Research Article
BibTex RIS Cite

Gök Üzüm (Vitis vinifera L.) çeşidinde in vitro sürgün ve kök gelişimine farklı kalsiyum konsantrasyonlarının etkisi

Year 2025, Volume: 29 Issue: 3, 577 - 589, 24.09.2025
https://doi.org/10.29050/harranziraat.1735223

Abstract

Bu çalışma kapsamında, Gök Üzüm (Vitis vinifera L.) çeşidinde in vitro koşullarda farklı kalsiyum (CaCl₂·2H₂O) konsantrasyonlarının sürgün gelişimi, sürgün ucu nekrozu (STN) ve köklenme üzerine etkileri araştırılmıştır. Birinci altkültür aşamasında, 1 mg L⁻¹ BAP uygulamasında sürgün oluşumunun teşvik edilmesine rağmen STN oranı yüksek bulunmuştur. 120, 180 ve 240.0 mg L⁻¹ CaCl₂·2H₂O içeren kültür ortamları ise; sürgün uzunluğu, boğum sayısı ve yaprak alanı gibi parametrelerde MS ve BAP ortamlarına göre anlamlı artış sağlamıştır. Ayrıca, 180 ve 240.0 mg L⁻¹ kalsiyum düzeylerinde STN oluşumu tamamen ortadan kalkmıştır. Hormon içermeyen MS0 ortamı ise tüm parametrelerde en düşük değerleri vermiştir. STN’nin baskılanması, Ca²⁺ iyonunun hücre duvarı stabilitesi ile plazma membranı bütünlüğünü koruyucu etkisiyle ilişkilendirilmiştir. Bunun yanında, Ca²⁺ bitki fizyolojisinde önemli bir sinyal iletim elemanı olarak görev yapmakta ve özellikle oksin taşınımıyla ilişkili hormonal düzenlemeleri etkilemektedir. Köklenme aşamasında ise 240 mg L⁻¹ CaCl₂·2H₂O dozunda en yüksek kök ağırlığı elde edilmiş; bu da kalsiyumun kök dokularının gelişimi ve bütünlüğüne katkı sağladığını göstermiştir. Elde edilen bulgular, kalsiyumun hem morfolojik hem de fizyolojik açıdan bitkicik kalitesini artırdığını ortaya koymaktadır. Sonuç olarak, 180–240 mg L⁻¹ CaCl₂·2H₂O içeren kültür ortamlarının sürgün gelişimini teşvik ederek, STN’yi azaltarak ve kök gelişimini destekleyerek asma mikroçoğaltımında verimliliği artırma potansiyeline sahip olduğu kaydedilmiştir. Gelecek çalışmalarda, farklı kalsiyum kaynaklarının ve uygulama stratejilerinin bitki doku kültürü süreçlerindeki rolünün daha kapsamlı biçimde değerlendirilmesi önerilmektedir.

