Research Article
BibTex RIS Cite

Türkiye’de Yetiştirilen Siyah Alaca İneklerin Doğrusal Tip Özellikleri, Birinci Laktasyon Karlılığı ve Verim Özellikleri Arasındaki Genotopik Korelasyonlar

Year 2020, , 83 - 90, 29.12.2020
https://doi.org/10.29185/hayuretim.630155

Abstract

Amaç: Bu çalışmanın amacı, ıslah programlarında kullanılmak üzere doğrusal tip özellikleri, verim özellikleri ve birinci laktasyon karlılığı arasındaki genetik korelasyonların tespitini yapmaktır.



Materyal ve Metot: Araştırma 2012-2017 yılları arasında Hatay ilinde yürütülmüştür. Araştırmada toplam 810 baş birinci laktasyonda olan inek kullanılmıştır. Genetik parametrelerinin varyans ve kovaryanslarının analizi ise Multivariate Limited Maximum Likelihood testi ile gerçekleştirilmiştir.



Bulgular: Ortalama inek başına birinci laktasyon net kar, 305-gün süt verimi, ilk buzağılama yaşı, ilk tohumlamada gebe kalma oranı ve kolay doğum oranı 540 US$, 6008 kg, 793 gün, %61.6 ve %91.7 olarak belirlenmiştir. Doğrusal tip özellikleri ile verim özelliklerinin kalıtım dereceleri sırasıyla; 0.10-0.42 ve 0.04-0.39 arasında tahmin edilmiştir.  Birinci laktasyon karlılığı ile doğrusal tip özellikleri arasındaki genetik korelasyonlar -0.08 ve 0.42 arasında, birinci laktasyon karlılığı ile verim özellikleri arasındaki korelasyonlar 0.06 ve 0.34. arasında tahmin edilmiştir. Birinci laktasyon karlılığı ile en yüksek korelasyonu meme merkez bağı (0.42) gösterirken, en düşük korelasyonu meme derinliği (-0.08) göstermiştir. Yine birinci laktasyon karlılığı ile en yüksek korelasyonu süt proteini verimi (0.34) gösterirken, en düşük korelasyonu ilk tohumlamada gebe kalma oranı (0.09) göstermiştir. Doğrusal tip özellikleri ile verim özellikleri arasındaki genetik korelasyonlar -0.42 (Ayak açısı ve ilk tohumlamada gebe kalma oranı) ile 0.49 (Sütçü tip özelliği ve 305-gün süt verimi) arasında değişiklik göstermiştir.



Sonuç: Araştırma sonuçları, birinci laktasyondaki daha fazla sütçü tipe sahip, ön meme bağlantısı güçlü, güçlü ayak ve bacak yapısına sahip ineklerin, birinci laktasyonda daha karlı olduklarını ve süt sığırı ıslah programlarında doğrusal tip özellikleri ile verim özellikleri arasındaki bu genetik korelasyonlardan yararlanılarak, daha isabetli seleksiyon yapılabileceğini ortaya koymuştur. 

Thanks

The authors thanks the dairy farm owners and Hatay Dairy Cattle Breeders' Association.

