Research Article
BibTex RIS Cite

Effects of biochar applications on plant development parameters in durum wheat (Triticum durum Desf.) under salinity stress

Year 2025, Volume: 29 Issue: 3, 438 - 447, 24.09.2025
https://doi.org/10.29050/harranziraat.1598601

Abstract

Salt stress, which is one of the abiotic stress factors, is one of the important environmental stress that adversely affect plant growth and development in arid and semi-arid regions. In this study, the role of the use of different biochar sources in reducing the negative effects of salt stress was investigated. The research was carried out using petri dishes in the climate room of Harran University Faculty of Agriculture. In this study, the effect of four different biochar (BC) sources (cotton stalk (CS), corn cob (CC), olive pulp (OP) and tobacco stalk (TS)) and 6 different doses of sodium chloride (NaCl) application (0, 25, 50, 75, 100 ve 125 mM) on seed germination rate, root growth and shoot growth in durum wheat (Triticum durum Desf.) was investigated. An experiment was conducted using 9 cm-diam petri dishes in incubator condition. When the results are examined; Increased salt (NaCl) concentration in non-biochar (control) and four different biochar source applications reduces seed germination rate. In without biochar application, the highest seed germination rate, root length, root weight, shoot length and shoot weight were measured as 62.22%, 1.76 cm, 0.31 g, 2.39 cm, and 0.49 g, respectively. In with biochar application, the highest germination rate was obtained as 97.78% at TS NaCI 75 mM dose, root length was 11.58 cm at TS NaCI 50 mM dose, root weight was 0.84 g at TS NaCI 50 mM dose, shoot length was 8.64 cm at TS NaCI 0 mM dose, and shoot weight was 1.67 g at CC NaCI 0 mM dose. It is found that with biochar application significantly increased germination rate and root development under saline conditions. It was concluded that biochar can be used as a remedial agent in salt affected soils.

