Research Article
BibTex RIS Cite

Studies on biology, ecology and control of Amaranthus retroflexus populations from Türkiye

Year 2025, Volume: 29 Issue: 3, 448 - 457, 24.09.2025
https://doi.org/10.29050/harranziraat.1665841

Abstract

Amaranthus retroflexus (L.) is one among the most common weeds that invade different cropping systems in Turkiye. This study investigated seed germination response of A. retroflexus to various environmental factors such as temperature, sodium chloride concentrations, light conditions, pH, osmotic stress and soil burial depth. Additionally, this research also investigated the potential of various post-emergence herbicides to control A. retroflexus. The germination test at the start of the experiments showed that seeds were non-dormant and viable, with 98% germination within three days. The highest germination percentage (98%) of A. retroflexus was achieved at a temperature of 25°C. Salinity exerted significantly negative effect on the germination and no seed germinated at 200 mM sodium chloride concentration. Similarly, osmotic potential also inhibited germination significantly and germination percentage was 18% or lower at -0.4 MPa or higher osmatic potential. Meanwhile, light had no significant effect on germination, and a soil depth of 0-4 cm was found as the most suitable for emergence of A. retroflexus. Among the post-emergence herbicides, clopyralid and 2,4-D proved the most effective to control A. retroflexus.