References

  • Anonymous. 2018. Official rules governing type classification. Brown Swiss Cattle Breeders’ Association of the U.S.A. http://www.brownswissusa.com (25 May 2018).
  • Banos G, Brotherstone S, Coffey MP. 2007. Prenatal maternal effects on body condition score, female fertility and milk yield of dairy cows. Journal of Dairy Science, 90: 3490-3499. DOI:https://doi.org/10.3168/jds.2006-809.
  • Berry DP, Buckley F, Dillon P, Evans RD, Rath M, Veerkamp. RF. 2003. Genetic reletionships among body condition score, body weight, milk yield and fertility in dairy cows. Journal of Dairy Science, 86: 2193-2204. DOI:https://doi.org/10.3168/jds.S0022-0302(03)73809-0.
  • Berry DP, Buckley F, Dillon P, Evans RD, Veerkamp RF. 2004. Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows. Irish Journal of Agricultural and Food Research, 43: 161-176.
  • Biffani S, Marusi M, Biscarini F, Canavesi F. 2005. Developing a genetic evaluation for fertility using angularity and milk yields as correlated traits. Interbull Bulletin, 33: 63-66.
  • Boldman KG, Kriese LA, Van Vleck CP, Van Tassell CP, Kachman SD. 1995. A Manual for Use of MTDFREML: A Set of Programs to Obtain Estimates of Variances and Covariances. Usd-Ars, Clay Center, Nebraska, USA.
  • Brotherstone S. 1994. Genetic and phenotypic correlations between linear type traits and production traits in Holstein Friesian dairy cattle. Animal Production, 59: 183-188.
  • Caraviello DZ, Weigel KA, Gianola D. 2003. Analysis of the relationship between type traits, inbreeding, and functional survival in Jersey cattle using a Weibull Proportional Hazards Model. Journal of Dairy Science, 86 (9): 2984-2989. DOI:https://doi.org/10.3168/jds.S0022-0302(03)73896-X.
  • Chauhan VPS, Hayes JF. 1991. Genetic parameters for first lactation milk production and composition traits for Holsteins using multivariate restricted maximum likelihood. Journal of Dairy Science, 74: 603-610. DOI:https://doi.org/10.3168/jds.S0022-0302(91)78207-6.
  • Dahiya SP. 2005. Linear functional type traits for reproductive efficiency in Hariana cows. Indian Journal of Animal Sciences, 75 (5): 524-527.
  • Dal Zotto R, De Marchi M, Dalvit C, Cassandro M, Gallo L, Carnier P, Bittante G. 2007. Heritabilities and genetic correlations of body condition score and calving interval with yield, somatic cell score, and linear type traits in Brown Swiss cattle. Journal of Dairy Science, 90: 5737–5743. DOI: https://doi.org/10.3168/jds.2007-0280.
  • Darwash AO, Lamming GE, Woolliams JA. 1997. Estimation of genetic variation in the interval from calving to postpartum ovulation of dairy cows. Journal of Dairy Science, 80: 1227–1234. DOI:https://doi.org/10.3168/jds.S0022-0302(97)76051-X.
  • Dematawewa CM, Berger PJ. 1998. Genetic and phenotypic parameters for 305- day yield, fertility, and survival in Holsteins. Journal of Dairy Science, 81: 2700–2709. DOI:https://doi.org/10.3168/jds.S0022-0302(98)75827-8.
  • Forabosco F, Groen AF, Bozzi R, Van Arendonk JAM, Filippini F, Boettcher P, Bijma P. 2004. Phenotypic relationships between longevity, type traits, and production in Chianina beef cattle. Journal of Animal Science, 82 (6): 572-1580. DOI:https://doi.org/10.2527/2004.8261572x.
  • Forabosco F, Bozzi R, Boettcher P, Filippini F, Bijma P, Van Arendonk JAM. 2005. Relationship between profitability and type traits and derivation of economic values for reproduction and survival traits in Chianina beef cows. Journal of Animal Science, 83 (9): 2043-2051. DOI:https://doi.org/10.2527/2005.8392043x.
  • Gengler N, Wiggans GR, Wright JR. 1999. Animal model genetic evaluation of type traits for five dairy cattle breeds. Journal of Dairy Science, 82 (6): 1350.e1-1350.e22. DOI:https://doi.org/10.3168/jds.S0022-0302(99)75359-2.
  • Gredler B, Fuerst C, Sölkner J. 2007. Analysis of new fertility traits for the joint genetic evaluation in Austria and Germany. Interbull Bulletin, 37: 152–155.
  • Groen AF, Steine T, Colleau JJ, Pedersen J, Pribyl J, Reinsch N. 1997. Economic values in dairy cattle, with special reference to functional traits. Report of an EAAP-working group. Livestock Production Science, 49: 1–21. DOI:https://doi.org/10.1016/S0301-6226(97)00041-9.
  • Hyppänen K, Juga J. 1998. Environmental and genetic effects on the 60-day nonreturn rate in Finnish AI bulls. Interbull Bulletin, 18: 92-95.
  • Kadarmideen HN. 2004. Genetic correlations among body condition score, somatic cell score, milkproduction, fertility and conformation traits in dairy cows. Animal Science, 79: 191-201. DOI:https://doi.org/10.1017/S1357729800090056.
