Research Article
BibTex RIS Cite

Ağır metal içeren topraklarda kompost kullanımının ayçiçeği (Helianthus annuus L.) verimi ve bazı toprak enzim aktivitesine etkisi

Year 2025, Volume: 29 Issue: 2, 369 - 382, 16.06.2025
https://doi.org/10.29050/harranziraat.1658095

Abstract

Ağır metal birikimi topraklarda çevresel kirliliğe yol açmakta, toprak mikrobiyotasını olumsuz etkilemekte, bitki büyümesini ve gelişimini sınırlamaktadır. Bu çalışmada, yüksek ağır metal içeriğine sahip toprak koşullarında ayçiçeği (Helianthus annuus L.) büyümesi ve toprak enzim aktiviteleri üzerine farklı kompost dozlarının (0, %1.5, %3 ve %4.5) etkileri incelenmiştir. Deneme, üç tekerrürlü olarak gerçekleştirilmiş ve morfolojik bitki özellikleri (bitki boyu, boğum sayısı, kök uzunluğu, yaş ve kuru ağırlıklar) ile toprak enzim aktiviteleri (katalaz, üreaz, dehidrogenaz) analiz edilmiştir. Sonuçlar, kompost uygulamalarının hem bitki büyümesini hem de toprak enzim aktivitelerini önemli ölçüde etkilediğini göstermiştir. %1.5 kompost dozu, bitki boyu, kök uzunluğu ve yaş ile kuru ağırlıklar için en iyi sonuçları verirken, kök uzunluğu, boğum sayısı, kök ağırlıkları ve katalaz ile dehidrogenaz enzim aktiviteleri %4.5 kompost dozunda en yüksek seviyelere ulaşmıştır. Bu bulgular, kompostun ağır metal ile kirlenmiş topraklarda bitki büyümesini artırabileceğini ve toprak biyolojik aktivitelerini iyileştirebileceğini göstermektedir. Özellikle %1.5 kompost dozu bitki büyümesini teşvik ederken, %4.5 dozunun toprak enzim aktivitelerini artırdığı görülmüştür.