References

  • Ahmad, T. & Jabran, K., 2025. Inter-and intra-specific competition of potato with four common weed species and their impact on tuber yield. Potato Research, https://doi.org/10.1007/s11540-025-09879-5.
  • Ahmad, T., Jabran, K., Cheema, Z. A., Bajwa, A. A., & Farooq, M. (2023). A global perspective of education in weed science. Weed Science, 71, 536-548.
  • Amini, R., Alizadeh, H., & Yousefi, A. (2014). Interference between red kidney bean (Phaseolus vulgaris L.) cultivars and redroot pigweed (Amaranthus retroflexus L.). European Journal of Agronomy, 60, 13-21.
  • Batlla, D., & Benech‐Arnold, R. L. (2014). Weed seed germination and the light environment: Implications for weed management. Weed Biology and Management, 14, 77-87.
  • Bensch, C. N., Horak, M. J., & Peterson, D. (2003). Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Science, 51, 37-43.
  • CABI. (2021). Amaranthus retroflexus (redroot pigweed). CABI Compendium, 4652. CABI Head Office, Wallingford, UK. https://doi.org/10.1079/cabicompendium.4652
  • Chauhan, B. S. (2012). Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technology, 26, 1-13.
  • Chauhan, B. S., & Johnson, D. E. (2010). The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy, 105, 221-262.
  • Costea, M., Weaver, S. E., & Tardif, F. J. (2004). The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson, and A. hybridus L. Canadian Journal of Plant Science, 84, 631-668.
  • Desai, H. S., Menalled, F., Gaines, T. A., & Shergill, L. S. (2025). Ecological, evolutionary, and management implications of sugarbeet cropping systems with three transgenic herbicide resistance traits. Weed Science, 1-31. https://doi.org/10.1017/wsc.2025.10
  • Dudic, M., Meseldzija, M., Ljevnaic-Masic, B., Rajkovic, M., Markovic, T., Begovic, R., Jurisic, A., & Ivanovic, I. (2020). Weed composition and control in apple orchards under intensive and extensive floor management. Chilean Journal of Agricultural Research, 80, 546-560.
  • Ghorbani, R., Seel, W., & Leifert, C. (1999). Effects of environmental factors on germination and emergence of Amaranthus retroflexus. Weed Science, 47, 505-510.
  • Guzmán-Ortiz, F. A., Castro-Rosas, J., Gómez-Aldapa, C. A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M. L., Falfán-Cortés, R. N., & Román-Gutiérrez, A. D. (2019). Enzyme activity during germination of different cereals: A review. Food Reviews International, 35, 177-200.
  • Iamonico, D. (2010). Biology, life-strategy, and invasiveness of Amaranthus retroflexus L. (Amaranthaceae) in central Italy: Preliminary remarks. Botanica Serbica, 34, 137-145.
  • Kahramanoglu, I. (2014). Assessment of pre-planting Pendimethalin’s minimum dose on redroot pigweed (Amaranthus retroflexus L.). International Journal of Agricultural Sciences, 4, 210-213.
  • Kaur, R., Rogers, R., Lawrence, N. C., Shi, Y., Chahal, P. S., Knezevic, S. Z. & Jhala, A.J. (2024). Effect of herbicide programs on control and seed production of multiple herbicide–resistant Palmer amaranth (Amaranthus palmeri) in corn resistant to 2, 4-D/glufosinate/glyphosate. Weed Technology, 38, e37.
  • Khan, A. M., Mobli, A., Werth, J. A., & Chauhan, B. S. (2021). Effect of emergence time on growth and fecundity of redroot pigweed (Amaranthus retroflexus) and slender amaranth (Amaranthus viridis): Emerging problem weeds in Australian summer crops. Weed Science, 69, 333-340.
  • Li, C., Li, Y., Xu, Z., Zhu, M., Wei, Y., Xu, Z., Zhong, S., Wang, C., & Du, D. (2024). Invasive Amaranthus retroflexus obtains a competitive advantage over native A. tricolor under the addition of A. retroflexus leaf litter. Ecological Research. https://doi.org/10.1111/1440-1703.12539
  • Lu, P., Pang, Y., Wang, H. J., Zhang, Z. H., Dai, X., Bing, X. W., & Yuan, Q. Y. (2024). Asymmetric effects of planting pattern and density on leaf-height traits of Glycine max and Amaranthus retroflexus. Journal of Plant Ecology, 17, rtae101.
  • Mandak, B., Zákravský, P., Dostál, P., & Plačková, I. (2011). Population genetic structure of the noxious weed Amaranthus retroflexus in Central Europe. Flora - Morphology, Distribution, Functional Ecology of Plants, 206, 697-703.
  • Nikolic, N., Ghirardelli, A., Schiavon, M., & Masin, R. (2023). Effects of the salinity-temperature interaction on seed germination and early seedling development: A comparative study of crop and weed species. BMC Plant Biology, 23, 446.
  • Qasem, J. R. (2018). Competition of redroot pigweed (Amaranthus retroflexus L.) and nettle-leaved goosefoot (Chenopodium murale L.) with tomato (Lycopersicon esculentum Mill.) cultivars. The Journal of Horticultural Science and Biotechnology, 93, 634-643.
  • Qin, Z., Zhang, J. E., Jiang, Y. P., Wei, H., Wang, F. G., & Lu, X. N. (2018). Invasion process and potential spread of Amaranthus retroflexus in China. Weed Research, 58, 57-67.
  • Safavi, M., Rezvani, M., Zaefarian, F., Golmohammadzadeh, S., & Sindel, B. M. (2023). Seed germination requirements of Amaranthus retroflexus L. populations exposed to environmental factors. Botany, 101, 99-111.
  • Sauer, J. D. (1967). The grain amaranths and their relatives: A revised taxonomic and geographic survey. Annals of the Missouri Botanical Garden, 54, 103-137.
  • Siddiqui, A. O., & Jabran, K. (2025). Weed tolerance and suppressive ability of potato cultivars to natural weed infestations. Journal of Crop Health, 77: 47.
  • Singh, M., Thapa, R., Kukal, M. S., Irmak, S., Mirsky, S., & Jhala, A. J. (2022). Effect of water stress on weed germination, growth characteristics, and seed production: A global meta-analysis. Weed Science, 70, 621-640.
  • Sousa-Ortega, C., Leon, R. G., Lopez-Martinez, N., & Castro-Valdecantos, P. (2023). Influence of burial depth and soil disturbance on the emergence of common weed species in the Iberian Peninsula. Weed Science, 71, 369-377.
  • Steckel, L. E., Defelice, M. S., & Sims, B. D. (1990). Integrating reduced rates of postemergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Science, 38, 541-545.
  • Suer, I.E., & Tursun, N. (2024). Weeds in the cotton growing areas in the Southeastern Anatolia Region. Harran Tarım ve Gıda Bilimleri Dergisi, 28, 209-221.
  • Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S., & Papastylianou, P. (2020). Key factors affecting weed seeds' germination, weed emergence, and their possible role for the efficacy of false seedbed technique as a weed management practice. Frontiers in Agronomy, 2, 1.
  • Turker, O. & Coruh, I. (2023). Determination of the weed species, density and frequency in bean fields in Bayburt Province. Journal of Tekirdag Agricultural Faculty, 20, 542-549.
  • Uremis, I., & Uygur, F. N. (2005). Seed viability of some weed species after 7 years of burial in the Cukurova Region of Turkey. Asian Journal of Plant Sciences, 4, 1-5.
  • Ustuner, T. (2017). Determination of the frequency and density of weed species in apple orchards in Kahramanmaras region of Turkey. Bangladesh Journal of Agricultural Research, 42, 87-102.
  • Vidotto, F., De Palo, F., & Ferrero, A. (2013). Effect of short‐duration high temperatures on weed seed germination. Annals of Applied Biology, 163, 454-465.

