını ortaya koymada yeterince bilgi verici olduğu ortaya çıkmıştır. DAK ırkında ADH1C ve FASN genleri için arzu edilen genotipe sahip herhangi bir hayvan tespit edilemezken YGS ırkında AA genotipine sahip iki hayvanın olduğu belirlenmiştir. Bu bulgular mevcut durumda bu genlerin marker destekli seleksiyon (MDS) çalışmaları için etkili olmamakla birlikte uzun vadede uygun çiftleştirme programları sayesinde arzu edilen genotiplerin elde edilebileceğini göstermektedir. Gelecekte yapılacak çalışmalarda, seleksiyon stratejilerinin geliştirilmesi amacıyla Türkiye yerli sığır ırklarının et verimi ve kalitesiyle ilgili diğer özellikler açısından taranması üzerinde durulabilir.

References

  • by, B. A., Kantanen, J., Aass, L., & Meuwissen, T. (2014). Current status of livestock production in the Nordic countries and future challenges with a changing climate and human population growth. Acta Agriculturae Scandinavica, Section A—Animal Science, 64(2), 73-97. DOI: https://doi.org/10.1080/09064702.2014.950321
  • Bhuiyan, M. S. A., Yu, S. L., Jeon, J. T., Yoon, D., Cho, Y. M., Park, E. W., Kim, N. K., Kim, K. S., & Lee, J. H. (2009). DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Australasian Journal of Animal Sciences, 22(6), 765-773. DOI: https://doi.org/10.5713/ajas.2009.80573
  • Brito, L. F., Bédère, N., Douhard, F., Oliveira, H. R., Arnal, M., Peñagaricano, F., Schinckel, A. P., Baes, C. F., & Miglior, F. (2021). Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal, 15(s1), 100292. DOI: https://doi.org/10.1016/j.animal.2021.100292
  • Çobanoğlu, Ö., & Ardicli, S. (2022). Genetic variation at the OLR1, ANXA9, MYF5, LTF, IGF1, LGB, CSN3, PIT1, MBL1, CACNA2D1, and ABCG2 loci in Turkish Grey Steppe, Anatolian Black, and EastAnatolian Red cattle. Turkish Journal of Veterinary & Animal Sciences, 46(3), 494-504. DOI: https://doi.org/10.55730/1300-0128.4220
  • Demir, E., & Argun Karsli, B. (2024). Evaluation of MSTN gene polymorphisms in two Anatolian cattle breeds by AS-PCR. 12th International Summit Scientific Research Congress, (pp. 151-155), 29-31 May, Gaziantep, Türkiye.
  • Demir, E., & Balcioglu, M. S. (2019). Genetic diversity and population structure of four cattle breeds raised in Turkey using microsatellite markers. Czech Journal of Animal Science, 64(10), 411-419. DOI: https://doi.org/10.17221/62/2019-CJAS
  • Demir, E., Karsli, T., & Balcioğlu, M. S. (2021). A comprehensive review on genetic diversity and phylogenetic relationships among native Turkish cattle breeds based on microsatellite markers. Turkish Journal of Veterinary & Animal Sciences, 45(1), 1-10. DOI: https://doi.org/10.3906/vet-2006-107
  • Demir, E., Moravčíková, N., Karsli, T., & Kasarda, R. (2022). Future perspective of NGS data for evaluation of population genetic structure in Turkish cattle. Acta Fytotechnica et Zootechnica, 25(2), 117-121. DOI: https://doi.org/10.15414/afz.2022.25.02.117-121
  • Demir, E., Moravčíková, N., Kaya, S., Kasarda, R., Bilginer, Ü., Doğru, H., Balcıoğlu, M. S., & Karslı, T. (2023a). Genome‐wide screening for selection signatures in native and cosmopolitan cattle breeds reared in Türkiye. Animal Genetics, 54(6), 721-730. DOI: https://doi.org/10.1111/age.13361
  • Demir, E., Moravčíková, N., Kaya, S., Kasarda, R., Doğru, H., Bilginer, Ü., Balcioğlu, M. S. & Karsli, T. (2023b). Genome-wide genetic variation and population structure of native and cosmopolitan cattle breeds reared in Türkiye. Animal Biotechnology, 34(8), 3877-3886. DOI: https://doi.org/10.1080/10495398.2023.2235600
  • Eusebi, P. G., Martinez, A., & Cortes, O. (2019). Genomic tools for effective conservation of livestock breed diversity. Diversity, 12(1), 8. DOI: https://doi.org/10.3390/d12010008
