Research Article
BibTex RIS Cite

Climate change will increase the habitat suitability of Bidens frondosa L. in Türkiye: Implications for future invasion and management

Year 2025, Volume: 29 Issue: 3, 529 - 548, 24.09.2025
https://doi.org/10.29050/harranziraat.1740997

Abstract

Bidens frondosa (Devil’s beggarticks) is an invasive plant species originating from North America, which poses significant ecological and economic risks across its introduced range. The species is present in Türkiye; however, its future spread has not been modeled yet. Therefore, this study predicted habitat suitability for B. frondosa in Türkiye under current and future climate scenarios utilizing the Maximum Entropy (MaxEnt) model. The mode was trained and tested using 7,646 occurrence records and 8 environmental variables. The model predicted the habitat suitability with high accuracy (AUC = >0.9). The model predicted that moisture availability in the driest quarter will be the critical determinant of habitat suitability under current and future climatic conditions. Model projected that B. frondosa could colonize 56% of Türkiye’s terrestrial area under current climate with significant suitable habitats located in the northern and western areas of the country. Future climate predictions indicate that the species will extend its distribution range, especially under the high-emission SSP5-8.5 scenario, with a predicted movement towards the eastern and southern regions of the country. The findings highlight potential ecological consequences of B. frondosa invasion, especially its competition with native plant species and its risk to agriculture. Proactive management techniques, including climate-smart invasive species eradication, are crucial to minimize projected expansion and preserve Türkiye’s biodiversity and agricultural economy.

