Research Article
BibTex RIS Cite

Türkiye ve Kuzey Irak'ın bazı bölgelerinde yetişen Tribulus terrestris L.'nin biyolojik aktivitelerinin araştırılması

Year 2025, Volume: 29 Issue: 3, 383 - 395, 24.09.2025
https://doi.org/10.29050/harranziraat.1657116

Abstract

Bu çalışmada, Tribulus terrestris kök ekstraktları verim yüzdesini, toplam yoğunlaştırılmış tanen konsantrasyonunu, antimikrobiyal ve antioksidan aktivitelerini bulmak ve ayrıca fenolik bileşenlerinin tanımlanması ve miktarlarının belirlenmesi için kullanılmıştır. Metanol, etanol ve suyun çözücü olarak kullanıldığı mikrodalga ekstraksiyonu (ME), konveksiyon ekstraksiyonu (CE) ve hızlandırılmış çözücü ekstraksiyonu (ASE) gibi çeşitli ekstraksiyon teknikleri kullanılmıştır. Toplam yoğunlaştırılmış tanen konsantrasyonu ve antioksidan kapasitesi, 580 nm ve 517 nm 'de UV-görünür spektroskopisi kullanılarak değerlendirilmiştir. Antimikrobiyal aktiviteyi belirlemek için disk difüzyon yöntemi kullanılmıştır. Fenolik bileşikleri tanımlamak ve miktarlarını belirlemek için LC-MS/MS kullanılmıştır. ASE tekniği, metanol kullanıldığında en yüksek ekstraksiyon verimliliğini (% 12.06) verirken, geleneksel ekstraksiyon tekniği en düşük ekstraksiyon verimliliğini (%6.60) sağlamıştır. TT kökündeki toplam yoğunlaştırılmış tanen konsantrasyonunun üçlü olarak ölçülmesiyle ortalama değeri 10.83 mg/L olarak bulunmuştur. ME tekniği kullanılarak elde edilen metanol özütü Micrococcus luteus LA2971'e karşı en büyük inhibitör zonu (19.33 mm) gösterdi. ASE tekniği metanol özütü ile en yüksek radikal temizleme aktivitesini (DPPH) üretirken, CE tekniği etanol özütünde en düşük DPPH temizleme aktivitesini gösterdi. Etanol özütü BHT'den daha fazla DPPH temizleme kapasitesine sahiptir. En yüksek ve en düşük fenolik bileşik miktarları LC-MS/MS kullanılarak sırasıyla Vanilin (125 µg/g) ve klorojenik asit (1.46 µg/g) olarak belirlendi. Ayrıca, sonuçlar hesperidin'in (10.79 µg/g) ve kuersetinin (0.16 µg/g) sırasıyla en yüksek ve en düşük flavonoid miktarlarına sahip olduğunu gösterdi.

