Research Article
BibTex RIS Cite

Çinko stresi altında biber (Capsicum annuum L.) genotiplerinin morfolojik tepkilerinin karakterizasyonu

Year 2025, Volume: 29 Issue: 3, 477 - 486, 24.09.2025
https://doi.org/10.29050/harranziraat.1700013

Abstract

Çinko (Zn) stresi, bitki büyümesini ve fizyolojisini olumsuz etkilemektedir; ancak, genotipik varyasyon tolerans düzeyini değiştirebilmektedir. Bu çalışmada, genetik olarak farklı 28 Capsicum annuum genotipi, hidroponik Zn stresi (5 mM ZnCl₂) ve kontrol koşulları altında değerlendirilmiştir. SPAD değerleri, yaprak sayısı, sürgün ve kök uzunluğu, gövde çapı, yaprak boyutları ve biyokütle (yaş/kuru ağırlık) gibi morfolojik ve fizyolojik özellikler ölçülmüştür. Genotipler P114, P82 ve P116, <%5 SPAD azalması ile minimum düşüş sergilerken; P41, P161 ve P159 >%30 azalma göstermiştir. P120, P45 ve P171, stres altında yaprak sayısını korurken, P164 ve P50 genotiplerinde kök uzaması %70’in üzerinde artış göstermiştir. Biyokütle korunumu en yüksek P31, P164 ve P161’de; en düşük ise P173 ve P49’da gözlenmiştir. Temel Koordinat Analizi (PCoA), P159, P164, P114 ve P46 genotiplerini Zn-tolerant (çinko toleranslı) olarak tanımlamıştır. Yaş ve kuru ağırlık arasında (r = 0.90), kök uzunluğu ile kuru ağırlık arasında (r =0.55) ve yaprak genişliği ile yaş ağırlık arasında (r = 0.46) güçlü korelasyonlar bulunmuştur. Bu bulgular, Zn toleransı ile ilişkili temel fizyolojik özellikleri ortaya koymakta ve stres dayanımlı biber çeşitlerinin ıslahı için değerli bilgiler sunmaktadır.

References

  • Aydin, D. & Coskun, O.F. (2013). Comparison of edta-enhanced phytoextraction strategies with Nasturtium officinale (Watercress) on an artificially arsenic contaminated water. Pak. J. Bot., 45, 1423–1429.
  • Azzarello, E., Pandolfi, C., Giordano, C., Rossi, M., Mugnai, S. &Mancuso, S. (2012). Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environmental and Experimental Botany, 81, 11–17.
  • Başak, H., Aydin, A., Yetişir, H., Turan, M (2025). Salt stress effects on hybrid bottle gourd (Lagenaria siceraria) rootstock candidates plant growth, hormones and nutrient content. Journal of Crop Health 77, 28.
  • Bonnet, M., Camares, O. &Veisseire, P. (2000). Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). Journal of Experimental Botany, 51(346), 945-953.
  • Briffa, J., Sinagra, E. & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6 (9), e04691.
  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. & Lux, A. (2007). Zinc in plants. New Phytologist, 173, 677–702.
  • Caldelas, C., Araus, J. L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiologiae Plantarum, 34(3), 1217-1228.
  • Coskun, O.F. (2025). Association mapping for drought tolerance in watermelons (Citrullus lanatus L.). Horticulturae, 11, 193.
  • Coskun, O.F. & Gulsen, O. (2024). Determination of markers associated with important agronomic traits of watermelon (Citrullus lanatus L.). JAST, 26(6):1359-1371.
  • Coskun, O.F., Toprak, S. & Mavi, K. (2024). Some seed properties and molecular analysis with inter-primary binding site (iPBS) retrotransposons markers of edible-seeded watermelon genotypes. Genet Resour Crop Evol., 71:3151–3162.
  • Escudero-Almanza, D.J., Ojeda-Barrios, D.L., Hernández-Rodríguez, O.A., Chávez, E.S., Ruíz-Anchondo, T. et al. (2012). Carbonic anhydrase and zinc in plant physiology. Chilean Journal of Agricultural Research, 72 (1):140-146.
  • FAOSTAT. Food and Agriculture Data. FAO. (2023). Available online: https://www.fao.org/faostat/en/#home (accessed on 1 January 2025).
  • Farhazadi, H.N. & Arbabian, S. (2024). Changes of vascular tissue structure and pal gene expression in bell pepper var california wonder under zinc stress. Semiannual Scientific Journal of Technical and Vocational University. Winter & Spring, Vol. 1, No. 1, p. 39-54.
  • Glińska, S., Gapińska, M., Michlewska, S., Skiba, E. & Kubicki, J. (2016). Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma, 253(2), 367-377.
  • Hoagland, D.R. & Arnon, D.I. (1950). The water culture method for growing plants without Soil. California Agricultural Experiment Station, University of California, Berkeley. 32p.
  • Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K. & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments, and antioxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum, 32, 979–986.
  • Kim, H., Seomun, S., Yoon, Y. & Jang, G. (2021). Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid. Agronomy, 11, 1886.
  • Kwon M.J., Boyanov M.I., Yang J.-S., Lee S., Hwang Y.H., Lee J.Y., Mishra B. & Kemner K.M. (2017). Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy. Environ. Pollut., 226:346–355.
  • Mangal, M., Agarwal, M. & Bhargava, D. (2013). Effect of cadmium and zinc on growth and biochemical parameters of selected vegetables. Journal of Pharmacognosy and Phytochemistry, 2, 106–113.
  • Moreira A., Moraes L.A. & dos Reis A.R. (2018). Plant Micronutrient Use Efficiency. Elsevier; Amsterdam, The Netherlands: The molecular genetics of zinc uptake and utilization efficiency in crop plants; pp. 87–108.
  • Mukhopadhyay, M., Das, A., Subba, P., Bantawa, P., Sakrar, B. & Ghosh, P. (2013). Structural, physiological, and biochemical profiling of tea plants under zinc stress. Biologia Plantarum, 57, 474–480.
  • Paredes Andrade, N.J., Monteros-Altamirano, A., Tapia Bastidas, C.G. & Sørensen, M. (2020). Morphological, sensorial and chemical characterization of chilli peppers (Capsicum spp.) from the CATIE Genebank. Agronomy, 10, 1732.
  • Sagardoy, R., Morales, F., López-Milán, A. F., Abadia, A. & Abadia, J. (2009). Effect of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown hydroponically. Plant Biology, 11, 339–350.
  • Shu, X., Yin, L., Zhang, Q. & Wang, W. (2012). Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environmental Science and Pollution Research, 19(3), 893- 902.
  • Ul-Hassan, Z., Ali, S., Rizwan, M., Hussain, A., Akbar, Z., Rasool, N., et al., (2017). Role of zinc in alleviating heavy metal stress. Berlin/Heidelberg, Germany: Springer.