References

  • Abbasi, A. O., Woodall, C. W., Gamarra, J. G. P., Hui, C., Picard, N., Ochuodho, T., de-Miguel, S., Sahay, R., Fei, S., Paquette, A., Chen, H. Y. H., Catlin, A. C., & Liang, J. (2024). Forest types outpaced tree species in centroid-based range shifts under global change. Frontiers in Ecology and Evolution, 12, 1366568. https://doi.org/10.3389/fevo.2024.1366568
  • Abdullah, S., Munir, M., Javed, B., Ahmad, M., Abbasi, B. A., Dawood, S., & Zhang, L. (2025). The Systematics and Biogeography of Genus Bidens. In The Genus Bidens (pp. 3–20). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-4257-1_1
  • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265. https://doi.org/10.1093/biomet/60.2.255
  • Bosch-Belmar, M., Tantillo, M. F., & Sarà, G. (2024). Impacts of increasing temperature due to global warming on key habitat-forming species in the Mediterranean Sea: Unveiling negative biotic interactions. Global Ecology and Conservation, 50, e02844. https://doi.org/10.1016/j.gecco.2024.e02844
  • Brändel, M. (2004). Dormancy and germination of heteromorphic achenes of Bidens frondosa. Flora - Morphology, Distribution, Functional Ecology of Plants, 199(3), 228–233. https://doi.org/10.1078/0367-2530-00150
  • Brown, J. L. (2014). SDM toolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
  • Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F., Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling, W., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., … Poloczanska, E. S. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495. https://doi.org/10.1038/nature12976
  • Cao, Y., Xiao, Y., Zhang, S., & Hu, W. (2018). Simulated warming enhances biological invasion of Solidago canadensis and Bidens frondosa by increasing reproductive investment and altering flowering phenology pattern. Scientific Reports, 8(1), 16073. https://doi.org/10.1038/s41598-018-34218-9
  • Chapman, A. D. (2005). Principles and methods of data cleaning - primary species and species-occurrence data. In A. D. Chapman (Ed.), Report for the Global Biodiversity Information Facility (Issue version 1.0). Global Biodiversity Information Facility.
  • Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7(2), e6281. https://doi.org/10.7717/peerj.6281
  • Colberg, E. M., Bradley, B. A., Morelli, T. L., & Brown‐Lima, C. J. (2024). Climate‐Smart Invasive Species Management for 21st Century Global Change Challenges. Global Change Biology, 30(10), e17531. https://doi.org/10.1111/gcb.17531
  • Corlett, R. T., & Westcott, D. A. (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28(8), 482–488. https://doi.org/10.1016/j.tree.2013.04.003
  • Coşkunçelebi, K., Terzioǧlu, S., & Vladimirov, V. (2007). A new alien species for the flora of Turkey: Bidens frondosa L. (Asteraceae). Turkish Journal of Botany, 31(5), 477–479.
  • Crall, A. W., Jarnevich, C. S., Young, N. E., Panke, B. J., Renz, M., & Stohlgren, T. J. (2015). Citizen science contributes to our knowledge of invasive plant species distributions. Biological Invasions, 17(8), 2415–2427. https://doi.org/10.1007/s10530-015-0885-4
  • Danuso, F., Zanin, G., & Sartorato, I. (2012). A modelling approach for evaluating phenology and adaptation of two congeneric weeds (Bidens frondosa and Bidens tripartita). Ecological Modelling, 243, 33–41. https://doi.org/10.1016/j.ecolmodel.2012.06.009
  • Ding, J., Tarokh, V., & Yang, Y. (2018). Model Selection Techniques: An Overview. IEEE Signal Processing Magazine, 35(6), 16–34. https://doi.org/10.1109/MSP.2018.2867638
  • Duflot, R., Avon, C., Roche, P., & Bergès, L. (2018). Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. Journal for Nature Conservation, 46, 38–47. https://doi.org/10.1016/j.jnc.2018.08.005
  • Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 GBIF. (2022). GBIF Occurrence Download. Https://Doi.Org/10.15468/Dl.Rdwue5.
  • Gladunova, N. V., Khapugin, A. A., & Vargot, E. V. (2016). Bidens frondosa L. (Asteraceae) in the Republic of Mordovia (Russia). Russian Journal of Biological Invasions, 7(2), 129–136. https://doi.org/10.1134/S2075111716020053
  • Hulme, P. E. (2017). Climate change and biological invasions: evidence, expectations, and response options. Biological Reviews, 92(3), 1297–1313. https://doi.org/10.1111/brv.12282