Project Number

2014/2-56 YLS

References

  • Abirami, P., & Rajendran, A. (2011). GC–MS Analysis of Tribulus terrestris. L. Asian Journal of Plant Science and Research, 1(4): 13–16.
  • Alanís-Garza, B. A., González-González, G. M., Salazar-Aranda, R., de Torres, N. W., & Rivas-Galindo, V. M. (2007). Screening of antifungal activity of plants from the northeast of Mexico. Journal of Ethnopharmacology, 114(3), 468-471.
  • AL-Bayati, F.A., AL-Mola, H.F. (2008). Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. Journal Zhejiang University Science B, 9 (2): 154–159.
  • Ali, S. T., Ali, S. K., Subhan, S. A., Wahab, A., Baloch, M. N., Abbas, T., & Perwaiz, S. (2015). GC-MS Analysis and Antimicrobial Screening of Non-Polar Fraction of Tribulus Terrestris. International Journal, 3(3), 921-924.
  • Anokwuru, C.P., Anyasor, G.N., Ajibaye, O., Fakoya, O., Okebugwu P., 2011. Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three Nigerian medicinal plants. Nature and Science, 9(7): 53–61.
  • Baburao, B., Rajyalakshmi, G., Venkatesham, A., Kiran, G., Shyamsunder, A., & Gangarao, B. (2009). Anti-inflammatory and antimicrobial activities of methanolic extract of Tribulus terrestris Linn plant. International Journal of Chemical Science, 7(3), 1867-1872.
  • Banerjee, S. K., & Bonde, C. G. (2011). Total phenolic content and antioxidant activity of extracts of Bridelia retusa Spreng Bark: Impact of dielectric constant and geographical location. Journal of Medicinal Plants Research, 5(5), 817-22.
  • Chatha, S. A. S., Anwar, F., & Manzoor, M. (2006). Evaluation of the antioxidant activity of rice bran extracts using different antioxidant assays. Grasas y aceites, 57(3), 328-335.
  • Comlekcioglu, N., Efe, L., & Karaman, S. (2013). Comparison of different extraction methods for the determination of indican precursor from four Isatis spp. by HPLC-UV. European journal of behavioral sciences, 7(1), 21-26.
  • Crozier, A., Jensen, E., Lean, M. E., & McDonald, M. S. (1997). Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 761(1-2), 315-321.
  • Dastagir, G., Hussain, F., & Khan, A. A. (2012). Antibacterial activity of some selected plants of family Zygophyllaceae and Euphorbiaceae. Journal of medicinal plants research, 6(40), 5360-5368.
  • Digrak, M., Alma, M. H., & Ilçim, A. (2001). Antibacterial and antifungal activities of Turkish medicinal plants. Pharmaceutical Biology, 39(5), 346-350.
  • Duraipandiyan, V., & Ignacimuthu, S. (2011). Antifungal activity of traditional medicinal plants from Tamil Nadu, India. Asian Pacific Journal of Tropical Biomedicine, 1(2), S204-S215.
  • Ertas, A., Boga, M., Yilmaz, M. A., Yesil, Y., Tel, G., Temel, H., & Ugurlu, P. (2015). A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Industrial Crops and Products, 67, 336-345.
  • Fitzgerald, D. J., Stratford, M., Gasson, M. J., & Narbad, A. (2005). Structure− function analysis of the vanillin molecule and its antifungal properties. Journal of agricultural and food chemistry, 53(5), 1769-1775.
  • Gomathi, S., Shanmugapriya, A., Bharathi, V., Gayathri, G., & Karpagam, T. (2012). Antimicrobial activity and phytochemical studies of aqueous and ethanolic fruit extracts of Tribulus terrestris. IJPI’S Journal of Pharmacognosy and Herbal Formulations, 2(8), 47-51.
  • Göçeri, A., Demirtaş, İ., Alma, M. H., Adem, Ş., Kasra, Z. A., Gül, F., & Uzun, A. (2022). Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen. Grasas y Aceites, 73(1), e450-e450.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Hammoda, H. M., Ghazy, N. M., Harraz, F. M., Radwan, M. M., ElSohly, M. A., & Abdallah, I. I. (2013). Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry, 92, 153-159.
  • Hsu, B., Coupar, I. M., & Ng, K. (2006). Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica. Food chemistry, 98(2), 317-328.