  • Makgahlela ML, Mostert BE, Banga CB. 2009. Genetic relationships between calving interval and linear type traits in South African Holstein and Jersey cattle. South African Journal of Animal Science, 39 (1): 90-92. DOI:https://doi.org/10.4314/sajas.v39i1.61221.
  • Mitchell RG, Rogers GW, Dechow CD, Vallimont JE, Cooper JB, Sander- Nielsen U, Clay JS. 2005. Milk urea nitrogen concentration: Heritability and genetic correlations with reproductive performance and disease. Journal of Dairy Science, 88: 4434–4440. DOI:https://doi.org/10.3168/jds.S0022-0302(05)73130-1.
  • Mrode RA, Swanson GJT. 1994. Genetic and phenotypic relationships between conformation and production traits in Ayrshire heifers. Animal Production, 58: 335-338. DOI:https://doi.org/10.1017/S0003356100007261.
  • Némcová E, Štipková M, Zavadilová L. 2011. Genetic parameters for linear type traits in Czech Holstein cattle. Czech Journal of Animal Science, 4: 157-162. DOI:https://doi.org/10.17221/1435-CJAS.
  • Peréz-Cabal MA, Alenda R. 2002. Genetic relationships between lifetime profit and type traits in spanish Holstein cows. Journal of Dairy Science, 85: 3480-3491. DOI:https://doi.org/10.3168/jds.S0022-0302(02)74437-8.
  • Peréz-Cabal MA, Garcia C, Gonzáles-Recio O, Alenda R. 2005. Genetic and phenotipic reletionships among locomotion type traits, profit, production, longevity, and fertility in Spanish dairy cows. Journal of Dairy Science, 89: 1776-1783. DOI:https://doi.org/10.3168/jds.S0022-0302(06)72246-9.
  • Pryce JE, Coffey MP, Simm G. 2001. The relationship between body condition score and reproductive performance. Journal of Dairy Science, 84: 1508–1515. DOI:https://doi.org/10.3168/jds.S0022-0302(01)70184-1.
  • Pryce JE, Royal MD, Garnsworthy PC, Mao IL. 2004. Fertility in the high producing dairy cow. Livestock Production Science, 86: 125-135. DOI:https://doi.org/10.1111/j.1439-0531.2007.00906.x.
  • SPSS, 2015. SPSS for Windows, Version 2. SPSS Inc., Chicago, IL., USA.
  • Short TH, Lawlor TJ, Lee JR, Lee KL. 1991. Genetic parameters for three experimantal linear type traits. Journal of Dairy Science, 74: 2020–2025. DOI:https://doi.org/10.3168/jds.S0022-0302(91)78372-0.
  • Sewalem A, Kistemaker GJ, Van Doormaal BJ. 2005. Relationship between type traits and longevity in Canadian Jerseys and Ayrshires using a Weibull proportional hazards model. Journal of Dairy Science, 88 (4): 1552-1560. DOI:https://doi.org/10.3168/jds.S0022-0302(05)72824-1.
  • Sewalem A, Miglior F, Kistemaker GJ, Sullivan P, Van Doormaal BJ. 2008. Relationship between reproduction traits and functional longevity in canadian dairy cattle. Journal of Dairy Science, 91 (4): 1660-1668. DOI:https://doi.org/10.3168/jds.2007-0178.
  • Špehar M, Štepec M, Potočnik K. 2012. Variance components estimation for type traits in Slovenian Brown Swiss cattle. Acta Agriculturae Slovenica, 100 (2): 107-115.
  • Sun C, Madsen P, Lund MS, Zhang Y, Nielsen US, Su G. 2010. Improvement in genetic evaluation of female fertility in dairy cattle using multiple-trait models including milk production traits. Journal of Animal Science, 88: 871-878. DOI:https://doi.org/10.2527/jas.2009-1912.
  • Tiezzi F, Maltecca C. 2011. Selecting for female fertility: What can be learned from the dairy experience. Beef Improvement Federation, Research Symposium & Annual Meeting, p. 47-60, Montana, U.S.A.
  • Toghiani S. 2011. Genetic parameters and correlations among linear type traits in the first lactation of Holstein dairy cows. African Journal of Biotechnology, 10 (9): 1507-1510.
  • Toghiani S. 2012. Genetic relationships between production traits and reproductive performance in Holstein dairy cows. Archiv fur Tierzucht, 55 (5): 458-468. DOI:https://doi.org/10.5194/aab-55-458-2012.
  • Veerkamp RF, Brotherstone S. 1997. Genetic correlations between linear type traits, food intake, live weight and condition score in Holstein dairy cattle. Animal Science, 64: 385-392. DOI: https://doi.org/10.1017/S1357729800015976.
  • Vollema ANTR, Groen ABF. 1997. Genetic correlations between longevity and conformation traits in an upgrading dairy cattle populations. Journal of Dairy Science, 80: 3006–3014. DOI:Https://doi.org/ 10.3168/jds.S0022-0302(97)76267-2.
  • Weigel KA, Rekaya R. 2000. Genetic parameters for reproductive traits of Holstein cattle in California and Minnesota. Journal of Dairy Science, 83: 1072-1080. DOI: https://doi.org/10.3168/jds.S0022-0302(00)74971-X.
  • Wilson RD. 1979. A new system of evaluations. Hoard’s Dairy Man, 124, 1536-1537.
  • Zwald NR, Weigel KA, Chang YM, Welper RD, Clay JS. 2004) Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. Journal of Dairy Science, 87: 4287-4294. DOI:https://doi.org/10.3168/jds.S0022-0302(04)73573-0