  • Karahasan, B. C., & Pinar, M. (2023). Climate change and spatial agricultural development in Turkey. Review of Development Economics, 27(3), 1699–1720. https://doi.org/10.1111/rode.12986
  • Karaköse, M., Akbulut, S., & Bayramoğlu, M. M. (2018). Invasive alien species in Espiye (Giresun) Forest Planning Unit. Turkish Journal of Forestry | Türkiye Ormancılık Dergisi, 120–129. https://doi.org/10.18182/tjf.349894
  • Khapugin, A. A., Kuzmin, I. V., Ivanov, L. A., Ronzhina, D. A., & Ivanova, L. A. (2022). Environmental Preferences of an Invasive Plant Species, Bidens frondosa (Asteraceae), in European Russia and Western Siberia. Diversity, 14(8), 598. https://doi.org/10.3390/d14080598
  • Kim, S.-K., Kim, S.-Y., Won, J.-G., Shin, J.-H., & Kwon, O.-D. (2011). Prediction of Rice Yield Loss and Economic Threshold Level by Densities of Sagittaria trifolia and Bidens frondosa in Direct-seeding Flooded Rice. Korean Journal of Weed Science, 31(4), 340–347. https://doi.org/10.5660/KJWS.2011.31.4.340
  • Lawlor, J. A., Comte, L., Grenouillet, G., Lenoir, J., Baecher, J. A., Bandara, R. M. W. J., Bertrand, R., Chen, I.-C., Diamond, S. E., Lancaster, L. T., Moore, N., Murienne, J., Oliveira, B. F., Pecl, G. T., Pinsky, M. L., Rolland, J., Rubenstein, M., Scheffers, B. R., Thompson, L. M., … Sunday, J. (2024). Mechanisms, detection and impacts of species redistributions under climate change. Nature Reviews Earth & Environment, 5(5), 351–368. https://doi.org/10.1038/s43017-024-00527-z
  • Littlefield, C. E., Krosby, M., Michalak, J. L., & Lawler, J. J. (2019). Connectivity for species on the move: supporting climate‐driven range shifts. Frontiers in Ecology and the Environment, 17(5), 270–278. https://doi.org/10.1002/fee.2043
  • Liu, Q., Liu, L., Xue, J., Shi, P., & Liang, S. (2025). Habitat Suitability Shifts of Eucommia ulmoides in Southwest China Under Climate Change Projections. Biology, 14(4), 451. https://doi.org/10.3390/biology14040451
  • Martinez, B., Reaser, J. K., Dehgan, A., Zamft, B., Baisch, D., McCormick, C., Giordano, A. J., Aicher, R., & Selbe, S. (2020). Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biological Invasions, 22(1), 75–100. https://doi.org/10.1007/s10530-019-02146-y
  • Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  • Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T., & Svenning, J. (2013). Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany, 31(2), 129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x
  • Pan, Y., Tang, S., Wei, C., & Li, X. (2016). Effects of Global Risks — Nitrogen Additions on Growth and Competitive Relations among Invasive and Native Congeneric Species — Bidens frondosa. Polish Journal of Ecology, 64(4), 443–452. https://doi.org/10.3161/15052249PJE2016.64.4.001
  • Pan, Y., Tang, S., Wei, C., & Li, X. (2017). Growth and photosynthetic responses of invasive Bidens frondosa to light and water availability: A comparison with invasive and native congeners. Weed Biology and Management, 17(1), 36–44. https://doi.org/10.1111/wbm.12114
  • Pfeifer‐Meister, L., Bridgham, S. D., Reynolds, L. L., Goklany, M. E., Wilson, H. E., Little, C. J., Ferguson, A., & Johnson, B. R. (2016). Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA. Global Change Biology, 22(2), 845–855. https://doi.org/10.1111/gcb.13052
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Popay, I. (2014). Bidens frondosa (beggarticks). In CABI Compendium. https://doi.org/10.1079/cabicompendium.108916
  • Powell, K. I., Chase, J. M., & Knight, T. M. (2011). A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98(3), 539–548. https://doi.org/10.3732/ajb.1000402
  • Qureshi, H., & Anwar, T. (2025). Ecological Significance of Bidens Species. In The Genus Bidens (pp. 317–323). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-4257-1_22
  • R Core Team. (2023). R Core Team 2023 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing.
  • Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629–643. https://doi.org/10.1111/jbi.12227
  • Reaser, J. K., Burgiel, S. W., Kirkey, J., Brantley, K. A., Veatch, S. D., & Burgos-Rodríguez, J. (2020). The early detection of and rapid response (EDRR) to invasive species: a conceptual framework and federal capacities assessment. Biological Invasions, 22(1), 1–19. https://doi.org/10.1007/s10530-019-02156-w