  • Grigoletto, L., Ferraz, J. B., Oliveira, H. R., Eler, J. P., Bussiman, F. O., Abreu Silva, B. C., Baldi, F. & Brito, L. F. (2020). Genetic architecture of carcass and meat quality traits in Montana Tropical® composite beef cattle. Frontiers in genetics, 11, 123. DOI: https://doi.org/10.3389/fgene.2020.00123
  • Hozáková, K., Vavrišínová, K., Neirurerová, P., & Bujko, J. (2020). Growth of beef cattle as prediction for meat production: A review. Acta Fytotechnica et Zootechnica, 23(2), 58-69. DOI: https://doi.org/10.15414/afz.2020.23.02.58-69
  • Karayel, F., & Karslı, T. (2022). Genotypic structure of four cattle breeds raised in Turkey by loci related to several diseases. Mediterranean Agricultural Sciences, 35(1), 39-45. DOI: https://doi.org/10.29136/mediterranean.995382
  • Karslı, B. A. (2024). HSP90AB1 (SNP-4338T> C) gene polymorphism associated with thermo-tolerance in some cattle breeds in Türkiye. Mediterranean Agricultural Sciences, 37(1), 51-55. DOI: https://doi.org/10.29136/mediterranean.1408404
  • Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences, Briefing in Bioinformatics, 9, 299–306. DOI: https://doi.org/10.1093/bib/bbn017
  • Lee, W., Nam, I., Kim, D., Kim, K., & Lee, Y. (2022). Allele-specific polymerase chain reaction for the discrimination of elite Korean cattle associated with high beef quality and quantity. Archives Animal Breeding, 65(1), 47-53. DOI: https://doi.org/10.5194/aab-65-47-2022
  • Miller, S., Dykes, D. and Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215-1215.
  • Öner, Y., Yılmaz, O., Eriş, C., Ata, N., Ünal, C., & Koncagül, S. (2019). Genetic diversity and population structure of Turkish native cattle breeds. South African Journal of Animal Science, 49(4), 628-635. https://doi.org/10.4314/sajas.v49i4.4
  • Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 6(19), 2537-2539. DOI: https://doi.org/10.1093/bioinformatics/bts460
  • Peng, D. Q., Jung, U. S., Lee, J. S., Kim, W. S., Jo, Y. H., Kim, M. J., Oh, Y. K., Baek, Y. C., Hwang, S. G., & Lee, H. G. (2017). Effect of alcohol dehydrogenase 1C (ADH1C) genotype on vitamin A restriction and marbling in Korean native steers. Asian-Australasian journal of animal sciences, 30(8), 1099-1104. https://doi.org/10.5713/ajas.16.0708
  • Raza, S. H. A., Khan, S., Amjadi, M., Abdelnour, S. A., Ohran, H., Alanazi, K. M., El-Hack, M. E. A., Taha, A. E., Khan, R., Gang, C., Schreurs, N. M., Zhao, C., Wei, D., & Zan, L. (2020). Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Archives of Biochemistry and Biophysics, 694, 108543. DOI: https://doi.org/10.1016/j.abb.2020.108543
  • Rempel, L. A., Casas, E., Shackelford, S. D., & Wheeler, T. L. (2012). Relationship of polymorphisms within metabolic genes and carcass traits in crossbred beef cattle. Journal of Animal Science, 90(4), 1311-1316. DOI: https://doi.org/10.2527/jas.2011-4302
  • Ward, A. K., McKinnon, J. J., Hendrick, S., & Buchanan, F. C. (2012). The impact of vitamin A restriction and ADH1C genotype on marbling in feedlot steers1. Journal of Animal Science, 90(8), 2476–2483. DOI: https://doi.org/10.2527/jas.2011-4404
  • Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., & Mao, J. X. (1997) POPGENE, The user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada.
  • Zhou, Z., He, X., Liu, Y., Li, Q., Wang, P., An, Y., Di, R., Yang, Y., & Chu, M. (2023). Polymorphisms of Fatty Acid Synthase Gene and their Association with Milk Production Traits in Chinese Holstein Cows. Pakistan Journal of Zoology, 56(5): 2383-2389. DOI: https://dx.doi.org/10.17582/journal.pjz/20211006041035