  • Ivanova, A., Lazarova, I., Mechkarova, P., & Tchorbanov, B. (2010). HPLC method for screening of steroidal saponins and rutin as biologically active compounds in Tribulus terrestris L. Biotechnology & Biotechnological Equipment, 24(sup1), 129-133.
  • Jindal, A. L. K. A., Kumar, P. A. D. M. A., & Singh, G. E. E. T. A. (2012). In vitro antimicrobial activity of Tribulus terrestris L. L. International Journal Pharmacy Pharmaceutical Sciences, 4(3), 566-8.
  • Kasim, L. S., Ferro, V. A., Odukoya, O. A., Ukpo, G. E., Seidel, V., Gray, A. I., & Waigh, R. (2011). Evaluation of cytotoxic and antimicrobial activities of Struchium sparganophora (Linn.) Ktze Asteraceae. Journal of Medicinal Plants Research, 5(6), 862-867.
  • Kianbakht, S., & Jahaniani, F. (2003). Evaluation of antibacterial activity of Tribulus terrestris L. growing in Iran.
  • Kotzekidou, P., Giannakidis, P., & Boulamatsis, A. (2008). Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT-Food Science and Technology, 41(1), 119-127.
  • Laghari, A. Q., Memon, S., Nelofar, A., & Laghari, A. H. (2011). Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. American Journal of Analytical Chemistry, 2(08), 871.
  • Majeed, S. H., & Mahmood, M. J. (1988). Herbs and medicinal plants in Iraq between traditional medicine and scientific research. Baghdad: Dar Al-Thaowra for Publishing, pp40.
  • Makkar, H. P. S., Blümmel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73(6), 897-913.
  • Mishra, R. O. J. I. T. A., & Bisht, S. S. (2012). Characterization of few medicinal plants from southern Orissa for their free radical scavenging property. International Journal of Pharma and Bio Science, 3(4), 669-675.
  • Mitra, N., Mohammad-Mehdi, D., & Reza, Z. M. (2012). Tribulus terrestris L.(Zygophyllaceae) flavonoid compounds. International Journal of Modern Botany, 2(3), 35-39.
  • Mohammed, M. J. (2008). Biological activity of saponins isolated from Tribulus terrestris (fruit) on growth of some bacteria. Tikrit Journal of Pure Science, 13(3), 1-4.
  • Mohammed, M. M., Shaddad, S. A. I., Mudathir, A. E., Elsharif, B. A., & Algasem, A. A. (2013). Effects of Tribulus terrestris ethanolic extract in male rats & cocks fertility. Journal of Pharmaceutical and Biomedical Sciences, 30(30): 13–18.
  • Moniharapon, E., & Hashinaga, F. (2004). Antimicrobial activity of atung (Parinarium glaberrimum Hassk) fruit extract. Pakistan Journal of Biological Sciences, 7(6): 1057–1061.
  • Parekh, J., Jadeja, D., & Chanda, S. (2005). Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish Journal of Biology, 29(4), 203-210.
  • Pietrzak, W., Nowak, R., & Olech, M. (2014). Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis. Chemical Papers, 68, 976-982.
  • Rasul, M. A., Göçeri, A., Sofi, S. A., Alma, M. H., Kireçci, E., & Yılmaz, M. A. (2024). Investigation of Chemical Composition and Biological Activity of Salix aegyptiaca L. Roots. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1237-1248.
  • Reshma, P. L., Lekshmi, V. S., Sankar, V., & Raghu, K. G. (2015). Tribulus terrestris (Linn.) attenuates cellular alterations induced by ischemia in H9c2 cells via antioxidant potential. Phytotherapy research, 29(6), 933-943.
  • Robbins, M. P., Bavage, A. D., Strudwicke, C., & Morris, P. (1998). Genetic manipulation of condensed tannins in higher plants: II. Analysis of birdsfoot trefoil plants harboring antisense dihydroflavonol reductase constructs. Plant Physiology, 116(3), 1133-1144.
  • Rodriguez, V. L., & Davoudian, T. (2016). Clinical measurement of pain, opioid addiction, and functional status. Treating Comorbid Opioid Use Disorder in Chronic Pain, 47-56.
  • Saad, Aldein., & S.M., 1986. Medicinal Herbs, 1st Ed. Dar AlShoun Al-Thaqafia Al-Aama for Publishing, Baghdad, p.70 (in Arabic).