  • Rho, Y.-D., & Lee, M.-H. (2004). Germination characteristics of Bidens tripartita and Bidens frondosa occuring in paddy fields. Korean Journal of Weed Science, 24(4), 299–307.
  • Ronzhina, D. A. (2017). Distribution, competitive ability, and seed production of Bidens frondosa L. in the Middle Urals. Russian Journal of Biological Invasions, 8(4), 351–359. https://doi.org/10.1134/S2075111717040099
  • Roy, H. E., Pauchard, A., Stoett, P., Truong, T. R., Bacher, S., Galil, B. S., Hulme, P. E., Ikeda, T., Sankaran, K., & McGeoch, M. A. (2023). IPBES Invasive Alien Species Assessment: Summary for Policymakers. IPBES.
  • Serra‐Diaz, J. M., Franklin, J., Ninyerola, M., Davis, F. W., Syphard, A. D., Regan, H. M., & Ikegami, M. (2014). Bioclimatic velocity: the pace of species exposure to climate change. Diversity and Distributions, 20(2), 169–180. https://doi.org/10.1111/ddi.12131
  • Sharma, S. D., & Singh, M. (2000). Optimizing foliar activity of glyphosate on Bidens frondosa and Panicum maximum with different adjuvant types. Weed Research, 40(6), 523–533. https://doi.org/10.1046/j.1365-3180.2000.00209.x
  • Suehiro, K., Hozumi, K., & Shinozaki, K. (1984). Growth of three species of Bidens under different levels of soil moisture content. The Botanical Magazine Tokyo, 97(2), 163–170. https://doi.org/10.1007/BF02488690
  • Tad, S., Önen, H., & Farooq, S. (2015). Mute and Quiet Invasion of Bidens frondosa Continue in Turkey. Turkish Journal of Weed Science, 18(3), 36–37.
  • Temizyurek-Arslan, M. (2023). Evaluation of hazelnut production in Türkiye in environment, energy and economy using life cycle assessment approach. Science of The Total Environment, 892, 164468. https://doi.org/10.1016/j.scitotenv.2023.164468
  • Terzioğlu, S., & Ergül Bozkurt, A. (2020). The Weed Flora of Turkish Tea Plantations. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 621–630. https://doi.org/10.17714/gumusfenbil.655157
  • Umurzokov, M., Bo, A. B., Cho, K. M., Lim, S., Kim, D., Kim, J., Lee, J., Park, S., & Park, K. W. (2024). Modelling rice competition with Leptochloa fusca, Bidens frondosa and Ammannia coccinea in transplanted rice cultivation. Weed Research, 64(4), 261–270. https://doi.org/10.1111/wre.12650
  • Üstüner, T., & Tekbudak, İ. K. (2025). Herboloji. In T. Üstüner (Ed.), Bitki Koruma Ürünleri Bayilik Sınav Kitabı (p. 482). Akademisyen Yayınevi.
  • Vasilyeva, N. V., & Papchenkov, V. G. (2011). Mechanisms of influence of invasive Bidens frondosa L. on indigenous Bidens species. Russian Journal of Biological Invasions, 2(2–3), 81–85. https://doi.org/10.1134/S2075111711020123
  • Wang, X. F., Hassani, D., Cheng, Z. W., Wang, C. Y., & Wu, J. (2014). Allelopathy of the invasive plant Bidens frondosa on the seed germination of Geum japonicum var. chinense. Genetics and Molecular Research, 13(4), 10592–10598. https://doi.org/10.4238/2014.December.12.22
  • Wei, C., Tang, S., Pan, Y., & Li, X. (2017). Plastic responses of invasive Bidens frondosa to water and nitrogen addition. Nordic Journal of Botany, 35(2), 232–239. https://doi.org/10.1111/njb.01331
  • Wilson Brown, M. K., & Josephs, E. B. (2023). Evaluating niche changes during invasion with seasonal models in Capsella bursa‐pastoris. American Journal of Botany, 110(3). https://doi.org/10.1002/ajb2.16140
  • Xiao, H., Liao, D., Zhang, S., Zhang, Y., Rehab, O. E., Zeng, J., Yan, X., Su, Q., & Zhou, B. (2025). Differences in responses of invasive and native plants to climate change: a case study of Bidens (Asteracea) from China. Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2025.1583552
  • Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., & Veran, S. (2013). Presence‐only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4(3), 236–243. https://doi.org/10.1111/2041-210x.12004
  • Yan, X. H., Zhou, B., Yin, Z. F., Wang, N., & Zhang, Z. G. (2016). Reproductive biological characteristics potentially contributed to invasiveness in an alien invasive plant Bidens frondosa. Plant Species Biology, 31(2), 107–116. https://doi.org/10.1111/1442-1984.12092
  • Zaka, M. M., & Samat, A. (2024). Advances in Remote Sensing and Machine Learning Methods for Invasive Plants Study: A Comprehensive Review. Remote Sensing, 16(20), 3781. https://doi.org/10.3390/rs16203781