References

  • Akhtar, S. S., Andersen, M. N. & Liu, F. (2015a). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Sciences, 201, 368–378. DOI: https://doi.org/10.1111/jac.12132.
  • Akhtar, S. S., Andersen, M. N. & Liu, F. (2015b). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68. DOI: https://doi.org/10.1016/j.agwat.2015.04.010
  • Almutairi, A. A., Ahmad, M., Rafique, M. I. & Al-Wabel, M. I. (2022). Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature, Journal of the Saudi Society of Agricultural Sciences, 22, 25-34. DOI: https://doi.org/10.1016/j.jssas.2022.05.005
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77. DOI: https://doi.org/10.1016/j.plaphy.2020.08.042
  • Begum, F., Karmoker, J.L., Fattah Q.A. & Maniruzzaman, A.F.M. (1992). The effect of salinity on germination and its correlation with K, Na, Cl accumulation in germinating seeds of Triticum aestivum cv. Akbar. Plant Cell Physiology, 33, 1009-1014. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a078324
  • Bratovcic, A. (2022). Positive Aspects of Nanotechnology on Agricultural Sustainable Development: Application of Nanoparticles and Fibers for Increasing Agricultural Yield. International Journal of Agriculture and Environmental Research, 8, 780-798. DOI: https://doi.org/10.51193/ijaer.2022.8606
  • Bray, J.R. (1963). Root production and the estimation of net productivity. Canadian Journal of Botany, 41(1), 65-72. DOI: https://doi.org/10.1139/b63-007
  • Dirik, K. Ö., Saygılı, İ., Özkurt, M. & Sakin, M. A. (2020). Bazı Yerel Ekmeklik Buğday (Triticum aestivum L.) Genotiplerinin Erken Gelişme Dönemindeki Tuz Stresine Toleransının İncelenmesi. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 8(3), 688-693. DOI: https://doi.org/10.24925/turjaf.v8i3.688-693.3192
  • FAO (2024). Food and Agriculture Organization (FAO). (2024). Statistical database. Erişim adresi: DOI: http://www.fao.org/faostat
  • Gaskin, J.W. Steiner, C., Harris, K., Das, K.C. & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069. DOI: http://dx.doi.org/10.13031/2013.25409
  • Hopmans, J.W., Qureshi, A.S., Kisekka, I., Munns, R., Grattan, S.R. & Rengasamy, P. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances Agronomy. 169, 1–191. DOI: https://doi.org/10.1016/bs.agron.2021.03.001
  • Ippolito, J.A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J.M., Fuertes- Mendizabal, T., Cayuela, M.L., Sigua, G., Novak, J. & Spokas, K. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2, 421–438. DOI: https://doi.org/10.1007/s42773-020-00067-x
  • Irshad, M., Yamamoto, S., Eneji, A.E., Endo, T. & Hona, T. (2002). Urea and Manure Effect on Growth and Mineral Contents of Maize Under Saline Conditions, Journal of Plant Nutrition, 25(1), 189- 200. DOI: https://doi.org/10.1081/PLN-100108790
  • Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., Batool, N. & Mazhar, R. (2018). Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 41(4), 526-538, DOI: https://doi.org/10.1080/01904167.2017.1392568
  • Koyro, H.W., Lieth, H. & Eisa, S. S. (2008). Salt tolerance of Chenopodium quinoa Willd, grains of the Andes, influence of salinity on biomass production, yield, composition of reserves in the seeds, water and solute relations. In: Lieth, H., Sucre, M.G., Herzog, B. (eds) Mangroves and Halophytes, Restoration and Utilisation. Tasks for Vegetation Sciences. Vol. 43. Dordrecht: DOI: https://doi.org/10.1007/978-1-4020-6720-4_13
  • Kraamwinkel, C. T., Beaulieu, A., Dias, T. & Howison, R. A. (2021). Toprak bozulmasının gezegensel sınırları. İletişim, Dünya ve Çevre, 2(1), 249. DOI: https://doi.org/10.1038/s43247‐021‐00323‐3
  • Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., Zheng, J., Zheng, J., Zhang, X. & Yu., X. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113–118. DOI: https://doi.org/10.1016/j.fcr.2012.11.015
  • Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., Zheng, J. & Pan. G. (2014). Biochar-manure compost inconjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a salinesoil from central China: A 2-year field experiment. Journal of the Science of Food and Agriculture, 95 (6), 1321–1327. DOI: https://doi.org/10.1002/jsfa.6825
  • Lehmann, J. & Joseph, S. (2009). Biochar for environmental management: An introduction. In Biochar for environmental management: Science and technology, eds. J. Lehmann and S. Joseph, 1–12. London: Earthscan.
  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and Environment, 5 (7), 381-387. DOI: https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
  • Lehmann, J., Rillig, M. C. Thies, J., Masiello, C. A., Hockaday, W. C. & Crowley, D. (2011). Biochar effects on soil biota. Soil Biology and Biochemistry, 43 (9), 1812–1836. DOI: https://doi.org/10.1016/j.soilbio.2011.04.022
  • Li, S.M. & Chen, G. (2018). Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Managament. 78, 198–207. DOI: https://doi.org/10.1016/j.wasman.2018.05.048
  • Majeed, A. & Muhammad, Z. (2019). Salinity: A Major Agricultural Problem—Causes, Impacts on Crop Productivity and Management Strategies. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-06118-0_3
  • Major, J. (2009). Aguidetoconductingbiochartrials—International Biochar Initiative. 1-30, (www.biochar-international.org).
  • Morrison, D.A. & Morris, E.C. (2000). Pseudoreplication in experi mental designs for the manipulation of seed germination treatments. Austral Ecology, 25, 292–296. DOI: https://doi.org/10.1046/j.1442-9993.2000.01025.x
  • Mukherjee. A., Zimmerman, A.R. & Harris,W.G. (2011). Surface chemistry variations among a series of laboratory-producedbiochars. Geoderma, 163, 247–255. DOI: https://doi.org/10.1016/j.geoderma.2011.04.021
  • Munns R, James, R.A. & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043. DOI: https://doi.org/10.1093/jxb/erj100
  • OECD (1984). Terrestrial plant test: seedling emergence and seedling growth test. OECD Guidelines for testing of chemicals 208. OECD, Paris.
  • Oh, T. K., Choi, B., Shinogi, Y. & Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air and Soil Pollution, 223(7), 3729-3738. DOI: https://doi.org/10.1007/s11270-012-1144-2
  • Sidari, M., Santonoceto, C., Anastasi, U., Preiti, G. & Muscolo, A. (2008). Variations in four genotypes of lentil under NaCl-salinity stress. American Journal of Agriculture and Biological Science, 3, 410-416. DOI: https://doi.org/10.3844/ajabssp.2008.410.416
  • Solaiman, Z. M., Murphy, D. V. & Abbott, L. K. (2012). Biochars influence seed germination and early growth of seedlings. Plant and Soil, 353, 273–287. DOI: https://doi.org/10.1007/s11104-011-1031-4
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hua, X. & Gu, Y. (2015). Application of biochar for the removal of pollutants from aqueous. Chemosphere, 125, 70-85. DOI: https://doi.org/10.1016/j.chemosphere.2014.12.058
  • Thomas, S. C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A. & Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, 62–68. DOI: http://dx.doi.org/10.1016/j.jenvman.2013.05.057
  • TMSD, (2022). Türkiye Makarna Sanayicileri Derneği / Resmi internet sayfası https://www.makarna.org.tr/anasayfa (Erişim tarihi: 02.02.2022).
  • TUİK, (2024). Türkiye İstatistik Kurumu. http://www.tuik.gov.tr
  • Wahid, A., Perveen, M., Gelania, S. & Basra, S.M.A. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology, 164, 283-294. DOI: https://doi.org/10.1016/j.jplph.2006.01.005
  • Zörb, C., Geilfus, C.M, Dietz, K.J. (2019). Salinity and crop yield. Plant Biology, 21, 31-38. DOI: https://doi.org/10.1111/plb.12884