Genotypic Correlations among First Lactation Profitability, Linear Type and Production Traits of Black and White Cows in Turkey

Year 2020, , 83 - 90, 29.12.2020
https://doi.org/10.29185/hayuretim.630155

Abstract

Objective: The purpose of this study was to use genetic
correlations between linear type, production traits and first lactation
profitability for the breeding programs.

Material
and Methods:
A Total of 810
primiparous cows were used. Multivariate Limited Maximum Likelihood was used to
determine the variance and covariance components of the genetic parameters.

Results: The average net profit, 305-d milk yield, first
calving age, conception rate at first service and calving ease rate were
determined as 540 US$, 6008 kg, 793 d, 61.6% and 91.7% respectively.
Heritabilities of linear type and production traits ranged from 0.10 to 0.42
and 0.04 to 0.39 respectively. The genetic correlations between first lactation
profitability and type traits ranged from -0.08 and 0.42, while between first lactation
profitability and production traits ranged from 0.06 and 0.34. The highest
genetic correlation was between first lactation profitability and central
ligament (0.42), while the lowest genetic correlation was between first
lactation profitability and udder depth (-0.08). The highest genetic
correlation was between first lactation profitability and lactation protein
yield (0.34), while the lowest genetic correlation was between first lactation
profitability and conception rate at first service (0.09). Genetic correlations
between type and production traits varied from -0.42 (FA and CFS) to 0.49 (DC and
305-d MY).