Türkiye’de Bidens frondosa L.’nın iklim değişikliğine bağlı artan dağılımı: Gelecekteki istila ve yönetim için çıkarımlar

Year 2025, Volume: 29 Issue: 3, 529 - 548, 24.09.2025
https://doi.org/10.29050/harranziraat.1740997

Abstract

.Bidens frondosa (Devil’s beggarticks), Kuzey Amerika kökenli bir istilacı bitki olup taşındığı bölgelerde önemli ekolojik ve ekonomik riskler oluşturmaktadır. Bu tür Türkiye’den rapor edilmiş; ancak gelecekteki potansiyel yayılımı henüz modellenmemiştir. Bu nedenle, mevcut çalışmada, Maksimum Entropi (MaxEnt) modeli kullanarak mevcut ve gelecekteki iklim senaryoları altında Türkiye’de B. frondosa’nın potansiyel habitat uygunluğu tahmin edilmiştir. Model, 7.646 varlık kayıtları ve 8 çevresel değişken kullanılarak eğitilmiş ve test edilmiştir. Model, habitat uygunluğunu yüksek doğrulukla tahmin etmiştir (AUC = >0.9). Ayrıca, en kuru çeyrekteki nem miktarının, mevcut ve gelecekteki iklim koşulları altında habitat uygunluğunun belirleyici faktörü olacağı öngörülmüştür. Model, B. frondosa’nın mevcut iklim altında Türkiye’nin kara yüzey alanının %92’sini kolonize edebileceğini ve ülkenin kuzey ve batı bölgelerinde önemli uygun habitatların bulunduğunu tahmin etmiştir. Gelecekteki iklim tahminleri, türün, özellikle yüksek emisyon senaryosu (SSP5-8.5) altında, doğu ve güney bölgelerine doğru yayılacağını göstermektedir. Bulgular, B. frondosa istilasının ekolojik sonuçlarını, özellikle yerli bitki türleriyle olan rekabetini ve tarım üzerindeki risklerini vurgulamaktadır. İstilacı türlerin iklim dostu yönetimi gibi proaktif yönetim teknikleri, öngörülen yayılımı en aza indirmek ve Türkiye’nin biyolojik çeşitliliğini ve tarım ekonomisini korumak için büyük önem taşımaktadır.