References

  • Abbadi, J., & Gerendás, J. (2011). Effects of phosphorus supply on growth, yield, and yield components of safflower and sunflower. Journal of Plant Nutrition, 34(12), 1769-1787. https://doi.org/10.1080/01904167.2011.600405
  • Abdella, A., Chandravanshi, B. S., & Yohannes, W. (2018). Levels of selected metals in coriander (Coriandrum sativum L.) leaves cultivated in four different areas of Ethiopia. Chemistry International, 4(3), 189-197.
  • Adeleke, B. S., & Babalola, O. O. (2020). Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Science & Nutrition, 8(9), 4666-4684. https://doi.org/10.1002/fsn3.1783
  • Adugna, G. (2016). A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4(3), 93–104. DOI: 10.14662/ARJASR2016.010
  • Afshan, S., Ahmad, S., Imran, M., Nawaz, R., Arshad, M., Dar, M. E. U. I., & Ali, L. (2019). Role of phosphorous mining in mobilization and bioaccessibility of heavy metals in soil-plant system: Abbottabad, Pakistan. Arabian Journal of Geosciences, 12(10), 319. https://doi.org/10.1007/s12517-019-4479-9
  • Allison, L. E., & Moodie, C. D. (1965). Carbonate. In A. G. Norman (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 1379–1396). American Society of Agronomy, Soil Science Society of America.
  • Beck, T. H. (1971). The determination of catalase activity in soils. Journal of Plant Nutrition and Soil Science, 130, 68– 81.
  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental pollution, 158(6), 2282-2287. https://doi.org/10.1016/j.envpol.2010.02.003
  • Białobrzewski, I., Mikš-Krajnik, M., Dach, J., Markowski, M., Czekała, W., & Głuchowska, K. (2015). Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Management, 43, 72-83. https://doi.org/10.1016/j.wasman.2015.05.036
  • Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49(6), 637-644. https://doi.org/10.1016/j.pedobi.2005.06.003
  • Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1, 1-11. http://www.chembioagro.com/content/1/1/3
  • Forde, B., Lorenzo, H. (2001). The nutritional control of root development. Plant and Soil, 232, 51–68.
  • Garcıa-Gil, J. C., Plaza, C., Soler-Rovira, P., & Polo, A. (2000). Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and biochemistry, 32(13), 1907-1913.https://doi.org/10.1016/S0038-0717(00)00165-6
  • Gregory, P. J. (2006). Roots, rhizosphere and soil: The route to a better understanding of soil science? European Journal of Soil Science, 57(1), 2–12. https://doi.org/10.1111/j.1365-2389.2005.00778.x
  • Irfan, M., Mudassir, M., Khan, M. J., Dawar, K. M., Muhammad, D., Mian, I. A., & Dewil, R. (2021). Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11(1), 18416. https://doi.org/10.1038/s41598-021-97525-8
  • Jackson, M. L. (1958). Soil chemical analysis (p. 498). Prentice-Hall, Inc, Englewood Cliffs.
  • Khelifi, F., Melki, A., Hamed, Y., Adamo, P., & Caporale, A. G. (2020). Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia. Environmental Geochemistry and Health, 42, 4125-4139. https://doi.org/10.1007/s10653-019-00434-z
  • Kostenkova, E. V., Bushnev, A. S., & Vasilko, V. P. (2019, October). The study of Helianthus annuus L. of domestic breeding in arid Crimea. In IOP Conference Series: Earth and Environmental Science (Vol. 341, No. 1, p. 012011). IOP Publishing. https://doi.org/10.1088/1755-1315/341/1/012011
  • Lakhdar, A., Scelza, R., Scotti, R., Rao, M. A., Jedidi, N., Gianfreda, L., & Abdelly, C. (2010). The effect of compost and sewage sludge on soil biologic activities in salt affected soil. Revista de la ciencia del suelo y nutrición vegetal, 10(1), 40-47. http://dx.doi.org/10.4067/S0718-27912010000100005
  • Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., & Luo, Y. (2017). Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, 181, 281-288. https://doi.org/10.1016/j.chemosphere.2017.04.081
  • Lima, A. T., Mitchell, K., O’Connell, D. W., Verhoeven, J., & Van Cappellen, P. (2016). The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environmental Science & Policy, 66, 227-233. https://doi.org/10.1016/j.envsci.2016.07.011
  • Lu, D., Wang, L., Yan, B., Ou, Y., Guan, J., Bian, Y., & Zhang, Y. (2014). Speciation of Cu and Zn during composting of pig manure amended with rock phosphate. Waste management, 34(8), 1529-1536. https://doi.org/10.1016/j.wasman.2014.04.008