  • Sanjeeva, K.A., Rama Rao, B.V., Narendra, Y., Madhusudana, R.G., Venkata, K.S.N., & Raghuveer, R. (2011). Proximate analysis and comparative in vitro antimicrobial and anthelminitic activities of different parts of Tribulus terrestris Linn. International Journal of Pharmaceutical Research and Development, 3(8): 37–44.
  • Saurabh Chhatre, S. C., Tanuja Nesari, T. N., Gauresh Somani, G. S., Divya Kanchan, D. K., & Sadhana Sathaye, S.S. (2014). Phytopharmacological overview of Tribulus terrestris.
  • Sebata, A., Ngongoni, N. T., Mupangwa, J. F., Nyakudya, I. W., & Dube, J.S. (2005). Chemical composition and degradation characteristics of puncture vine (Tribulus terrestris). Tropical and Subtropical Agroecosystems, 5(2), 85-89.
  • Shabir, G., Anwar, F., Sultana, B., Khalid, Z. M., Afzal, M., Khan, Q. M., & Ashrafuzzaman, M. (2011). Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules, 16(9), 7302-7319.
  • Shankar, S. R., Rangarajan, R., Sarada, D. V. L., & Kumar, C. S. (2010). Evaluation of antibacterial activity and phytochemical screening of Wrightia tinctoria L. Pharmacognosy Journal, 2(14), 19-22.
  • Singh, M., Singh, N., Khare, P. B., & Rawat, A. K. S. (2008). Antimicrobial activity of some important Adiantum species used traditionally in indigenous systems of medicine. Journal of ethnopharmacology, 115(2), 327-329.
  • Soleimanpour, S., Sedighinia, F. S., Afshar, A. S., Zarif, R., & Ghazvini, K. (2015). Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study. Avicenna journal of phytomedicine, 5(3), 210.
  • Stanković, N., Mihajilov-Krstev, T., Zlatković, B., Stankov-Jovanović, V., Mitić, V., Jović, J., & Bernstein, N. (2016). Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS-Wageningen Journal of Life Sciences, 78, 21-28.
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2020). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
  • Taslimi, P., Caglayan, C., & Gulcin, İ. (2017). The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α‐glycosidase enzymes: An antidiabetic, anticholinergic, and antiepileptic study. Journal of biochemical and molecular toxicology, 31(12), e21995.
  • Tian, C., Chang, Y., Zhang, Z., Wang, H., Xiao, S., Cui, C., & Liu, M. (2019). Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 5(8).
  • Upadhyay, R. K., Dwivedi, P., & Ahmad, S. (2010). Screening of antibacterial activity of six plant essential oils against pathogenic bacterial strains. Asian Journal of Medical Sciences, 2(3), 152-8.
  • Usman, H., Abdulrahman, F. I., & Ladan, A. H. (2007). Phytochemical and antimicrobial evaluation of Tribulus terrestris L.(Zygophylaceae). Growing in Nigeria. Research journal of biological sciences. Medwell Journals, 2(3), 244-247..
  • Vaghasiya, Y. K., Nair, R., Soni, M., Baluja, S., & Shanda, S. (2004). Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. Journal of the Serbian Chemical Society, 69(12), 991-998.
  • Zhang, J. D., Xu, Z., Cao, Y. B., Chen, H. S., Yan, L., An, M. M., ... & Jiang, Y. Y. (2006). Antifungal activities and action mechanisms of compounds from Tribulus terrestris L. Journal of ethnopharmacology, 103(1), 76-84.
  • Zhang, M., Liu, W. X., Zheng, M. F., Xu, Q. L., Wan, F. H., Wang, J., ... & Tan, J. W. (2013). Bioactive quinic acid derivatives from Ageratina adenophora. Molecules, 18(11), 14096-14104.
  • Zheleva-Dimitrova, D., Obreshkova, D., & Nedialkov, P. (2012). Antioxidant activity of Tribulus terrestris-a natural product in infertility therapy. International Journal of Pharmacy and Pharmaceutical Sciences, 4(4), 508-511.
  • Zou, Y. F., Zhang, B. Z., Barsett, H., Inngjerdingen, K. T., Diallo, D., Michaelsen, T. E., & Paulsen, B. S. (2014). Complement fixing polysaccharides from Terminalia macroptera root bark, stem bark and leaves. Molecules, 19(6), 7440-7458.