References

  • Abbasi, A. O., Woodall, C. W., Gamarra, J. G. P., Hui, C., Picard, N., Ochuodho, T., de-Miguel, S., Sahay, R., Fei, S., Paquette, A., Chen, H. Y. H., Catlin, A. C., & Liang, J. (2024). Forest types outpaced tree species in centroid-based range shifts under global change. Frontiers in Ecology and Evolution, 12, 1366568. https://doi.org/10.3389/fevo.2024.1366568
  • Abdullah, S., Munir, M., Javed, B., Ahmad, M., Abbasi, B. A., Dawood, S., & Zhang, L. (2025). The Systematics and Biogeography of Genus Bidens. In The Genus Bidens (pp. 3–20). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-4257-1_1
  • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265. https://doi.org/10.1093/biomet/60.2.255
  • Bosch-Belmar, M., Tantillo, M. F., & Sarà, G. (2024). Impacts of increasing temperature due to global warming on key habitat-forming species in the Mediterranean Sea: Unveiling negative biotic interactions. Global Ecology and Conservation, 50, e02844. https://doi.org/10.1016/j.gecco.2024.e02844
  • Brändel, M. (2004). Dormancy and germination of heteromorphic achenes of Bidens frondosa. Flora - Morphology, Distribution, Functional Ecology of Plants, 199(3), 228–233. https://doi.org/10.1078/0367-2530-00150
  • Brown, J. L. (2014). SDM toolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
  • Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F., Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling, W., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., … Poloczanska, E. S. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495. https://doi.org/10.1038/nature12976
  • Cao, Y., Xiao, Y., Zhang, S., & Hu, W. (2018). Simulated warming enhances biological invasion of Solidago canadensis and Bidens frondosa by increasing reproductive investment and altering flowering phenology pattern. Scientific Reports, 8(1), 16073. https://doi.org/10.1038/s41598-018-34218-9
  • Chapman, A. D. (2005). Principles and methods of data cleaning - primary species and species-occurrence data. In A. D. Chapman (Ed.), Report for the Global Biodiversity Information Facility (Issue version 1.0). Global Biodiversity Information Facility.
  • Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7(2), e6281. https://doi.org/10.7717/peerj.6281
  • Colberg, E. M., Bradley, B. A., Morelli, T. L., & Brown‐Lima, C. J. (2024). Climate‐Smart Invasive Species Management for 21st Century Global Change Challenges. Global Change Biology, 30(10), e17531. https://doi.org/10.1111/gcb.17531
  • Corlett, R. T., & Westcott, D. A. (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28(8), 482–488. https://doi.org/10.1016/j.tree.2013.04.003
  • Coşkunçelebi, K., Terzioǧlu, S., & Vladimirov, V. (2007). A new alien species for the flora of Turkey: Bidens frondosa L. (Asteraceae). Turkish Journal of Botany, 31(5), 477–479.
  • Crall, A. W., Jarnevich, C. S., Young, N. E., Panke, B. J., Renz, M., & Stohlgren, T. J. (2015). Citizen science contributes to our knowledge of invasive plant species distributions. Biological Invasions, 17(8), 2415–2427. https://doi.org/10.1007/s10530-015-0885-4
  • Danuso, F., Zanin, G., & Sartorato, I. (2012). A modelling approach for evaluating phenology and adaptation of two congeneric weeds (Bidens frondosa and Bidens tripartita). Ecological Modelling, 243, 33–41. https://doi.org/10.1016/j.ecolmodel.2012.06.009
  • Ding, J., Tarokh, V., & Yang, Y. (2018). Model Selection Techniques: An Overview. IEEE Signal Processing Magazine, 35(6), 16–34. https://doi.org/10.1109/MSP.2018.2867638
  • Duflot, R., Avon, C., Roche, P., & Bergès, L. (2018). Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. Journal for Nature Conservation, 46, 38–47. https://doi.org/10.1016/j.jnc.2018.08.005
  • Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 GBIF. (2022). GBIF Occurrence Download. Https://Doi.Org/10.15468/Dl.Rdwue5.
  • Gladunova, N. V., Khapugin, A. A., & Vargot, E. V. (2016). Bidens frondosa L. (Asteraceae) in the Republic of Mordovia (Russia). Russian Journal of Biological Invasions, 7(2), 129–136. https://doi.org/10.1134/S2075111716020053
  • Hulme, P. E. (2017). Climate change and biological invasions: evidence, expectations, and response options. Biological Reviews, 92(3), 1297–1313. https://doi.org/10.1111/brv.12282
  • Karahasan, B. C., & Pinar, M. (2023). Climate change and spatial agricultural development in Turkey. Review of Development Economics, 27(3), 1699–1720. https://doi.org/10.1111/rode.12986