Conclusion: These results revealed that primiparous cows having
more angular, strong udder attachments, strong foot and legs structure were
more profitable and opportunities of genomic selection programs by using
genetic correlations between linear type and production traits, and first
lactation profitability could be achievable within dairy cattle breeding
programmes.

References

  • Anonymous. 2018. Official rules governing type classification. Brown Swiss Cattle Breeders’ Association of the U.S.A. http://www.brownswissusa.com (25 May 2018).
  • Banos G, Brotherstone S, Coffey MP. 2007. Prenatal maternal effects on body condition score, female fertility and milk yield of dairy cows. Journal of Dairy Science, 90: 3490-3499. DOI:https://doi.org/10.3168/jds.2006-809.
  • Berry DP, Buckley F, Dillon P, Evans RD, Rath M, Veerkamp. RF. 2003. Genetic reletionships among body condition score, body weight, milk yield and fertility in dairy cows. Journal of Dairy Science, 86: 2193-2204. DOI:https://doi.org/10.3168/jds.S0022-0302(03)73809-0.
  • Berry DP, Buckley F, Dillon P, Evans RD, Veerkamp RF. 2004. Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows. Irish Journal of Agricultural and Food Research, 43: 161-176.
  • Biffani S, Marusi M, Biscarini F, Canavesi F. 2005. Developing a genetic evaluation for fertility using angularity and milk yields as correlated traits. Interbull Bulletin, 33: 63-66.
  • Boldman KG, Kriese LA, Van Vleck CP, Van Tassell CP, Kachman SD. 1995. A Manual for Use of MTDFREML: A Set of Programs to Obtain Estimates of Variances and Covariances. Usd-Ars, Clay Center, Nebraska, USA.
  • Brotherstone S. 1994. Genetic and phenotypic correlations between linear type traits and production traits in Holstein Friesian dairy cattle. Animal Production, 59: 183-188.
  • Caraviello DZ, Weigel KA, Gianola D. 2003. Analysis of the relationship between type traits, inbreeding, and functional survival in Jersey cattle using a Weibull Proportional Hazards Model. Journal of Dairy Science, 86 (9): 2984-2989. DOI:https://doi.org/10.3168/jds.S0022-0302(03)73896-X.
  • Chauhan VPS, Hayes JF. 1991. Genetic parameters for first lactation milk production and composition traits for Holsteins using multivariate restricted maximum likelihood. Journal of Dairy Science, 74: 603-610. DOI:https://doi.org/10.3168/jds.S0022-0302(91)78207-6.
  • Dahiya SP. 2005. Linear functional type traits for reproductive efficiency in Hariana cows. Indian Journal of Animal Sciences, 75 (5): 524-527.
  • Dal Zotto R, De Marchi M, Dalvit C, Cassandro M, Gallo L, Carnier P, Bittante G. 2007. Heritabilities and genetic correlations of body condition score and calving interval with yield, somatic cell score, and linear type traits in Brown Swiss cattle. Journal of Dairy Science, 90: 5737–5743. DOI: https://doi.org/10.3168/jds.2007-0280.
  • Darwash AO, Lamming GE, Woolliams JA. 1997. Estimation of genetic variation in the interval from calving to postpartum ovulation of dairy cows. Journal of Dairy Science, 80: 1227–1234. DOI:https://doi.org/10.3168/jds.S0022-0302(97)76051-X.
  • Dematawewa CM, Berger PJ. 1998. Genetic and phenotypic parameters for 305- day yield, fertility, and survival in Holsteins. Journal of Dairy Science, 81: 2700–2709. DOI:https://doi.org/10.3168/jds.S0022-0302(98)75827-8.