Characterization of pepper (Capsicum annuum L.) genotypes for zinc stress tolerance based on morphological traits

Year 2025, Volume: 29 Issue: 3, 477 - 486, 24.09.2025
https://doi.org/10.29050/harranziraat.1700013

Abstract

Zinc (Zn) stress negatively affects plant growth and physiology; however, genotypic variation influences the degree of tolerance. In this study, 28 genetically distinct Capsicum annuum genotypes were evaluated under hydroponic Zn stress (5 mM ZnCl₂) and control conditions. Morphological and physiological traits, including SPAD values, leaf number, shoot and root length, stem diameter, leaf dimensions, and biomass (fresh/dry weight), were measured. Genotypes P114, P82, and P116 exhibited minimal SPAD reductions (<5%), whereas P41, P161, and P159 showed >30% declines. P120, P45, and P171 maintained leaf number under stress, while root elongation increased in P164 and P50 by over 70%. Biomass retention was highest in P31, P164, and P161, while lowest in P173 and P49. Principal Coordinate Analysis (PCoA) identified P159, P164, P114, and P46 as Zn-tolerant genotypes. Strong correlations were found between fresh and dry weight (r = 0.90), root length and dry weight (r = 0.55), and leaf width and fresh weight (r = 0.46). These findings reveal key physiological traits linked to Zn tolerance and provide valuable insights for breeding stress-resilient pepper cultivars.