Biyokömür (Biochar) uygulamalarının tuzluluk stresi altında durum buğdayında (Triticum durum Desf.) bitki gelişim parametrelerine etkileri

Year 2025, Volume: 29 Issue: 3, 438 - 447, 24.09.2025
https://doi.org/10.29050/harranziraat.1598601

Abstract

Tuz stresi, kurak ve yarı kurak bölgelerde bitkilerde büyüme ve gelişmeyi olumsuz yönde etkileyen abiyotik stres faktörlerinden biridir. Dört farklı bitkisel artık kullanılarak (pamuk sapı (PS), mısır koçanı (MK), zeytin posası (ZP), tütün sapı (TS)) 300 °C piroliz sıcaklığında biyokömürler elde edilmiştir. Bu çalışma da, durum buğdayında (Triticum durum Desf.) dört farklı biyokömür örneği ve 6 farklı tuz (NaCl) dozu uygulanmasının (0, 25, 50, 75, 100 ve 125 mM) çimlenme oranı, kök gelişimi ve sürgün gelişimi üzerinde tuz stresinin olumsuz etkilerini azaltmadaki rolü incelenmiştir. Deneme petri kablarında tesadüf parselleri deneme deseninde 3 tekerrürlü olarak iklim odasında yürütülmüştür. Biyokömürsüz (kontrol) ve dört farklı biyokömür uygulamalarında tuz (NaCl) konsantrasyonu artması tohum çimlenme oranını azaltmıştır. Kontrol uygulamalarında en yüksek çimlenme oranı (%), kök uzunluğu (cm), kök ağırlığı (g), sürgün uzunluğu (cm), sürgün ağırlığı (g) sırasıyla %62.22, 1.76 cm, 0.31 g, 2.39 cm ve 0.49 g olarak ölçülmüştür. Biyokömür uygulamalarında ise en yüksek çimlenme oranı TS NaCI 75 mM dozunda %97.78 olarak gözlenmiştir. Sürgün uzunluğunda en yüksek değer TS NaCI 0 mM dozunda 8.64 cm olarak gözlenmiştir. En yüksek kök uzunluğu TS NaCI 50 mM dozunda 11.58 cm’dir. Artan tuz konsantrasyonları her bir uygulamada sürgün ve kök taze ağırlıklarını olumsuz yönde etkilemiştir. En yüksek değerler sürgün ağırlığı MK NaCI 0 mM dozunda 1.67 g ve kök ağırlığı TS NaCI 50 mM dozunda 0.84 g gözlenmiştir. Sonuç olarak, biyokömür uygulaması tuzlu koşullar altında çimlenme oranı ve kök gelişimini önemli ölçüde artırmaktadır. Tuzdan etkilenen topraklarda biyokömürün iyileştirici olarak kullanılabileceği sonucuna varılmıştır.