Türkiye’deki Amaranthus retroflexus popülasyonlarının biyolojisi, ekolojisi ve mücadelesi üzerine çalışmalar

Year 2025, Volume: 29 Issue: 3, 448 - 457, 24.09.2025
https://doi.org/10.29050/harranziraat.1665841

Abstract

Amaranthus retroflexus (L.), Türkiye'deki çeşitli ekim sistemlerini istila eden en yaygın yabancı otlardan biridir. Bu çalışma A. retroflexus'un tohumlarının çimlenmesinin sıcaklık, sodyum klorür konsantrasyonu, ışık koşulları, pH, ozmotik stres ve toprak gömülme derinliği gibi çeşitli çevresel faktörlere verdiği yanıtı araştırmayı amaçlamaktadır. Ayrıca, bu araştırmada A. retroflexus’un çeşitli çıkış sonrası herbisitlerle kontrol edilebilme potansiyeli de değerlendirilmiştir. Çalışmanın başlangıcında yapılan çimlenme testi, kullanılan tohumların uyku halinde olmadığını ve canlı olduğunu göstermiş; tohumlar üç gün içinde %98 oranında çimlenme başarısı sağlamıştır. A. retroflexus tohumlarının maksimum çimlenme oranına (%98) 25°C sıcaklıkta ulaşıldığı belirlenmiştir. Tuzluluk, çimlenme üzerinde önemli ölçüde olumsuz bir etkisi yaratmış; 200 mM sodyum klorür konsantrasyonunda hiçbir tohum çimlenmemiştir. Benzer şekilde, ozmotik potansiyel de çimlenmeyi önemli ölçüde engellemiş; -0,4 MPa veya daha yüksek ozmatik potansiyellerde çimlenme oranı %18’in altında kalmıştır. Öte yandan, ışık koşullarının çimlenme üzerinde anlamlı bir etkisi olmadığı gözlemlenmiştir ve A. retroflexus tohumlarının çıkışı için en uygun toprak derinliği 0-4 cm aralığı olarak tespit edilmiştir. Çıkış sonrası yapılan herbisit uygulamaları arasında en etkili maddeler clopyralid ve 2,4-D olarak belirlenmiştir.