  • Forabosco F, Groen AF, Bozzi R, Van Arendonk JAM, Filippini F, Boettcher P, Bijma P. 2004. Phenotypic relationships between longevity, type traits, and production in Chianina beef cattle. Journal of Animal Science, 82 (6): 572-1580. DOI:https://doi.org/10.2527/2004.8261572x.
  • Forabosco F, Bozzi R, Boettcher P, Filippini F, Bijma P, Van Arendonk JAM. 2005. Relationship between profitability and type traits and derivation of economic values for reproduction and survival traits in Chianina beef cows. Journal of Animal Science, 83 (9): 2043-2051. DOI:https://doi.org/10.2527/2005.8392043x.
  • Gengler N, Wiggans GR, Wright JR. 1999. Animal model genetic evaluation of type traits for five dairy cattle breeds. Journal of Dairy Science, 82 (6): 1350.e1-1350.e22. DOI:https://doi.org/10.3168/jds.S0022-0302(99)75359-2.
  • Gredler B, Fuerst C, Sölkner J. 2007. Analysis of new fertility traits for the joint genetic evaluation in Austria and Germany. Interbull Bulletin, 37: 152–155.
  • Groen AF, Steine T, Colleau JJ, Pedersen J, Pribyl J, Reinsch N. 1997. Economic values in dairy cattle, with special reference to functional traits. Report of an EAAP-working group. Livestock Production Science, 49: 1–21. DOI:https://doi.org/10.1016/S0301-6226(97)00041-9.
  • Hyppänen K, Juga J. 1998. Environmental and genetic effects on the 60-day nonreturn rate in Finnish AI bulls. Interbull Bulletin, 18: 92-95.
  • Kadarmideen HN. 2004. Genetic correlations among body condition score, somatic cell score, milkproduction, fertility and conformation traits in dairy cows. Animal Science, 79: 191-201. DOI:https://doi.org/10.1017/S1357729800090056.
  • Makgahlela ML, Mostert BE, Banga CB. 2009. Genetic relationships between calving interval and linear type traits in South African Holstein and Jersey cattle. South African Journal of Animal Science, 39 (1): 90-92. DOI:https://doi.org/10.4314/sajas.v39i1.61221.
  • Mitchell RG, Rogers GW, Dechow CD, Vallimont JE, Cooper JB, Sander- Nielsen U, Clay JS. 2005. Milk urea nitrogen concentration: Heritability and genetic correlations with reproductive performance and disease. Journal of Dairy Science, 88: 4434–4440. DOI:https://doi.org/10.3168/jds.S0022-0302(05)73130-1.
  • Mrode RA, Swanson GJT. 1994. Genetic and phenotypic relationships between conformation and production traits in Ayrshire heifers. Animal Production, 58: 335-338. DOI:https://doi.org/10.1017/S0003356100007261.
  • Némcová E, Štipková M, Zavadilová L. 2011. Genetic parameters for linear type traits in Czech Holstein cattle. Czech Journal of Animal Science, 4: 157-162. DOI:https://doi.org/10.17221/1435-CJAS.
  • Peréz-Cabal MA, Alenda R. 2002. Genetic relationships between lifetime profit and type traits in spanish Holstein cows. Journal of Dairy Science, 85: 3480-3491. DOI:https://doi.org/10.3168/jds.S0022-0302(02)74437-8.
  • Peréz-Cabal MA, Garcia C, Gonzáles-Recio O, Alenda R. 2005. Genetic and phenotipic reletionships among locomotion type traits, profit, production, longevity, and fertility in Spanish dairy cows. Journal of Dairy Science, 89: 1776-1783. DOI:https://doi.org/10.3168/jds.S0022-0302(06)72246-9.
  • Pryce JE, Coffey MP, Simm G. 2001. The relationship between body condition score and reproductive performance. Journal of Dairy Science, 84: 1508–1515. DOI:https://doi.org/10.3168/jds.S0022-0302(01)70184-1.
  • Pryce JE, Royal MD, Garnsworthy PC, Mao IL. 2004. Fertility in the high producing dairy cow. Livestock Production Science, 86: 125-135. DOI:https://doi.org/10.1111/j.1439-0531.2007.00906.x.