  • Lwin, C. S., Seo, B. H., Kim, H. U., Owens, G., & Kim, K. R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil science and plant nutrition, 64(2), 156-167. https://doi.org/10.1080/00380768.2018.1440938
  • Mello Prado, R. D., & Moreira Leal, R. (2006). Desordens nutricionais por deficiência em girassol var. Catissol-01. Pesquisa Agropecuária Tropical, 36(3), 187-193.
  • Moreno-Espíndola, I. P., Ferrara-Guerrero, M. J., Luna-Guido, M. L., Ramírez-Villanueva, D. A., De León-Lorenzana, A. S., Gómez-Acata, S., & Dendooven, L. (2018). The bacterial community structure and microbial activity in a traditional organic milpa farming system under different soil moisture conditions. Frontiers in microbiology, 9, 2737. https://doi.org/10.3389/fmicb.2018.02737
  • Nelson, D. W., & Sommer, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis (2nd ed., pp. 539–579). ASA Monograph, 9(2). American Society of Agronomy. https://doi.org/10.2134/agronmo nogr9.2.2ed.c29
  • Nwamezie, O. U. I. F. (2018). Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and their antibacterial activity evaluation. Chemistry International, 4(1), 60.
  • Ramazanoglu, E. (2024). Effects of vermicompost application on plant growth and soil enzyme activity in wheat (Triticum aestivum L.) monitored by thermal imaging. Cogent Food & Agriculture, 10(1), 2373872. https://doi.org/10.1080/23311932.2024.2373872
  • Reta, G., Dong, X., Li, Z., Su, B., Hu, X., Bo, H., & Xu, S. (2018). Environmental impact of phosphate mining and beneficiation: review. International Journal of Hydrology, 2(4), 424-431.
  • Sadozai, G. U., Farhad, M., Khan, M. A., Khan, E. A., Niamatullah, M., Baloch, M. S., & Wasim, K. (2013). Effect of different phosphorous levels on growth, yield and quality of spring planted sunflower. Pakistan Journal of Nutrition, 12(12), 1070.
  • Schoenberger, E. (2016). Environmentally sustainable mining: The case of tailings storage facilities. Resources Policy, 49, 119-128. https://doi.org/10.1016/j.resourpol.2016.04.009
  • Sezen, Y. (1995). Fertilizers and fertilization (2nd ed.). Atatürk University Publication No: 679. Erzurum.
  • Tabatabai, M. A. (1982). Soil enzymes. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 903–948). Agronomy No. 9. American Society of Agronomy, Soil Science Society of America.
  • Tabatabai, M. A., & Bremner J. M. (1972). Assay of Urease Activity in Soils. Soil Biology and Biochemistry, 4(4):479–87. https://doi.org/10.1016/0038-0717(72)90064-8.
  • Tang, L., Yang, G. D., Zeng, G. M., Cai, Y., Li, S. S., Zhou, Y. Y., & Luna, B. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114-122. https://doi.org/10.1016/j.cej.2013.10.104
  • Tartoura, K. A., Youssef, S. A., & Tartoura, E. S. A. (2014). Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regulation, 74, 299–310. https://doi.org/10.1007/s10725-014-9923-y
  • Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., & López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of Environmental Management, 90(8), 2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007
  • Tian, Y., Wang, Q., Zhang, W., Gao, L. (2016). Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems. Science of the Total Environment, 544, 251-261. https://doi.org/10.1016/j.scitotenv.2015.11.091
  • Union of Chambers of Turkish Engineers and Architects. (2006). Mazıdağı and the phosphate reality report. Ankara.
  • Uslu, Ö. S., Gedik, O., Kaya, A. R., Erol, A., Babur, E., Khan, H., Wasonga, D. O. (2025). Effects of different irrigation water sources contaminated with heavy metals on seed germination and seedling growth of different field crops. Water, 17(6), 892. https://doi.org/10.3390/w17060892
  • Uslu, O. S., Babur, E., Alma, M. H., Solaiman, Z. M. (2020). Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture, 10(10), 427. https://doi.org/10.3390/agriculture10100427
  • Zaman, M. M., Rahman, M. A., Chowdhury, T., & Chowdhury, M. A. H. (2018). Effects of combined application of chemical fertilizer and vermicompost on soil fertility, leaf yield and stevioside content of stevia. Journal of the Bangladesh Agricultural University, 16(1), 73-81. https://doi.org/10.3329/jbau.v16i1.36484