References

  • Ahmad, T. & Jabran, K., 2025. Inter-and intra-specific competition of potato with four common weed species and their impact on tuber yield. Potato Research, https://doi.org/10.1007/s11540-025-09879-5.
  • Ahmad, T., Jabran, K., Cheema, Z. A., Bajwa, A. A., & Farooq, M. (2023). A global perspective of education in weed science. Weed Science, 71, 536-548.
  • Amini, R., Alizadeh, H., & Yousefi, A. (2014). Interference between red kidney bean (Phaseolus vulgaris L.) cultivars and redroot pigweed (Amaranthus retroflexus L.). European Journal of Agronomy, 60, 13-21.
  • Batlla, D., & Benech‐Arnold, R. L. (2014). Weed seed germination and the light environment: Implications for weed management. Weed Biology and Management, 14, 77-87.
  • Bensch, C. N., Horak, M. J., & Peterson, D. (2003). Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Science, 51, 37-43.
  • CABI. (2021). Amaranthus retroflexus (redroot pigweed). CABI Compendium, 4652. CABI Head Office, Wallingford, UK. https://doi.org/10.1079/cabicompendium.4652
  • Chauhan, B. S. (2012). Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technology, 26, 1-13.
  • Chauhan, B. S., & Johnson, D. E. (2010). The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy, 105, 221-262.
  • Costea, M., Weaver, S. E., & Tardif, F. J. (2004). The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson, and A. hybridus L. Canadian Journal of Plant Science, 84, 631-668.
  • Desai, H. S., Menalled, F., Gaines, T. A., & Shergill, L. S. (2025). Ecological, evolutionary, and management implications of sugarbeet cropping systems with three transgenic herbicide resistance traits. Weed Science, 1-31. https://doi.org/10.1017/wsc.2025.10
  • Dudic, M., Meseldzija, M., Ljevnaic-Masic, B., Rajkovic, M., Markovic, T., Begovic, R., Jurisic, A., & Ivanovic, I. (2020). Weed composition and control in apple orchards under intensive and extensive floor management. Chilean Journal of Agricultural Research, 80, 546-560.
  • Ghorbani, R., Seel, W., & Leifert, C. (1999). Effects of environmental factors on germination and emergence of Amaranthus retroflexus. Weed Science, 47, 505-510.
  • Guzmán-Ortiz, F. A., Castro-Rosas, J., Gómez-Aldapa, C. A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M. L., Falfán-Cortés, R. N., & Román-Gutiérrez, A. D. (2019). Enzyme activity during germination of different cereals: A review. Food Reviews International, 35, 177-200.
  • Iamonico, D. (2010). Biology, life-strategy, and invasiveness of Amaranthus retroflexus L. (Amaranthaceae) in central Italy: Preliminary remarks. Botanica Serbica, 34, 137-145.
  • Kahramanoglu, I. (2014). Assessment of pre-planting Pendimethalin’s minimum dose on redroot pigweed (Amaranthus retroflexus L.). International Journal of Agricultural Sciences, 4, 210-213.
  • Kaur, R., Rogers, R., Lawrence, N. C., Shi, Y., Chahal, P. S., Knezevic, S. Z. & Jhala, A.J. (2024). Effect of herbicide programs on control and seed production of multiple herbicide–resistant Palmer amaranth (Amaranthus palmeri) in corn resistant to 2, 4-D/glufosinate/glyphosate. Weed Technology, 38, e37.
  • Khan, A. M., Mobli, A., Werth, J. A., & Chauhan, B. S. (2021). Effect of emergence time on growth and fecundity of redroot pigweed (Amaranthus retroflexus) and slender amaranth (Amaranthus viridis): Emerging problem weeds in Australian summer crops. Weed Science, 69, 333-340.
  • Li, C., Li, Y., Xu, Z., Zhu, M., Wei, Y., Xu, Z., Zhong, S., Wang, C., & Du, D. (2024). Invasive Amaranthus retroflexus obtains a competitive advantage over native A. tricolor under the addition of A. retroflexus leaf litter. Ecological Research. https://doi.org/10.1111/1440-1703.12539
  • Lu, P., Pang, Y., Wang, H. J., Zhang, Z. H., Dai, X., Bing, X. W., & Yuan, Q. Y. (2024). Asymmetric effects of planting pattern and density on leaf-height traits of Glycine max and Amaranthus retroflexus. Journal of Plant Ecology, 17, rtae101.