  • Karaköse, M., Akbulut, S., & Bayramoğlu, M. M. (2018). Invasive alien species in Espiye (Giresun) Forest Planning Unit. Turkish Journal of Forestry | Türkiye Ormancılık Dergisi, 120–129. https://doi.org/10.18182/tjf.349894
  • Khapugin, A. A., Kuzmin, I. V., Ivanov, L. A., Ronzhina, D. A., & Ivanova, L. A. (2022). Environmental Preferences of an Invasive Plant Species, Bidens frondosa (Asteraceae), in European Russia and Western Siberia. Diversity, 14(8), 598. https://doi.org/10.3390/d14080598
  • Kim, S.-K., Kim, S.-Y., Won, J.-G., Shin, J.-H., & Kwon, O.-D. (2011). Prediction of Rice Yield Loss and Economic Threshold Level by Densities of Sagittaria trifolia and Bidens frondosa in Direct-seeding Flooded Rice. Korean Journal of Weed Science, 31(4), 340–347. https://doi.org/10.5660/KJWS.2011.31.4.340
  • Lawlor, J. A., Comte, L., Grenouillet, G., Lenoir, J., Baecher, J. A., Bandara, R. M. W. J., Bertrand, R., Chen, I.-C., Diamond, S. E., Lancaster, L. T., Moore, N., Murienne, J., Oliveira, B. F., Pecl, G. T., Pinsky, M. L., Rolland, J., Rubenstein, M., Scheffers, B. R., Thompson, L. M., … Sunday, J. (2024). Mechanisms, detection and impacts of species redistributions under climate change. Nature Reviews Earth & Environment, 5(5), 351–368. https://doi.org/10.1038/s43017-024-00527-z
  • Littlefield, C. E., Krosby, M., Michalak, J. L., & Lawler, J. J. (2019). Connectivity for species on the move: supporting climate‐driven range shifts. Frontiers in Ecology and the Environment, 17(5), 270–278. https://doi.org/10.1002/fee.2043
  • Liu, Q., Liu, L., Xue, J., Shi, P., & Liang, S. (2025). Habitat Suitability Shifts of Eucommia ulmoides in Southwest China Under Climate Change Projections. Biology, 14(4), 451. https://doi.org/10.3390/biology14040451
  • Martinez, B., Reaser, J. K., Dehgan, A., Zamft, B., Baisch, D., McCormick, C., Giordano, A. J., Aicher, R., & Selbe, S. (2020). Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biological Invasions, 22(1), 75–100. https://doi.org/10.1007/s10530-019-02146-y
  • Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  • Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T., & Svenning, J. (2013). Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany, 31(2), 129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x
  • Pan, Y., Tang, S., Wei, C., & Li, X. (2016). Effects of Global Risks — Nitrogen Additions on Growth and Competitive Relations among Invasive and Native Congeneric Species — Bidens frondosa. Polish Journal of Ecology, 64(4), 443–452. https://doi.org/10.3161/15052249PJE2016.64.4.001
  • Pan, Y., Tang, S., Wei, C., & Li, X. (2017). Growth and photosynthetic responses of invasive Bidens frondosa to light and water availability: A comparison with invasive and native congeners. Weed Biology and Management, 17(1), 36–44. https://doi.org/10.1111/wbm.12114
  • Pfeifer‐Meister, L., Bridgham, S. D., Reynolds, L. L., Goklany, M. E., Wilson, H. E., Little, C. J., Ferguson, A., & Johnson, B. R. (2016). Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA. Global Change Biology, 22(2), 845–855. https://doi.org/10.1111/gcb.13052
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Popay, I. (2014). Bidens frondosa (beggarticks). In CABI Compendium. https://doi.org/10.1079/cabicompendium.108916
  • Powell, K. I., Chase, J. M., & Knight, T. M. (2011). A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98(3), 539–548. https://doi.org/10.3732/ajb.1000402
  • Qureshi, H., & Anwar, T. (2025). Ecological Significance of Bidens Species. In The Genus Bidens (pp. 317–323). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-4257-1_22
  • R Core Team. (2023). R Core Team 2023 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing.
  • Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629–643. https://doi.org/10.1111/jbi.12227
  • Reaser, J. K., Burgiel, S. W., Kirkey, J., Brantley, K. A., Veatch, S. D., & Burgos-Rodríguez, J. (2020). The early detection of and rapid response (EDRR) to invasive species: a conceptual framework and federal capacities assessment. Biological Invasions, 22(1), 1–19. https://doi.org/10.1007/s10530-019-02156-w
  • Rho, Y.-D., & Lee, M.-H. (2004). Germination characteristics of Bidens tripartita and Bidens frondosa occuring in paddy fields. Korean Journal of Weed Science, 24(4), 299–307.
  • Ronzhina, D. A. (2017). Distribution, competitive ability, and seed production of Bidens frondosa L. in the Middle Urals. Russian Journal of Biological Invasions, 8(4), 351–359. https://doi.org/10.1134/S2075111717040099