References

  • Ahmed, Z. F. R., & Palta, J. P. (2017). Hormone-like action of a natural lipid, lysophosphatidylethanolamine: A comparison with auxin. Acta Horticulturae, 1187, 107–114. DOI: https://doi.org/10.17660/ActaHortic.2017.1187.13
  • Al-Aizari, A. A., Al-Obeed, R. S., & Mohamed, M. A. (2020). Improving micropropagation of some grape cultivars via boron, calcium and phosphate. Electronic Journal of Biotechnology, 48, 95–100. DOI: https://doi.org/10.1016/j.ejbt.2020.10.001
  • Bairu, M. W., Stirk, W. A., & Van Staden, J. (2009). Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell, Tissue and Organ Culture, 98, 239–248. DOI: https://doi.org/10.1007/s11240-009-9560-8
  • Barghchi, M., & Alderson, P. G. (1996). The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Regulation, 20, 31–35. DOI: https://doi.org/10.1007/BF00024054
  • Dias, M. C., Pinto, G., Correia, C. M., Moutinho-Pereira, J., Silva, S., & Santos, C. (2013). Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biologia Plantarum, 57, 33–40. DOI: https://doi.org/10.1007/s10535-012-0234-8
  • de Freitas, S. T., Handa, A. K., Wu, Q., Park, S., & Mitcham, E. J. (2012). Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. The Plant Journal, 71(5), 824–835. DOI: https://doi.org/10.1111/j.1365-313X.2012.05034.x
  • Ekinci, H., Rastgeldi, İ., Şaşkın, N., Ak, B. E., & Korkmaz, Ş. (2024). Evaluation of performance of different culture media in in vitro shoot propagation of local grape varieties. Applied Fruit Science, 66(2), 641–648. DOI: https://doi.org/10.1007/s10341-023-00993-7
  • FAO. (2023). FAOSTAT: Statistics database. Food and Agriculture Organization of the United Nations. Retrieved July 4, 2025, from https://www.fao.org/faostat
  • Gammoudi, N., Nagaz, K., & Ferchichi, A. (2022). Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: Multilayer perceptron–multi-objective genetic algorithm. BMC Plant Biology, 22(1), 324. DOI: https://doi.org/10.1186/s12870-022-03674-x
  • Gomes, H. T., Bartos, P. M. C., & Scherwinski-Pereira, J. E. (2015). Optimizing rooting and survival of oil palm (Elaeis guineensis) plantlets derived from somatic embryos. In Vitro Cellular & Developmental Biology - Plant, 51, 111–117. DOI: https://doi.org/10.1007/s11627-015-9669-x
  • Dutt, M., Gray, D. J., Li, Z. T., Dhekney, S. A., & Aman, M. M. V. (2006). Micropropagation cultures for genetic transformation of grapevine. HortScience, 41(4), 972C–972C. DOI: https://doi.org/10.21273/HORTSCI.41.4.972C
  • Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell, 17(8), 2142–2155. DOI: https://doi.org/10.1105/tpc.105.032508
  • Hirschi, K. D. (2004). The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology, 136(1), 2438–2442. DOI: https://doi.org/10.1104/pp.104.046490
  • Kadota, M., & Niimi, Y. (2003). Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell, Tissue and Organ Culture, 72, 261–265. DOI: https://doi.org/10.1023/A:1022378511659
  • Kara, Z., & Yazar, K. (2020). Bazı üzüm çeşitlerinde in vitro poliploidi uyarımı. Anadolu Tarım Bilimleri Dergisi, 35(3), 410–418. DOI: https://doi.org/10.7161/omuanajas.768710
  • Kara, Z., Sabır, A., Doğan, O., & Eker, Ö. (2016). ‘Gök üzüm’ (Vitis vinifera L.) çeşidinin ticari potansiyeli ve ampelografik özellikleri. Nevşehir Bilim ve Teknoloji Dergisi, 5, 395–410. DOI: https://doi.org/10.17100/nevbiltek.211038
  • Kara, Z., Sabır, A., Yazar, K., Doğan, O., & Khaleel, A. J. K. (2017). Fertilization biology of ancient grapevine variety ‘Ekşi Kara’ (Vitis vinifera L.). Selcuk Journal of Agriculture and Food Sciences, 31(2), 92–97. DOI: https://doi.org/10.15316/SJAFS.2017.25
  • Kassa, G., & Feyissa, T. (2020). In vitro propagation of two grapevine (Vitis vinifera L.) cultivars under conditions of salt stress. Plant Tissue Culture and Biotechnology, 30(1), 47–56. DOI: https://doi.org/10.3329/ptcb.v30i1.47790
  • Martin, K. P., Zhang, C. L., Slater, A., & Madassery, J. (2007). Control of shoot necrosis and plant death during micro-propagation of banana and plantains (Musa spp.). Plant Cell, Tissue and Organ Culture, 88, 51–59. DOI: https://doi.org/10.1007/s11240-006-9177-0
  • Naaz, A., Shahzad, A., & Anis, M. (2014). Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L. A multipurpose tree. Applied Biochemistry and Biotechnology, 173, 90–102. DOI: https://doi.org/10.1007/s12010-014-0797-2
  • OIV. (2023). International Organisation of Vine and Wine - State of the Vitiviniculture World Market. https://www.oiv.int
  • Ozgen, S., Busse, J. S., & Palta, J. P. (2011). Influence of root zone calcium on shoot tip necrosis and apical dominance of potato shoot: Simulation of this disorder by ethylene glycol tetra acetic acid and prevention by strontium. HortScience, 46(10), 1358–1362. DOI: https://doi.org/10.21273/HORTSCI.46.10.1358
  • Piagnani, C., Zocchi, G., & Mignani, I. (1996). Influence of Ca²⁺ and 6-benzyladenine on chestnut (Castanea sativa Mill.) in vitro shoot-tip necrosis. Plant Science, 118, 89–95. DOI: https://doi.org/10.1016/0168-9452(96)04423-8
  • Sağlam, H., Çalkan Sağlam, Ö., Güler, E., Akbaş, B., & Güner, Ü. (2023). European and American grapevines were successfully recovered from GFkV, GLRaV1, GLRaV2, and GLRaV3 viruses by a modified thermotherapy and shoot tip culture. Phytoparasitica, 51(4), 855–864. https://doi.org/10.1007/s12600-023-01101-x
  • Srivastava, A., & Joshi, A. G. (2013). Control of shoot tip necrosis in shoot cultures of Portulaca grandiflora Hook. Notulae Scientia Biologicae, 5(1), 45–49. DOI: https://doi.org/10.15835/nsb519009
  • Surakshitha, N. C., Soorianathasundaram, K., Ganga, M., & Raveendran, M. (2019). Alleviating shoot tip necrosis during in vitro propagation of grape cv. Red Globe. Scientia Horticulturae, 248, 118–125. DOI: https://doi.org/10.1016/j.scienta.2019.01.013
  • Teixeira da Silva, J. A., & Dobránszki, J. (2013). How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Scientia Horticulturae, 159, 59–66. DOI: https://doi.org/10.1016/j.scienta.2013.05.001
  • Teixeira da Silva, J. A., Nezami-Alanagh, E., Barreal, M. E., Kher, M. M., Wicaksono, A., Gulyás, A., Hidvégi, N., Magyar-Tábori, K., Mendler-Drienyovszki, N., & Márton, L. (2020). Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions. Planta, 252, 1–35. DOI: https://doi.org/10.1007/s00425-020-03449-4
  • Thakur, A., & Kanwar, J. S. (2011). Effect of phase of medium, growth regulators and nutrient supplementations on in vitro shoot-tip necrosis in pear. New Zealand Journal of Crop and Horticultural Science, 39, 131–140. DOI: https://doi.org/10.1080/01140671.2011.559254
  • Vanneste, S., & Friml, J. (2013). Calcium: The missing link to auxin action. Plants, 2, 650–675. DOI: https://doi.org/10.3390/plants2040650
  • White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487–511. DOI: https://doi.org/10.1093/aob/mcg164