Comparative analysis of extraction techniques and biological activities of the root of Tribulus terrestris L. grown in Northern Iraq

Year 2025, Volume: 29 Issue: 3, 383 - 395, 24.09.2025
https://doi.org/10.29050/harranziraat.1657116

Abstract

Tribulus terrestris root extracts were used in this study to find the yield percentage, total condensed tannins concentration, anti-microbial and antioxidant activities, as well as to identify and quantify phenolics components. A variety of extraction techniques such as microwave extraction (ME), convection extraction (CE), and accelerated solvent extraction (ASE) were employed, with methanol, ethanol and water used as solvents. The total condensed tannin concentration and antioxidant capacity were evaluated using UV-visible spectroscopy at 580 nm and 517 nm, respectively. Antimicrobial activity was determined by disc diffusion method. The LC-MS/MS was used to identify and quantify phenolic compounds. The ASE technique yielded the highest extraction efficiency (12.06%) when using methanol, while the conventional extraction technique yielded the lowest extraction efficiency (6.60%). The average total condensed tannin concentration in the TT root, measured by triplicate, was 10.83 mg/L. The methanol extract obtained using the ME technique exhibited the largest inhibitory zone (19.33 mm) against Micrococcus luteus LA2971. The ASE technique produced the highest radical scavenging activity (DPPH) with the methanol extract, while the CE technique showed the lowest DPPH scavenging activity in the ethanol extract. The ethanol extract had a greater capacity to scavenge DPPH than BHT. The highest and the lowest amounts of phenolic compounds were identified by using LC-MS/MS as Vanillin (125 µg/g) and chlorogenic acid (1.46 µg/g), respectively. Furthermore, the results demonstrated that hesperidin (10.79 µg/g), and quercetin (0.16 µg/g) had the highest and lowest quantities of flavonoids, respectively.