  • Mandak, B., Zákravský, P., Dostál, P., & Plačková, I. (2011). Population genetic structure of the noxious weed Amaranthus retroflexus in Central Europe. Flora - Morphology, Distribution, Functional Ecology of Plants, 206, 697-703.
  • Nikolic, N., Ghirardelli, A., Schiavon, M., & Masin, R. (2023). Effects of the salinity-temperature interaction on seed germination and early seedling development: A comparative study of crop and weed species. BMC Plant Biology, 23, 446.
  • Qasem, J. R. (2018). Competition of redroot pigweed (Amaranthus retroflexus L.) and nettle-leaved goosefoot (Chenopodium murale L.) with tomato (Lycopersicon esculentum Mill.) cultivars. The Journal of Horticultural Science and Biotechnology, 93, 634-643.
  • Qin, Z., Zhang, J. E., Jiang, Y. P., Wei, H., Wang, F. G., & Lu, X. N. (2018). Invasion process and potential spread of Amaranthus retroflexus in China. Weed Research, 58, 57-67.
  • Safavi, M., Rezvani, M., Zaefarian, F., Golmohammadzadeh, S., & Sindel, B. M. (2023). Seed germination requirements of Amaranthus retroflexus L. populations exposed to environmental factors. Botany, 101, 99-111.
  • Sauer, J. D. (1967). The grain amaranths and their relatives: A revised taxonomic and geographic survey. Annals of the Missouri Botanical Garden, 54, 103-137.
  • Siddiqui, A. O., & Jabran, K. (2025). Weed tolerance and suppressive ability of potato cultivars to natural weed infestations. Journal of Crop Health, 77: 47.
  • Singh, M., Thapa, R., Kukal, M. S., Irmak, S., Mirsky, S., & Jhala, A. J. (2022). Effect of water stress on weed germination, growth characteristics, and seed production: A global meta-analysis. Weed Science, 70, 621-640.
  • Sousa-Ortega, C., Leon, R. G., Lopez-Martinez, N., & Castro-Valdecantos, P. (2023). Influence of burial depth and soil disturbance on the emergence of common weed species in the Iberian Peninsula. Weed Science, 71, 369-377.
  • Steckel, L. E., Defelice, M. S., & Sims, B. D. (1990). Integrating reduced rates of postemergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Science, 38, 541-545.
  • Suer, I.E., & Tursun, N. (2024). Weeds in the cotton growing areas in the Southeastern Anatolia Region. Harran Tarım ve Gıda Bilimleri Dergisi, 28, 209-221.
  • Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S., & Papastylianou, P. (2020). Key factors affecting weed seeds' germination, weed emergence, and their possible role for the efficacy of false seedbed technique as a weed management practice. Frontiers in Agronomy, 2, 1.
  • Turker, O. & Coruh, I. (2023). Determination of the weed species, density and frequency in bean fields in Bayburt Province. Journal of Tekirdag Agricultural Faculty, 20, 542-549.
  • Uremis, I., & Uygur, F. N. (2005). Seed viability of some weed species after 7 years of burial in the Cukurova Region of Turkey. Asian Journal of Plant Sciences, 4, 1-5.
  • Ustuner, T. (2017). Determination of the frequency and density of weed species in apple orchards in Kahramanmaras region of Turkey. Bangladesh Journal of Agricultural Research, 42, 87-102.
  • Vidotto, F., De Palo, F., & Ferrero, A. (2013). Effect of short‐duration high temperatures on weed seed germination. Annals of Applied Biology, 163, 454-465.
There are 35 citations in total.

Details

Primary Language English
Subjects Herbology
Journal Section Araştırma Makaleleri
Authors

Khawar Jabran 0000-0001-8512-3330

Early Pub Date September 23, 2025
Publication Date September 24, 2025
Submission Date April 6, 2025
Acceptance Date July 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Jabran, K. (2025). Studies on biology, ecology and control of Amaranthus retroflexus populations from Türkiye. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(3), 448-457. https://doi.org/10.29050/harranziraat.1665841

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.