Effects of different calcium concentrations on in vitro shoot and root development in Gök Üzüm (Vitis vinifera L.) cultivar

Year 2025, Volume: 29 Issue: 3, 577 - 589, 24.09.2025
https://doi.org/10.29050/harranziraat.1735223

Abstract

In this study, the effects of different calcium (CaCl₂·2H₂O) concentrations on shoot development, shoot tip necrosis (STN), and rooting were investigated in the Gök Üzüm (Vitis vinifera L.) cultivar under in vitro conditions. During the first subculture, although shoot formation was promoted in the 1 mg L⁻¹ BAP treatment, the STN rate was found to be high. Culture media containing 120, 180 and 240.0 mg L⁻¹ CaCl₂·2H₂O provided significant increases in parameters such as shoot length, number of nodes and leaf area compared to MS and BAP media. In addition, STN formation was completely eliminated at 180 and 240.0 mg L⁻¹ calcium levels. The hormone-free MS0 medium gave the lowest values in all parameters. The suppression of STN was associated with the stabilizing effect of Ca²⁺ ions on the cell wall and the maintenance of plasma membrane integrity. In addition, Ca²⁺ plays an important role as a signaling element in plant physiology and influences hormonal regulations, particularly those related to auxin transport. During the rooting the highest root fresh weight was obtained with 240 mg L⁻¹ CaCl₂·2H₂O, indicating the contribution of calcium to root tissue development and integrity. The findings revealed that calcium enhances plantlet quality both morphologically and physiologically. Consequently, culture media enriched with 180–240 mg L⁻¹ CaCl₂·2H₂O have the potential to increase the efficiency of grapevine micropropagation by promoting shoot development, reducing STN, and supporting root formation. Further studies are recommended to comprehensively evaluate the roles of different calcium sources and application strategies in plant tissue culture.