Effects of compost application on sunflower (Helianthus annuus L.) yield and some soil enzyme activities in heavy metal-contaminated soils

Year 2025, Volume: 29 Issue: 2, 369 - 382, 16.06.2025
https://doi.org/10.29050/harranziraat.1658095

Abstract

Heavy metal accumulation in soils causes environmental pollution, negatively affecting soil microbiota and limiting plant growth and development. This study investigated the effects of different compost doses (0, 1.5%, 3%, and 4.5%) on sunflower (Helianthus annuus L.) growth and soil enzyme activities under high heavy metal content soil conditions. The experiment was conducted with three replications, and morphological plant characteristics (plant height, number of nodes, root length, fresh and dry weights), and soil enzyme activities (catalase, urease, dehydrogenase), were analyzed. The results showed that compost applications significantly affected plant growth and soil enzyme activities. The 1.5% compost dose yielded the best results for plant height, root length, and fresh and dry weights, whereas root length, number of nodes, root weights, and catalase and dehydrogenase enzyme activities reached their highest levels at the 4.5% compost dose. These findings suggest that compost can enhance plant growth and improve soil biological activity in heavy metal-contaminated soils. Specifically, the 1.5% compost dose promoted plant growth, while the 4.5% dose increased soil enzyme activities.

References

  • Abbadi, J., & Gerendás, J. (2011). Effects of phosphorus supply on growth, yield, and yield components of safflower and sunflower. Journal of Plant Nutrition, 34(12), 1769-1787. https://doi.org/10.1080/01904167.2011.600405
  • Abdella, A., Chandravanshi, B. S., & Yohannes, W. (2018). Levels of selected metals in coriander (Coriandrum sativum L.) leaves cultivated in four different areas of Ethiopia. Chemistry International, 4(3), 189-197.
  • Adeleke, B. S., & Babalola, O. O. (2020). Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Science & Nutrition, 8(9), 4666-4684. https://doi.org/10.1002/fsn3.1783
  • Adugna, G. (2016). A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4(3), 93–104. DOI: 10.14662/ARJASR2016.010
  • Afshan, S., Ahmad, S., Imran, M., Nawaz, R., Arshad, M., Dar, M. E. U. I., & Ali, L. (2019). Role of phosphorous mining in mobilization and bioaccessibility of heavy metals in soil-plant system: Abbottabad, Pakistan. Arabian Journal of Geosciences, 12(10), 319. https://doi.org/10.1007/s12517-019-4479-9
  • Allison, L. E., & Moodie, C. D. (1965). Carbonate. In A. G. Norman (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 1379–1396). American Society of Agronomy, Soil Science Society of America.
  • Beck, T. H. (1971). The determination of catalase activity in soils. Journal of Plant Nutrition and Soil Science, 130, 68– 81.
  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental pollution, 158(6), 2282-2287. https://doi.org/10.1016/j.envpol.2010.02.003
  • Białobrzewski, I., Mikš-Krajnik, M., Dach, J., Markowski, M., Czekała, W., & Głuchowska, K. (2015). Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Management, 43, 72-83. https://doi.org/10.1016/j.wasman.2015.05.036
  • Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49(6), 637-644. https://doi.org/10.1016/j.pedobi.2005.06.003
  • Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1, 1-11. http://www.chembioagro.com/content/1/1/3
  • Forde, B., Lorenzo, H. (2001). The nutritional control of root development. Plant and Soil, 232, 51–68.
  • Garcıa-Gil, J. C., Plaza, C., Soler-Rovira, P., & Polo, A. (2000). Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and biochemistry, 32(13), 1907-1913.https://doi.org/10.1016/S0038-0717(00)00165-6
  • Gregory, P. J. (2006). Roots, rhizosphere and soil: The route to a better understanding of soil science? European Journal of Soil Science, 57(1), 2–12. https://doi.org/10.1111/j.1365-2389.2005.00778.x
  • Irfan, M., Mudassir, M., Khan, M. J., Dawar, K. M., Muhammad, D., Mian, I. A., & Dewil, R. (2021). Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11(1), 18416. https://doi.org/10.1038/s41598-021-97525-8
  • Jackson, M. L. (1958). Soil chemical analysis (p. 498). Prentice-Hall, Inc, Englewood Cliffs.
  • Khelifi, F., Melki, A., Hamed, Y., Adamo, P., & Caporale, A. G. (2020). Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia. Environmental Geochemistry and Health, 42, 4125-4139. https://doi.org/10.1007/s10653-019-00434-z
  • Kostenkova, E. V., Bushnev, A. S., & Vasilko, V. P. (2019, October). The study of Helianthus annuus L. of domestic breeding in arid Crimea. In IOP Conference Series: Earth and Environmental Science (Vol. 341, No. 1, p. 012011). IOP Publishing. https://doi.org/10.1088/1755-1315/341/1/012011
  • Lakhdar, A., Scelza, R., Scotti, R., Rao, M. A., Jedidi, N., Gianfreda, L., & Abdelly, C. (2010). The effect of compost and sewage sludge on soil biologic activities in salt affected soil. Revista de la ciencia del suelo y nutrición vegetal, 10(1), 40-47. http://dx.doi.org/10.4067/S0718-27912010000100005
  • Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., & Luo, Y. (2017). Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, 181, 281-288. https://doi.org/10.1016/j.chemosphere.2017.04.081