References

  • Aydin, D. & Coskun, O.F. (2013). Comparison of edta-enhanced phytoextraction strategies with Nasturtium officinale (Watercress) on an artificially arsenic contaminated water. Pak. J. Bot., 45, 1423–1429.
  • Azzarello, E., Pandolfi, C., Giordano, C., Rossi, M., Mugnai, S. &Mancuso, S. (2012). Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environmental and Experimental Botany, 81, 11–17.
  • Başak, H., Aydin, A., Yetişir, H., Turan, M (2025). Salt stress effects on hybrid bottle gourd (Lagenaria siceraria) rootstock candidates plant growth, hormones and nutrient content. Journal of Crop Health 77, 28.
  • Bonnet, M., Camares, O. &Veisseire, P. (2000). Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). Journal of Experimental Botany, 51(346), 945-953.
  • Briffa, J., Sinagra, E. & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6 (9), e04691.
  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. & Lux, A. (2007). Zinc in plants. New Phytologist, 173, 677–702.
  • Caldelas, C., Araus, J. L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiologiae Plantarum, 34(3), 1217-1228.
  • Coskun, O.F. (2025). Association mapping for drought tolerance in watermelons (Citrullus lanatus L.). Horticulturae, 11, 193.
  • Coskun, O.F. & Gulsen, O. (2024). Determination of markers associated with important agronomic traits of watermelon (Citrullus lanatus L.). JAST, 26(6):1359-1371.
  • Coskun, O.F., Toprak, S. & Mavi, K. (2024). Some seed properties and molecular analysis with inter-primary binding site (iPBS) retrotransposons markers of edible-seeded watermelon genotypes. Genet Resour Crop Evol., 71:3151–3162.
  • Escudero-Almanza, D.J., Ojeda-Barrios, D.L., Hernández-Rodríguez, O.A., Chávez, E.S., Ruíz-Anchondo, T. et al. (2012). Carbonic anhydrase and zinc in plant physiology. Chilean Journal of Agricultural Research, 72 (1):140-146.
  • FAOSTAT. Food and Agriculture Data. FAO. (2023). Available online: https://www.fao.org/faostat/en/#home (accessed on 1 January 2025).
  • Farhazadi, H.N. & Arbabian, S. (2024). Changes of vascular tissue structure and pal gene expression in bell pepper var california wonder under zinc stress. Semiannual Scientific Journal of Technical and Vocational University. Winter & Spring, Vol. 1, No. 1, p. 39-54.
  • Glińska, S., Gapińska, M., Michlewska, S., Skiba, E. & Kubicki, J. (2016). Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma, 253(2), 367-377.
  • Hoagland, D.R. & Arnon, D.I. (1950). The water culture method for growing plants without Soil. California Agricultural Experiment Station, University of California, Berkeley. 32p.
  • Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K. & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments, and antioxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum, 32, 979–986.
  • Kim, H., Seomun, S., Yoon, Y. & Jang, G. (2021). Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid. Agronomy, 11, 1886.
  • Kwon M.J., Boyanov M.I., Yang J.-S., Lee S., Hwang Y.H., Lee J.Y., Mishra B. & Kemner K.M. (2017). Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy. Environ. Pollut., 226:346–355.
  • Mangal, M., Agarwal, M. & Bhargava, D. (2013). Effect of cadmium and zinc on growth and biochemical parameters of selected vegetables. Journal of Pharmacognosy and Phytochemistry, 2, 106–113.
  • Moreira A., Moraes L.A. & dos Reis A.R. (2018). Plant Micronutrient Use Efficiency. Elsevier; Amsterdam, The Netherlands: The molecular genetics of zinc uptake and utilization efficiency in crop plants; pp. 87–108.
  • Mukhopadhyay, M., Das, A., Subba, P., Bantawa, P., Sakrar, B. & Ghosh, P. (2013). Structural, physiological, and biochemical profiling of tea plants under zinc stress. Biologia Plantarum, 57, 474–480.
  • Paredes Andrade, N.J., Monteros-Altamirano, A., Tapia Bastidas, C.G. & Sørensen, M. (2020). Morphological, sensorial and chemical characterization of chilli peppers (Capsicum spp.) from the CATIE Genebank. Agronomy, 10, 1732.
  • Sagardoy, R., Morales, F., López-Milán, A. F., Abadia, A. & Abadia, J. (2009). Effect of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown hydroponically. Plant Biology, 11, 339–350.
  • Shu, X., Yin, L., Zhang, Q. & Wang, W. (2012). Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environmental Science and Pollution Research, 19(3), 893- 902.
  • Ul-Hassan, Z., Ali, S., Rizwan, M., Hussain, A., Akbar, Z., Rasool, N., et al., (2017). Role of zinc in alleviating heavy metal stress. Berlin/Heidelberg, Germany: Springer.
There are 25 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Araştırma Makaleleri
Authors

Seher Toprak 0000-0002-3459-9846

Ömer Faruk Coşkun 0000-0001-5398-5737

Early Pub Date September 23, 2025
Publication Date September 24, 2025
Submission Date May 15, 2025
Acceptance Date August 5, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Toprak, S., & Coşkun, Ö. F. (2025). Characterization of pepper (Capsicum annuum L.) genotypes for zinc stress tolerance based on morphological traits. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(3), 477-486. https://doi.org/10.29050/harranziraat.1700013

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.