References

  • Akhtar, S. S., Andersen, M. N. & Liu, F. (2015a). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Sciences, 201, 368–378. DOI: https://doi.org/10.1111/jac.12132.
  • Akhtar, S. S., Andersen, M. N. & Liu, F. (2015b). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68. DOI: https://doi.org/10.1016/j.agwat.2015.04.010
  • Almutairi, A. A., Ahmad, M., Rafique, M. I. & Al-Wabel, M. I. (2022). Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature, Journal of the Saudi Society of Agricultural Sciences, 22, 25-34. DOI: https://doi.org/10.1016/j.jssas.2022.05.005
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77. DOI: https://doi.org/10.1016/j.plaphy.2020.08.042
  • Begum, F., Karmoker, J.L., Fattah Q.A. & Maniruzzaman, A.F.M. (1992). The effect of salinity on germination and its correlation with K, Na, Cl accumulation in germinating seeds of Triticum aestivum cv. Akbar. Plant Cell Physiology, 33, 1009-1014. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a078324
  • Bratovcic, A. (2022). Positive Aspects of Nanotechnology on Agricultural Sustainable Development: Application of Nanoparticles and Fibers for Increasing Agricultural Yield. International Journal of Agriculture and Environmental Research, 8, 780-798. DOI: https://doi.org/10.51193/ijaer.2022.8606
  • Bray, J.R. (1963). Root production and the estimation of net productivity. Canadian Journal of Botany, 41(1), 65-72. DOI: https://doi.org/10.1139/b63-007
  • Dirik, K. Ö., Saygılı, İ., Özkurt, M. & Sakin, M. A. (2020). Bazı Yerel Ekmeklik Buğday (Triticum aestivum L.) Genotiplerinin Erken Gelişme Dönemindeki Tuz Stresine Toleransının İncelenmesi. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 8(3), 688-693. DOI: https://doi.org/10.24925/turjaf.v8i3.688-693.3192
  • FAO (2024). Food and Agriculture Organization (FAO). (2024). Statistical database. Erişim adresi: DOI: http://www.fao.org/faostat
  • Gaskin, J.W. Steiner, C., Harris, K., Das, K.C. & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069. DOI: http://dx.doi.org/10.13031/2013.25409
  • Hopmans, J.W., Qureshi, A.S., Kisekka, I., Munns, R., Grattan, S.R. & Rengasamy, P. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances Agronomy. 169, 1–191. DOI: https://doi.org/10.1016/bs.agron.2021.03.001
  • Ippolito, J.A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J.M., Fuertes- Mendizabal, T., Cayuela, M.L., Sigua, G., Novak, J. & Spokas, K. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2, 421–438. DOI: https://doi.org/10.1007/s42773-020-00067-x
  • Irshad, M., Yamamoto, S., Eneji, A.E., Endo, T. & Hona, T. (2002). Urea and Manure Effect on Growth and Mineral Contents of Maize Under Saline Conditions, Journal of Plant Nutrition, 25(1), 189- 200. DOI: https://doi.org/10.1081/PLN-100108790
  • Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., Batool, N. & Mazhar, R. (2018). Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 41(4), 526-538, DOI: https://doi.org/10.1080/01904167.2017.1392568
  • Koyro, H.W., Lieth, H. & Eisa, S. S. (2008). Salt tolerance of Chenopodium quinoa Willd, grains of the Andes, influence of salinity on biomass production, yield, composition of reserves in the seeds, water and solute relations. In: Lieth, H., Sucre, M.G., Herzog, B. (eds) Mangroves and Halophytes, Restoration and Utilisation. Tasks for Vegetation Sciences. Vol. 43. Dordrecht: DOI: https://doi.org/10.1007/978-1-4020-6720-4_13
  • Kraamwinkel, C. T., Beaulieu, A., Dias, T. & Howison, R. A. (2021). Toprak bozulmasının gezegensel sınırları. İletişim, Dünya ve Çevre, 2(1), 249. DOI: https://doi.org/10.1038/s43247‐021‐00323‐3
  • Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., Zheng, J., Zheng, J., Zhang, X. & Yu., X. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113–118. DOI: https://doi.org/10.1016/j.fcr.2012.11.015
  • Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., Zheng, J. & Pan. G. (2014). Biochar-manure compost inconjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a salinesoil from central China: A 2-year field experiment. Journal of the Science of Food and Agriculture, 95 (6), 1321–1327. DOI: https://doi.org/10.1002/jsfa.6825