  • Lima, A. T., Mitchell, K., O’Connell, D. W., Verhoeven, J., & Van Cappellen, P. (2016). The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environmental Science & Policy, 66, 227-233. https://doi.org/10.1016/j.envsci.2016.07.011
  • Lu, D., Wang, L., Yan, B., Ou, Y., Guan, J., Bian, Y., & Zhang, Y. (2014). Speciation of Cu and Zn during composting of pig manure amended with rock phosphate. Waste management, 34(8), 1529-1536. https://doi.org/10.1016/j.wasman.2014.04.008
  • Lwin, C. S., Seo, B. H., Kim, H. U., Owens, G., & Kim, K. R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil science and plant nutrition, 64(2), 156-167. https://doi.org/10.1080/00380768.2018.1440938
  • Mello Prado, R. D., & Moreira Leal, R. (2006). Desordens nutricionais por deficiência em girassol var. Catissol-01. Pesquisa Agropecuária Tropical, 36(3), 187-193.
  • Moreno-Espíndola, I. P., Ferrara-Guerrero, M. J., Luna-Guido, M. L., Ramírez-Villanueva, D. A., De León-Lorenzana, A. S., Gómez-Acata, S., & Dendooven, L. (2018). The bacterial community structure and microbial activity in a traditional organic milpa farming system under different soil moisture conditions. Frontiers in microbiology, 9, 2737. https://doi.org/10.3389/fmicb.2018.02737
  • Nelson, D. W., & Sommer, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis (2nd ed., pp. 539–579). ASA Monograph, 9(2). American Society of Agronomy. https://doi.org/10.2134/agronmo nogr9.2.2ed.c29
  • Nwamezie, O. U. I. F. (2018). Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and their antibacterial activity evaluation. Chemistry International, 4(1), 60.
  • Ramazanoglu, E. (2024). Effects of vermicompost application on plant growth and soil enzyme activity in wheat (Triticum aestivum L.) monitored by thermal imaging. Cogent Food & Agriculture, 10(1), 2373872. https://doi.org/10.1080/23311932.2024.2373872
  • Reta, G., Dong, X., Li, Z., Su, B., Hu, X., Bo, H., & Xu, S. (2018). Environmental impact of phosphate mining and beneficiation: review. International Journal of Hydrology, 2(4), 424-431.
  • Sadozai, G. U., Farhad, M., Khan, M. A., Khan, E. A., Niamatullah, M., Baloch, M. S., & Wasim, K. (2013). Effect of different phosphorous levels on growth, yield and quality of spring planted sunflower. Pakistan Journal of Nutrition, 12(12), 1070.
  • Schoenberger, E. (2016). Environmentally sustainable mining: The case of tailings storage facilities. Resources Policy, 49, 119-128. https://doi.org/10.1016/j.resourpol.2016.04.009
  • Sezen, Y. (1995). Fertilizers and fertilization (2nd ed.). Atatürk University Publication No: 679. Erzurum.
  • Tabatabai, M. A. (1982). Soil enzymes. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 903–948). Agronomy No. 9. American Society of Agronomy, Soil Science Society of America.
  • Tabatabai, M. A., & Bremner J. M. (1972). Assay of Urease Activity in Soils. Soil Biology and Biochemistry, 4(4):479–87. https://doi.org/10.1016/0038-0717(72)90064-8.
  • Tang, L., Yang, G. D., Zeng, G. M., Cai, Y., Li, S. S., Zhou, Y. Y., & Luna, B. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114-122. https://doi.org/10.1016/j.cej.2013.10.104
  • Tartoura, K. A., Youssef, S. A., & Tartoura, E. S. A. (2014). Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regulation, 74, 299–310. https://doi.org/10.1007/s10725-014-9923-y
  • Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., & López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of Environmental Management, 90(8), 2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007
  • Tian, Y., Wang, Q., Zhang, W., Gao, L. (2016). Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems. Science of the Total Environment, 544, 251-261. https://doi.org/10.1016/j.scitotenv.2015.11.091
  • Union of Chambers of Turkish Engineers and Architects. (2006). Mazıdağı and the phosphate reality report. Ankara.
  • Uslu, Ö. S., Gedik, O., Kaya, A. R., Erol, A., Babur, E., Khan, H., Wasonga, D. O. (2025). Effects of different irrigation water sources contaminated with heavy metals on seed germination and seedling growth of different field crops. Water, 17(6), 892. https://doi.org/10.3390/w17060892
  • Uslu, O. S., Babur, E., Alma, M. H., Solaiman, Z. M. (2020). Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture, 10(10), 427. https://doi.org/10.3390/agriculture10100427
  • Zaman, M. M., Rahman, M. A., Chowdhury, T., & Chowdhury, M. A. H. (2018). Effects of combined application of chemical fertilizer and vermicompost on soil fertility, leaf yield and stevioside content of stevia. Journal of the Bangladesh Agricultural University, 16(1), 73-81. https://doi.org/10.3329/jbau.v16i1.36484
There are 42 citations in total.

Details

Primary Language English
Subjects Soil Biology
Journal Section Araştırma Makaleleri
Authors

Zemzem Firat 0000-0003-4549-9389

Suat Cun 0000-0001-6607-8263

Emrah Ramazanoglu 0000-0002-7921-5703

Early Pub Date June 11, 2025
Publication Date June 16, 2025
Submission Date March 14, 2025
Acceptance Date June 2, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Firat, Z., Cun, S., & Ramazanoglu, E. (2025). Effects of compost application on sunflower (Helianthus annuus L.) yield and some soil enzyme activities in heavy metal-contaminated soils. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(2), 369-382. https://doi.org/10.29050/harranziraat.1658095

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.