  • Roy, H. E., Pauchard, A., Stoett, P., Truong, T. R., Bacher, S., Galil, B. S., Hulme, P. E., Ikeda, T., Sankaran, K., & McGeoch, M. A. (2023). IPBES Invasive Alien Species Assessment: Summary for Policymakers. IPBES.
  • Serra‐Diaz, J. M., Franklin, J., Ninyerola, M., Davis, F. W., Syphard, A. D., Regan, H. M., & Ikegami, M. (2014). Bioclimatic velocity: the pace of species exposure to climate change. Diversity and Distributions, 20(2), 169–180. https://doi.org/10.1111/ddi.12131
  • Sharma, S. D., & Singh, M. (2000). Optimizing foliar activity of glyphosate on Bidens frondosa and Panicum maximum with different adjuvant types. Weed Research, 40(6), 523–533. https://doi.org/10.1046/j.1365-3180.2000.00209.x
  • Suehiro, K., Hozumi, K., & Shinozaki, K. (1984). Growth of three species of Bidens under different levels of soil moisture content. The Botanical Magazine Tokyo, 97(2), 163–170. https://doi.org/10.1007/BF02488690
  • Tad, S., Önen, H., & Farooq, S. (2015). Mute and Quiet Invasion of Bidens frondosa Continue in Turkey. Turkish Journal of Weed Science, 18(3), 36–37.
  • Temizyurek-Arslan, M. (2023). Evaluation of hazelnut production in Türkiye in environment, energy and economy using life cycle assessment approach. Science of The Total Environment, 892, 164468. https://doi.org/10.1016/j.scitotenv.2023.164468
  • Terzioğlu, S., & Ergül Bozkurt, A. (2020). The Weed Flora of Turkish Tea Plantations. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 621–630. https://doi.org/10.17714/gumusfenbil.655157
  • Umurzokov, M., Bo, A. B., Cho, K. M., Lim, S., Kim, D., Kim, J., Lee, J., Park, S., & Park, K. W. (2024). Modelling rice competition with Leptochloa fusca, Bidens frondosa and Ammannia coccinea in transplanted rice cultivation. Weed Research, 64(4), 261–270. https://doi.org/10.1111/wre.12650
  • Üstüner, T., & Tekbudak, İ. K. (2025). Herboloji. In T. Üstüner (Ed.), Bitki Koruma Ürünleri Bayilik Sınav Kitabı (p. 482). Akademisyen Yayınevi.
  • Vasilyeva, N. V., & Papchenkov, V. G. (2011). Mechanisms of influence of invasive Bidens frondosa L. on indigenous Bidens species. Russian Journal of Biological Invasions, 2(2–3), 81–85. https://doi.org/10.1134/S2075111711020123
  • Wang, X. F., Hassani, D., Cheng, Z. W., Wang, C. Y., & Wu, J. (2014). Allelopathy of the invasive plant Bidens frondosa on the seed germination of Geum japonicum var. chinense. Genetics and Molecular Research, 13(4), 10592–10598. https://doi.org/10.4238/2014.December.12.22
  • Wei, C., Tang, S., Pan, Y., & Li, X. (2017). Plastic responses of invasive Bidens frondosa to water and nitrogen addition. Nordic Journal of Botany, 35(2), 232–239. https://doi.org/10.1111/njb.01331
  • Wilson Brown, M. K., & Josephs, E. B. (2023). Evaluating niche changes during invasion with seasonal models in Capsella bursa‐pastoris. American Journal of Botany, 110(3). https://doi.org/10.1002/ajb2.16140
  • Xiao, H., Liao, D., Zhang, S., Zhang, Y., Rehab, O. E., Zeng, J., Yan, X., Su, Q., & Zhou, B. (2025). Differences in responses of invasive and native plants to climate change: a case study of Bidens (Asteracea) from China. Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2025.1583552
  • Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., & Veran, S. (2013). Presence‐only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4(3), 236–243. https://doi.org/10.1111/2041-210x.12004
  • Yan, X. H., Zhou, B., Yin, Z. F., Wang, N., & Zhang, Z. G. (2016). Reproductive biological characteristics potentially contributed to invasiveness in an alien invasive plant Bidens frondosa. Plant Species Biology, 31(2), 107–116. https://doi.org/10.1111/1442-1984.12092
  • Zaka, M. M., & Samat, A. (2024). Advances in Remote Sensing and Machine Learning Methods for Invasive Plants Study: A Comprehensive Review. Remote Sensing, 16(20), 3781. https://doi.org/10.3390/rs16203781
There are 60 citations in total.

Details

Primary Language English
Subjects Herbology
Journal Section Araştırma Makaleleri
Authors

Shahid Farooq 0000-0002-6349-1404

Early Pub Date September 23, 2025
Publication Date September 24, 2025
Submission Date July 12, 2025
Acceptance Date August 21, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Farooq, S. (2025). Climate change will increase the habitat suitability of Bidens frondosa L. in Türkiye: Implications for future invasion and management. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(3), 529-548. https://doi.org/10.29050/harranziraat.1740997

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.