References

  • Ahmed, Z. F. R., & Palta, J. P. (2017). Hormone-like action of a natural lipid, lysophosphatidylethanolamine: A comparison with auxin. Acta Horticulturae, 1187, 107–114. DOI: https://doi.org/10.17660/ActaHortic.2017.1187.13
  • Al-Aizari, A. A., Al-Obeed, R. S., & Mohamed, M. A. (2020). Improving micropropagation of some grape cultivars via boron, calcium and phosphate. Electronic Journal of Biotechnology, 48, 95–100. DOI: https://doi.org/10.1016/j.ejbt.2020.10.001
  • Bairu, M. W., Stirk, W. A., & Van Staden, J. (2009). Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell, Tissue and Organ Culture, 98, 239–248. DOI: https://doi.org/10.1007/s11240-009-9560-8
  • Barghchi, M., & Alderson, P. G. (1996). The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Regulation, 20, 31–35. DOI: https://doi.org/10.1007/BF00024054
  • Dias, M. C., Pinto, G., Correia, C. M., Moutinho-Pereira, J., Silva, S., & Santos, C. (2013). Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biologia Plantarum, 57, 33–40. DOI: https://doi.org/10.1007/s10535-012-0234-8
  • de Freitas, S. T., Handa, A. K., Wu, Q., Park, S., & Mitcham, E. J. (2012). Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. The Plant Journal, 71(5), 824–835. DOI: https://doi.org/10.1111/j.1365-313X.2012.05034.x
  • Ekinci, H., Rastgeldi, İ., Şaşkın, N., Ak, B. E., & Korkmaz, Ş. (2024). Evaluation of performance of different culture media in in vitro shoot propagation of local grape varieties. Applied Fruit Science, 66(2), 641–648. DOI: https://doi.org/10.1007/s10341-023-00993-7
  • FAO. (2023). FAOSTAT: Statistics database. Food and Agriculture Organization of the United Nations. Retrieved July 4, 2025, from https://www.fao.org/faostat
  • Gammoudi, N., Nagaz, K., & Ferchichi, A. (2022). Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: Multilayer perceptron–multi-objective genetic algorithm. BMC Plant Biology, 22(1), 324. DOI: https://doi.org/10.1186/s12870-022-03674-x
  • Gomes, H. T., Bartos, P. M. C., & Scherwinski-Pereira, J. E. (2015). Optimizing rooting and survival of oil palm (Elaeis guineensis) plantlets derived from somatic embryos. In Vitro Cellular & Developmental Biology - Plant, 51, 111–117. DOI: https://doi.org/10.1007/s11627-015-9669-x
  • Dutt, M., Gray, D. J., Li, Z. T., Dhekney, S. A., & Aman, M. M. V. (2006). Micropropagation cultures for genetic transformation of grapevine. HortScience, 41(4), 972C–972C. DOI: https://doi.org/10.21273/HORTSCI.41.4.972C
  • Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell, 17(8), 2142–2155. DOI: https://doi.org/10.1105/tpc.105.032508
  • Hirschi, K. D. (2004). The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology, 136(1), 2438–2442. DOI: https://doi.org/10.1104/pp.104.046490
  • Kadota, M., & Niimi, Y. (2003). Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell, Tissue and Organ Culture, 72, 261–265. DOI: https://doi.org/10.1023/A:1022378511659
  • Kara, Z., & Yazar, K. (2020). Bazı üzüm çeşitlerinde in vitro poliploidi uyarımı. Anadolu Tarım Bilimleri Dergisi, 35(3), 410–418. DOI: https://doi.org/10.7161/omuanajas.768710
  • Kara, Z., Sabır, A., Doğan, O., & Eker, Ö. (2016). ‘Gök üzüm’ (Vitis vinifera L.) çeşidinin ticari potansiyeli ve ampelografik özellikleri. Nevşehir Bilim ve Teknoloji Dergisi, 5, 395–410. DOI: https://doi.org/10.17100/nevbiltek.211038
  • Kara, Z., Sabır, A., Yazar, K., Doğan, O., & Khaleel, A. J. K. (2017). Fertilization biology of ancient grapevine variety ‘Ekşi Kara’ (Vitis vinifera L.). Selcuk Journal of Agriculture and Food Sciences, 31(2), 92–97. DOI: https://doi.org/10.15316/SJAFS.2017.25
  • Kassa, G., & Feyissa, T. (2020). In vitro propagation of two grapevine (Vitis vinifera L.) cultivars under conditions of salt stress. Plant Tissue Culture and Biotechnology, 30(1), 47–56. DOI: https://doi.org/10.3329/ptcb.v30i1.47790