Investigation on allele and genotype frequencies of ADH1C and FASN genes in three cattle breeds in Türkiye

Year 2025, Volume: 29 Issue: 1, 65 - 73
https://doi.org/10.29050/harranziraat.1571065

Abstract

Improvement of selection programs based on candidate genes for meat yield and quality is an efficient approach for overcoming the current dilemma between the increasing human population and the decreasing population size of farm animals. Being known to be associated with meat yield and quality in cattle, ADH1C and FASN genes were investigated across three cattle breeds reared in Türkiye namely East Anatolian Red (EAR), South Anatolian Yellow (SAY), and Holstein Friesian (HF) in this study. For this purpose, 37 animals per breed were genotyped via the allele-specific polymerase chain reaction (AS-PCR) technique. The distribution of allele frequencies significantly differed between HF and native Turkish breeds. C allele frequency ranged from 0.014 (EAR) to 0.311 (HF) while T allele frequency varied between 0.689 (HF) and 0.986 (EAR) in ADH1C polymorphism. C and T allele frequencies were calculated as 0.068 and 0.932, respectively, in SAY breed. G was the most frequent allele across all cattle breeds regarding FASN gene variation. The lowest (0.014) and highest (0.365) A allele frequency were detected in EAR and HF breeds, respectively, while G allele frequency ranged from 0.027 (EAR) to 0.635 (HF). Compared to native breeds, HF had a higher heterozygosity. A large part of the total genetic variation (67%) was attributed to differences within individuals. Variations of ADH1C and FASN genes turned out to be informative enough to distinguish native Anatolian cattle breeds from HF via genetic distance-based phylogenetic analysis. No animals with superior genotypes for the ADH1C and FASN genes were observed in EAR, while two animals with AA genotype were detected for the FASN gene in the SAY breed. These findings imply that for the time being, these genes do not seem efficient for marker-assisted selection (MAS) studies while desired genotypes may be developed via suitable mating programs for long-term production. Further studies may focus on screening native Turkish cattle breeds regarding other meat yield and quality-related traits to develop selection strategies.