  • Lehmann, J. & Joseph, S. (2009). Biochar for environmental management: An introduction. In Biochar for environmental management: Science and technology, eds. J. Lehmann and S. Joseph, 1–12. London: Earthscan.
  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and Environment, 5 (7), 381-387. DOI: https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
  • Lehmann, J., Rillig, M. C. Thies, J., Masiello, C. A., Hockaday, W. C. & Crowley, D. (2011). Biochar effects on soil biota. Soil Biology and Biochemistry, 43 (9), 1812–1836. DOI: https://doi.org/10.1016/j.soilbio.2011.04.022
  • Li, S.M. & Chen, G. (2018). Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Managament. 78, 198–207. DOI: https://doi.org/10.1016/j.wasman.2018.05.048
  • Majeed, A. & Muhammad, Z. (2019). Salinity: A Major Agricultural Problem—Causes, Impacts on Crop Productivity and Management Strategies. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-06118-0_3
  • Major, J. (2009). Aguidetoconductingbiochartrials—International Biochar Initiative. 1-30, (www.biochar-international.org).
  • Morrison, D.A. & Morris, E.C. (2000). Pseudoreplication in experi mental designs for the manipulation of seed germination treatments. Austral Ecology, 25, 292–296. DOI: https://doi.org/10.1046/j.1442-9993.2000.01025.x
  • Mukherjee. A., Zimmerman, A.R. & Harris,W.G. (2011). Surface chemistry variations among a series of laboratory-producedbiochars. Geoderma, 163, 247–255. DOI: https://doi.org/10.1016/j.geoderma.2011.04.021
  • Munns R, James, R.A. & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043. DOI: https://doi.org/10.1093/jxb/erj100
  • OECD (1984). Terrestrial plant test: seedling emergence and seedling growth test. OECD Guidelines for testing of chemicals 208. OECD, Paris.
  • Oh, T. K., Choi, B., Shinogi, Y. & Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air and Soil Pollution, 223(7), 3729-3738. DOI: https://doi.org/10.1007/s11270-012-1144-2
  • Sidari, M., Santonoceto, C., Anastasi, U., Preiti, G. & Muscolo, A. (2008). Variations in four genotypes of lentil under NaCl-salinity stress. American Journal of Agriculture and Biological Science, 3, 410-416. DOI: https://doi.org/10.3844/ajabssp.2008.410.416
  • Solaiman, Z. M., Murphy, D. V. & Abbott, L. K. (2012). Biochars influence seed germination and early growth of seedlings. Plant and Soil, 353, 273–287. DOI: https://doi.org/10.1007/s11104-011-1031-4
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hua, X. & Gu, Y. (2015). Application of biochar for the removal of pollutants from aqueous. Chemosphere, 125, 70-85. DOI: https://doi.org/10.1016/j.chemosphere.2014.12.058
  • Thomas, S. C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A. & Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, 62–68. DOI: http://dx.doi.org/10.1016/j.jenvman.2013.05.057
  • TMSD, (2022). Türkiye Makarna Sanayicileri Derneği / Resmi internet sayfası https://www.makarna.org.tr/anasayfa (Erişim tarihi: 02.02.2022).
  • TUİK, (2024). Türkiye İstatistik Kurumu. http://www.tuik.gov.tr
  • Wahid, A., Perveen, M., Gelania, S. & Basra, S.M.A. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology, 164, 283-294. DOI: https://doi.org/10.1016/j.jplph.2006.01.005
  • Zörb, C., Geilfus, C.M, Dietz, K.J. (2019). Salinity and crop yield. Plant Biology, 21, 31-38. DOI: https://doi.org/10.1111/plb.12884
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Plant Nutrition and Soil Fertility
Journal Section Araştırma Makaleleri
Authors

Ebru Pinar Sayğan 0000-0001-8249-7759

Salih Aydemir 0000-0002-3236-8438

Ali Bilgili 0000-0002-4727-8283

Early Pub Date September 23, 2025
Publication Date September 24, 2025
Submission Date December 9, 2024
Acceptance Date July 11, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Sayğan, E. P., Aydemir, S., & Bilgili, A. (2025). Biyokömür (Biochar) uygulamalarının tuzluluk stresi altında durum buğdayında (Triticum durum Desf.) bitki gelişim parametrelerine etkileri. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(3), 438-447. https://doi.org/10.29050/harranziraat.1598601

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.