  • Martin, K. P., Zhang, C. L., Slater, A., & Madassery, J. (2007). Control of shoot necrosis and plant death during micro-propagation of banana and plantains (Musa spp.). Plant Cell, Tissue and Organ Culture, 88, 51–59. DOI: https://doi.org/10.1007/s11240-006-9177-0
  • Naaz, A., Shahzad, A., & Anis, M. (2014). Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L. A multipurpose tree. Applied Biochemistry and Biotechnology, 173, 90–102. DOI: https://doi.org/10.1007/s12010-014-0797-2
  • OIV. (2023). International Organisation of Vine and Wine - State of the Vitiviniculture World Market. https://www.oiv.int
  • Ozgen, S., Busse, J. S., & Palta, J. P. (2011). Influence of root zone calcium on shoot tip necrosis and apical dominance of potato shoot: Simulation of this disorder by ethylene glycol tetra acetic acid and prevention by strontium. HortScience, 46(10), 1358–1362. DOI: https://doi.org/10.21273/HORTSCI.46.10.1358
  • Piagnani, C., Zocchi, G., & Mignani, I. (1996). Influence of Ca²⁺ and 6-benzyladenine on chestnut (Castanea sativa Mill.) in vitro shoot-tip necrosis. Plant Science, 118, 89–95. DOI: https://doi.org/10.1016/0168-9452(96)04423-8
  • Sağlam, H., Çalkan Sağlam, Ö., Güler, E., Akbaş, B., & Güner, Ü. (2023). European and American grapevines were successfully recovered from GFkV, GLRaV1, GLRaV2, and GLRaV3 viruses by a modified thermotherapy and shoot tip culture. Phytoparasitica, 51(4), 855–864. https://doi.org/10.1007/s12600-023-01101-x
  • Srivastava, A., & Joshi, A. G. (2013). Control of shoot tip necrosis in shoot cultures of Portulaca grandiflora Hook. Notulae Scientia Biologicae, 5(1), 45–49. DOI: https://doi.org/10.15835/nsb519009
  • Surakshitha, N. C., Soorianathasundaram, K., Ganga, M., & Raveendran, M. (2019). Alleviating shoot tip necrosis during in vitro propagation of grape cv. Red Globe. Scientia Horticulturae, 248, 118–125. DOI: https://doi.org/10.1016/j.scienta.2019.01.013
  • Teixeira da Silva, J. A., & Dobránszki, J. (2013). How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Scientia Horticulturae, 159, 59–66. DOI: https://doi.org/10.1016/j.scienta.2013.05.001
  • Teixeira da Silva, J. A., Nezami-Alanagh, E., Barreal, M. E., Kher, M. M., Wicaksono, A., Gulyás, A., Hidvégi, N., Magyar-Tábori, K., Mendler-Drienyovszki, N., & Márton, L. (2020). Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions. Planta, 252, 1–35. DOI: https://doi.org/10.1007/s00425-020-03449-4
  • Thakur, A., & Kanwar, J. S. (2011). Effect of phase of medium, growth regulators and nutrient supplementations on in vitro shoot-tip necrosis in pear. New Zealand Journal of Crop and Horticultural Science, 39, 131–140. DOI: https://doi.org/10.1080/01140671.2011.559254
  • Vanneste, S., & Friml, J. (2013). Calcium: The missing link to auxin action. Plants, 2, 650–675. DOI: https://doi.org/10.3390/plants2040650
  • White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487–511. DOI: https://doi.org/10.1093/aob/mcg164
There are 31 citations in total.

Details

Primary Language English
Subjects Oenology and Viticulture, Horticultural Production (Other)
Journal Section Araştırma Makaleleri
Authors

Kevser Yazar 0000-0002-0390-0341

Early Pub Date September 23, 2025
Publication Date September 24, 2025
Submission Date July 4, 2025
Acceptance Date September 2, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Yazar, K. (2025). Effects of different calcium concentrations on in vitro shoot and root development in Gök Üzüm (Vitis vinifera L.) cultivar. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(3), 577-589. https://doi.org/10.29050/harranziraat.1735223

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.