Supporting Institution

Kahramanmaraş Sütçü İmam University

Project Number

2014/2-56 YLS

References

  • Abirami, P., & Rajendran, A. (2011). GC–MS Analysis of Tribulus terrestris. L. Asian Journal of Plant Science and Research, 1(4): 13–16.
  • Alanís-Garza, B. A., González-González, G. M., Salazar-Aranda, R., de Torres, N. W., & Rivas-Galindo, V. M. (2007). Screening of antifungal activity of plants from the northeast of Mexico. Journal of Ethnopharmacology, 114(3), 468-471.
  • AL-Bayati, F.A., AL-Mola, H.F. (2008). Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. Journal Zhejiang University Science B, 9 (2): 154–159.
  • Ali, S. T., Ali, S. K., Subhan, S. A., Wahab, A., Baloch, M. N., Abbas, T., & Perwaiz, S. (2015). GC-MS Analysis and Antimicrobial Screening of Non-Polar Fraction of Tribulus Terrestris. International Journal, 3(3), 921-924.
  • Anokwuru, C.P., Anyasor, G.N., Ajibaye, O., Fakoya, O., Okebugwu P., 2011. Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three Nigerian medicinal plants. Nature and Science, 9(7): 53–61.
  • Baburao, B., Rajyalakshmi, G., Venkatesham, A., Kiran, G., Shyamsunder, A., & Gangarao, B. (2009). Anti-inflammatory and antimicrobial activities of methanolic extract of Tribulus terrestris Linn plant. International Journal of Chemical Science, 7(3), 1867-1872.
  • Banerjee, S. K., & Bonde, C. G. (2011). Total phenolic content and antioxidant activity of extracts of Bridelia retusa Spreng Bark: Impact of dielectric constant and geographical location. Journal of Medicinal Plants Research, 5(5), 817-22.
  • Chatha, S. A. S., Anwar, F., & Manzoor, M. (2006). Evaluation of the antioxidant activity of rice bran extracts using different antioxidant assays. Grasas y aceites, 57(3), 328-335.
  • Comlekcioglu, N., Efe, L., & Karaman, S. (2013). Comparison of different extraction methods for the determination of indican precursor from four Isatis spp. by HPLC-UV. European journal of behavioral sciences, 7(1), 21-26.
  • Crozier, A., Jensen, E., Lean, M. E., & McDonald, M. S. (1997). Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 761(1-2), 315-321.
  • Dastagir, G., Hussain, F., & Khan, A. A. (2012). Antibacterial activity of some selected plants of family Zygophyllaceae and Euphorbiaceae. Journal of medicinal plants research, 6(40), 5360-5368.
  • Digrak, M., Alma, M. H., & Ilçim, A. (2001). Antibacterial and antifungal activities of Turkish medicinal plants. Pharmaceutical Biology, 39(5), 346-350.
  • Duraipandiyan, V., & Ignacimuthu, S. (2011). Antifungal activity of traditional medicinal plants from Tamil Nadu, India. Asian Pacific Journal of Tropical Biomedicine, 1(2), S204-S215.
  • Ertas, A., Boga, M., Yilmaz, M. A., Yesil, Y., Tel, G., Temel, H., & Ugurlu, P. (2015). A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Industrial Crops and Products, 67, 336-345.
  • Fitzgerald, D. J., Stratford, M., Gasson, M. J., & Narbad, A. (2005). Structure− function analysis of the vanillin molecule and its antifungal properties. Journal of agricultural and food chemistry, 53(5), 1769-1775.
  • Gomathi, S., Shanmugapriya, A., Bharathi, V., Gayathri, G., & Karpagam, T. (2012). Antimicrobial activity and phytochemical studies of aqueous and ethanolic fruit extracts of Tribulus terrestris. IJPI’S Journal of Pharmacognosy and Herbal Formulations, 2(8), 47-51.
  • Göçeri, A., Demirtaş, İ., Alma, M. H., Adem, Ş., Kasra, Z. A., Gül, F., & Uzun, A. (2022). Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen. Grasas y Aceites, 73(1), e450-e450.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Hammoda, H. M., Ghazy, N. M., Harraz, F. M., Radwan, M. M., ElSohly, M. A., & Abdallah, I. I. (2013). Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry, 92, 153-159.
  • Hsu, B., Coupar, I. M., & Ng, K. (2006). Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica. Food chemistry, 98(2), 317-328.
  • Ivanova, A., Lazarova, I., Mechkarova, P., & Tchorbanov, B. (2010). HPLC method for screening of steroidal saponins and rutin as biologically active compounds in Tribulus terrestris L. Biotechnology & Biotechnological Equipment, 24(sup1), 129-133.