References

  • by, B. A., Kantanen, J., Aass, L., & Meuwissen, T. (2014). Current status of livestock production in the Nordic countries and future challenges with a changing climate and human population growth. Acta Agriculturae Scandinavica, Section A—Animal Science, 64(2), 73-97. DOI: https://doi.org/10.1080/09064702.2014.950321
  • Bhuiyan, M. S. A., Yu, S. L., Jeon, J. T., Yoon, D., Cho, Y. M., Park, E. W., Kim, N. K., Kim, K. S., & Lee, J. H. (2009). DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Australasian Journal of Animal Sciences, 22(6), 765-773. DOI: https://doi.org/10.5713/ajas.2009.80573
  • Brito, L. F., Bédère, N., Douhard, F., Oliveira, H. R., Arnal, M., Peñagaricano, F., Schinckel, A. P., Baes, C. F., & Miglior, F. (2021). Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal, 15(s1), 100292. DOI: https://doi.org/10.1016/j.animal.2021.100292
  • Çobanoğlu, Ö., & Ardicli, S. (2022). Genetic variation at the OLR1, ANXA9, MYF5, LTF, IGF1, LGB, CSN3, PIT1, MBL1, CACNA2D1, and ABCG2 loci in Turkish Grey Steppe, Anatolian Black, and EastAnatolian Red cattle. Turkish Journal of Veterinary & Animal Sciences, 46(3), 494-504. DOI: https://doi.org/10.55730/1300-0128.4220
  • Demir, E., & Argun Karsli, B. (2024). Evaluation of MSTN gene polymorphisms in two Anatolian cattle breeds by AS-PCR. 12th International Summit Scientific Research Congress, (pp. 151-155), 29-31 May, Gaziantep, Türkiye.
  • Demir, E., & Balcioglu, M. S. (2019). Genetic diversity and population structure of four cattle breeds raised in Turkey using microsatellite markers. Czech Journal of Animal Science, 64(10), 411-419. DOI: https://doi.org/10.17221/62/2019-CJAS
  • Demir, E., Karsli, T., & Balcioğlu, M. S. (2021). A comprehensive review on genetic diversity and phylogenetic relationships among native Turkish cattle breeds based on microsatellite markers. Turkish Journal of Veterinary & Animal Sciences, 45(1), 1-10. DOI: https://doi.org/10.3906/vet-2006-107
  • Demir, E., Moravčíková, N., Karsli, T., & Kasarda, R. (2022). Future perspective of NGS data for evaluation of population genetic structure in Turkish cattle. Acta Fytotechnica et Zootechnica, 25(2), 117-121. DOI: https://doi.org/10.15414/afz.2022.25.02.117-121
  • Demir, E., Moravčíková, N., Kaya, S., Kasarda, R., Bilginer, Ü., Doğru, H., Balcıoğlu, M. S., & Karslı, T. (2023a). Genome‐wide screening for selection signatures in native and cosmopolitan cattle breeds reared in Türkiye. Animal Genetics, 54(6), 721-730. DOI: https://doi.org/10.1111/age.13361
  • Demir, E., Moravčíková, N., Kaya, S., Kasarda, R., Doğru, H., Bilginer, Ü., Balcioğlu, M. S. & Karsli, T. (2023b). Genome-wide genetic variation and population structure of native and cosmopolitan cattle breeds reared in Türkiye. Animal Biotechnology, 34(8), 3877-3886. DOI: https://doi.org/10.1080/10495398.2023.2235600
  • Eusebi, P. G., Martinez, A., & Cortes, O. (2019). Genomic tools for effective conservation of livestock breed diversity. Diversity, 12(1), 8. DOI: https://doi.org/10.3390/d12010008
  • Grigoletto, L., Ferraz, J. B., Oliveira, H. R., Eler, J. P., Bussiman, F. O., Abreu Silva, B. C., Baldi, F. & Brito, L. F. (2020). Genetic architecture of carcass and meat quality traits in Montana Tropical® composite beef cattle. Frontiers in genetics, 11, 123. DOI: https://doi.org/10.3389/fgene.2020.00123
  • Hozáková, K., Vavrišínová, K., Neirurerová, P., & Bujko, J. (2020). Growth of beef cattle as prediction for meat production: A review. Acta Fytotechnica et Zootechnica, 23(2), 58-69. DOI: https://doi.org/10.15414/afz.2020.23.02.58-69
  • Karayel, F., & Karslı, T. (2022). Genotypic structure of four cattle breeds raised in Turkey by loci related to several diseases. Mediterranean Agricultural Sciences, 35(1), 39-45. DOI: https://doi.org/10.29136/mediterranean.995382
  • Karslı, B. A. (2024). HSP90AB1 (SNP-4338T> C) gene polymorphism associated with thermo-tolerance in some cattle breeds in Türkiye. Mediterranean Agricultural Sciences, 37(1), 51-55. DOI: https://doi.org/10.29136/mediterranean.1408404
  • Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences, Briefing in Bioinformatics, 9, 299–306. DOI: https://doi.org/10.1093/bib/bbn017
  • Lee, W., Nam, I., Kim, D., Kim, K., & Lee, Y. (2022). Allele-specific polymerase chain reaction for the discrimination of elite Korean cattle associated with high beef quality and quantity. Archives Animal Breeding, 65(1), 47-53. DOI: https://doi.org/10.5194/aab-65-47-2022
  • Miller, S., Dykes, D. and Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215-1215.
  • Öner, Y., Yılmaz, O., Eriş, C., Ata, N., Ünal, C., & Koncagül, S. (2019). Genetic diversity and population structure of Turkish native cattle breeds. South African Journal of Animal Science, 49(4), 628-635. https://doi.org/10.4314/sajas.v49i4.4
  • Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 6(19), 2537-2539. DOI: https://doi.org/10.1093/bioinformatics/bts460
  • Peng, D. Q., Jung, U. S., Lee, J. S., Kim, W. S., Jo, Y. H., Kim, M. J., Oh, Y. K., Baek, Y. C., Hwang, S. G., & Lee, H. G. (2017). Effect of alcohol dehydrogenase 1C (ADH1C) genotype on vitamin A restriction and marbling in Korean native steers. Asian-Australasian journal of animal sciences, 30(8), 1099-1104. https://doi.org/10.5713/ajas.16.0708
  • Raza, S. H. A., Khan, S., Amjadi, M., Abdelnour, S. A., Ohran, H., Alanazi, K. M., El-Hack, M. E. A., Taha, A. E., Khan, R., Gang, C., Schreurs, N. M., Zhao, C., Wei, D., & Zan, L. (2020). Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Archives of Biochemistry and Biophysics, 694, 108543. DOI: https://doi.org/10.1016/j.abb.2020.108543
  • Rempel, L. A., Casas, E., Shackelford, S. D., & Wheeler, T. L. (2012). Relationship of polymorphisms within metabolic genes and carcass traits in crossbred beef cattle. Journal of Animal Science, 90(4), 1311-1316. DOI: https://doi.org/10.2527/jas.2011-4302
  • Ward, A. K., McKinnon, J. J., Hendrick, S., & Buchanan, F. C. (2012). The impact of vitamin A restriction and ADH1C genotype on marbling in feedlot steers1. Journal of Animal Science, 90(8), 2476–2483. DOI: https://doi.org/10.2527/jas.2011-4404
  • Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., & Mao, J. X. (1997) POPGENE, The user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada.
  • Zhou, Z., He, X., Liu, Y., Li, Q., Wang, P., An, Y., Di, R., Yang, Y., & Chu, M. (2023). Polymorphisms of Fatty Acid Synthase Gene and their Association with Milk Production Traits in Chinese Holstein Cows. Pakistan Journal of Zoology, 56(5): 2383-2389. DOI: https://dx.doi.org/10.17582/journal.pjz/20211006041035
There are 26 citations in total.

Details

Primary Language English
Subjects Animal Science, Genetics and Biostatistics
Journal Section Araştırma Makaleleri
Authors

Eymen Demir 0000-0003-4507-7426

Early Pub Date March 17, 2025
Publication Date
Submission Date October 21, 2024
Acceptance Date February 10, 2025
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Demir, E. (2025). Investigation on allele and genotype frequencies of ADH1C and FASN genes in three cattle breeds in Türkiye. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(1), 65-73. https://doi.org/10.29050/harranziraat.1571065

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.