  • Jindal, A. L. K. A., Kumar, P. A. D. M. A., & Singh, G. E. E. T. A. (2012). In vitro antimicrobial activity of Tribulus terrestris L. L. International Journal Pharmacy Pharmaceutical Sciences, 4(3), 566-8.
  • Kasim, L. S., Ferro, V. A., Odukoya, O. A., Ukpo, G. E., Seidel, V., Gray, A. I., & Waigh, R. (2011). Evaluation of cytotoxic and antimicrobial activities of Struchium sparganophora (Linn.) Ktze Asteraceae. Journal of Medicinal Plants Research, 5(6), 862-867.
  • Kianbakht, S., & Jahaniani, F. (2003). Evaluation of antibacterial activity of Tribulus terrestris L. growing in Iran.
  • Kotzekidou, P., Giannakidis, P., & Boulamatsis, A. (2008). Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT-Food Science and Technology, 41(1), 119-127.
  • Laghari, A. Q., Memon, S., Nelofar, A., & Laghari, A. H. (2011). Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. American Journal of Analytical Chemistry, 2(08), 871.
  • Majeed, S. H., & Mahmood, M. J. (1988). Herbs and medicinal plants in Iraq between traditional medicine and scientific research. Baghdad: Dar Al-Thaowra for Publishing, pp40.
  • Makkar, H. P. S., Blümmel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73(6), 897-913.
  • Mishra, R. O. J. I. T. A., & Bisht, S. S. (2012). Characterization of few medicinal plants from southern Orissa for their free radical scavenging property. International Journal of Pharma and Bio Science, 3(4), 669-675.
  • Mitra, N., Mohammad-Mehdi, D., & Reza, Z. M. (2012). Tribulus terrestris L.(Zygophyllaceae) flavonoid compounds. International Journal of Modern Botany, 2(3), 35-39.
  • Mohammed, M. J. (2008). Biological activity of saponins isolated from Tribulus terrestris (fruit) on growth of some bacteria. Tikrit Journal of Pure Science, 13(3), 1-4.
  • Mohammed, M. M., Shaddad, S. A. I., Mudathir, A. E., Elsharif, B. A., & Algasem, A. A. (2013). Effects of Tribulus terrestris ethanolic extract in male rats & cocks fertility. Journal of Pharmaceutical and Biomedical Sciences, 30(30): 13–18.
  • Moniharapon, E., & Hashinaga, F. (2004). Antimicrobial activity of atung (Parinarium glaberrimum Hassk) fruit extract. Pakistan Journal of Biological Sciences, 7(6): 1057–1061.
  • Parekh, J., Jadeja, D., & Chanda, S. (2005). Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish Journal of Biology, 29(4), 203-210.
  • Pietrzak, W., Nowak, R., & Olech, M. (2014). Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis. Chemical Papers, 68, 976-982.
  • Rasul, M. A., Göçeri, A., Sofi, S. A., Alma, M. H., Kireçci, E., & Yılmaz, M. A. (2024). Investigation of Chemical Composition and Biological Activity of Salix aegyptiaca L. Roots. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1237-1248.
  • Reshma, P. L., Lekshmi, V. S., Sankar, V., & Raghu, K. G. (2015). Tribulus terrestris (Linn.) attenuates cellular alterations induced by ischemia in H9c2 cells via antioxidant potential. Phytotherapy research, 29(6), 933-943.
  • Robbins, M. P., Bavage, A. D., Strudwicke, C., & Morris, P. (1998). Genetic manipulation of condensed tannins in higher plants: II. Analysis of birdsfoot trefoil plants harboring antisense dihydroflavonol reductase constructs. Plant Physiology, 116(3), 1133-1144.
  • Rodriguez, V. L., & Davoudian, T. (2016). Clinical measurement of pain, opioid addiction, and functional status. Treating Comorbid Opioid Use Disorder in Chronic Pain, 47-56.
  • Saad, Aldein., & S.M., 1986. Medicinal Herbs, 1st Ed. Dar AlShoun Al-Thaqafia Al-Aama for Publishing, Baghdad, p.70 (in Arabic).
  • Sanjeeva, K.A., Rama Rao, B.V., Narendra, Y., Madhusudana, R.G., Venkata, K.S.N., & Raghuveer, R. (2011). Proximate analysis and comparative in vitro antimicrobial and anthelminitic activities of different parts of Tribulus terrestris Linn. International Journal of Pharmaceutical Research and Development, 3(8): 37–44.
  • Saurabh Chhatre, S. C., Tanuja Nesari, T. N., Gauresh Somani, G. S., Divya Kanchan, D. K., & Sadhana Sathaye, S.S. (2014). Phytopharmacological overview of Tribulus terrestris.
  • Sebata, A., Ngongoni, N. T., Mupangwa, J. F., Nyakudya, I. W., & Dube, J.S. (2005). Chemical composition and degradation characteristics of puncture vine (Tribulus terrestris). Tropical and Subtropical Agroecosystems, 5(2), 85-89.
  • Shabir, G., Anwar, F., Sultana, B., Khalid, Z. M., Afzal, M., Khan, Q. M., & Ashrafuzzaman, M. (2011). Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules, 16(9), 7302-7319.
  • Shankar, S. R., Rangarajan, R., Sarada, D. V. L., & Kumar, C. S. (2010). Evaluation of antibacterial activity and phytochemical screening of Wrightia tinctoria L. Pharmacognosy Journal, 2(14), 19-22.
  • Singh, M., Singh, N., Khare, P. B., & Rawat, A. K. S. (2008). Antimicrobial activity of some important Adiantum species used traditionally in indigenous systems of medicine. Journal of ethnopharmacology, 115(2), 327-329.
  • Soleimanpour, S., Sedighinia, F. S., Afshar, A. S., Zarif, R., & Ghazvini, K. (2015). Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study. Avicenna journal of phytomedicine, 5(3), 210.
  • Stanković, N., Mihajilov-Krstev, T., Zlatković, B., Stankov-Jovanović, V., Mitić, V., Jović, J., & Bernstein, N. (2016). Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS-Wageningen Journal of Life Sciences, 78, 21-28.
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2020). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
  • Taslimi, P., Caglayan, C., & Gulcin, İ. (2017). The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α‐glycosidase enzymes: An antidiabetic, anticholinergic, and antiepileptic study. Journal of biochemical and molecular toxicology, 31(12), e21995.
  • Tian, C., Chang, Y., Zhang, Z., Wang, H., Xiao, S., Cui, C., & Liu, M. (2019). Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 5(8).
  • Upadhyay, R. K., Dwivedi, P., & Ahmad, S. (2010). Screening of antibacterial activity of six plant essential oils against pathogenic bacterial strains. Asian Journal of Medical Sciences, 2(3), 152-8.
  • Usman, H., Abdulrahman, F. I., & Ladan, A. H. (2007). Phytochemical and antimicrobial evaluation of Tribulus terrestris L.(Zygophylaceae). Growing in Nigeria. Research journal of biological sciences. Medwell Journals, 2(3), 244-247..
  • Vaghasiya, Y. K., Nair, R., Soni, M., Baluja, S., & Shanda, S. (2004). Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. Journal of the Serbian Chemical Society, 69(12), 991-998.
  • Zhang, J. D., Xu, Z., Cao, Y. B., Chen, H. S., Yan, L., An, M. M., ... & Jiang, Y. Y. (2006). Antifungal activities and action mechanisms of compounds from Tribulus terrestris L. Journal of ethnopharmacology, 103(1), 76-84.
  • Zhang, M., Liu, W. X., Zheng, M. F., Xu, Q. L., Wan, F. H., Wang, J., ... & Tan, J. W. (2013). Bioactive quinic acid derivatives from Ageratina adenophora. Molecules, 18(11), 14096-14104.
  • Zheleva-Dimitrova, D., Obreshkova, D., & Nedialkov, P. (2012). Antioxidant activity of Tribulus terrestris-a natural product in infertility therapy. International Journal of Pharmacy and Pharmaceutical Sciences, 4(4), 508-511.
  • Zou, Y. F., Zhang, B. Z., Barsett, H., Inngjerdingen, K. T., Diallo, D., Michaelsen, T. E., & Paulsen, B. S. (2014). Complement fixing polysaccharides from Terminalia macroptera root bark, stem bark and leaves. Molecules, 19(6), 7440-7458.
There are 58 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Araştırma Makaleleri
Authors

Shno Abdalqadir Sofi 0009-0001-5596-3141

Ali Göçeri 0000-0002-1218-6696

Maaroof Abdalrahman Rasul 0009-0003-9241-957X

Eyyüp Karaoğul 0000-0001-8162-6838

Mehmet Hakkı Alma 0000-0001-6323-7230

Ekrem Kireçci 0000-0001-9446-8584

Mustafa Abdullah Yılmaz 0000-0002-4090-7227

Project Number 2014/2-56 YLS
Early Pub Date September 23, 2025
Publication Date September 24, 2025
Submission Date March 15, 2025
Acceptance Date June 13, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Sofi, S. A., Göçeri, A., Rasul, M. A., … Karaoğul, E. (2025). Comparative analysis of extraction techniques and biological activities of the root of Tribulus terrestris L. grown in Northern Iraq. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(3), 383-395. https://doi.org/10.29050/harranziraat.1657116

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.