  • SPSS, 2015. SPSS for Windows, Version 2. SPSS Inc., Chicago, IL., USA.
  • Short TH, Lawlor TJ, Lee JR, Lee KL. 1991. Genetic parameters for three experimantal linear type traits. Journal of Dairy Science, 74: 2020–2025. DOI:https://doi.org/10.3168/jds.S0022-0302(91)78372-0.
  • Sewalem A, Kistemaker GJ, Van Doormaal BJ. 2005. Relationship between type traits and longevity in Canadian Jerseys and Ayrshires using a Weibull proportional hazards model. Journal of Dairy Science, 88 (4): 1552-1560. DOI:https://doi.org/10.3168/jds.S0022-0302(05)72824-1.
  • Sewalem A, Miglior F, Kistemaker GJ, Sullivan P, Van Doormaal BJ. 2008. Relationship between reproduction traits and functional longevity in canadian dairy cattle. Journal of Dairy Science, 91 (4): 1660-1668. DOI:https://doi.org/10.3168/jds.2007-0178.
  • Špehar M, Štepec M, Potočnik K. 2012. Variance components estimation for type traits in Slovenian Brown Swiss cattle. Acta Agriculturae Slovenica, 100 (2): 107-115.
  • Sun C, Madsen P, Lund MS, Zhang Y, Nielsen US, Su G. 2010. Improvement in genetic evaluation of female fertility in dairy cattle using multiple-trait models including milk production traits. Journal of Animal Science, 88: 871-878. DOI:https://doi.org/10.2527/jas.2009-1912.
  • Tiezzi F, Maltecca C. 2011. Selecting for female fertility: What can be learned from the dairy experience. Beef Improvement Federation, Research Symposium & Annual Meeting, p. 47-60, Montana, U.S.A.
  • Toghiani S. 2011. Genetic parameters and correlations among linear type traits in the first lactation of Holstein dairy cows. African Journal of Biotechnology, 10 (9): 1507-1510.
  • Toghiani S. 2012. Genetic relationships between production traits and reproductive performance in Holstein dairy cows. Archiv fur Tierzucht, 55 (5): 458-468. DOI:https://doi.org/10.5194/aab-55-458-2012.
  • Veerkamp RF, Brotherstone S. 1997. Genetic correlations between linear type traits, food intake, live weight and condition score in Holstein dairy cattle. Animal Science, 64: 385-392. DOI: https://doi.org/10.1017/S1357729800015976.
  • Vollema ANTR, Groen ABF. 1997. Genetic correlations between longevity and conformation traits in an upgrading dairy cattle populations. Journal of Dairy Science, 80: 3006–3014. DOI:Https://doi.org/ 10.3168/jds.S0022-0302(97)76267-2.
  • Weigel KA, Rekaya R. 2000. Genetic parameters for reproductive traits of Holstein cattle in California and Minnesota. Journal of Dairy Science, 83: 1072-1080. DOI: https://doi.org/10.3168/jds.S0022-0302(00)74971-X.
  • Wilson RD. 1979. A new system of evaluations. Hoard’s Dairy Man, 124, 1536-1537.
  • Zwald NR, Weigel KA, Chang YM, Welper RD, Clay JS. 2004) Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. Journal of Dairy Science, 87: 4287-4294. DOI:https://doi.org/10.3168/jds.S0022-0302(04)73573-0
There are 42 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section Research Articles
Authors

İbrahim Tapkı 0000-0002-4552-6941

Nuran Tapkı 0000-0001-5044-795X

Yusuf Ziya Güzey 0000-0002-4900-6038

Muhammet Hanifi Selvi 0000-0002-9785-9174

Publication Date December 29, 2020
Submission Date October 7, 2019
Published in Issue Year 2020

Cite

APA Tapkı, İ., Tapkı, N., Güzey, Y. Z., Selvi, M. H. (2020). Türkiye’de Yetiştirilen Siyah Alaca İneklerin Doğrusal Tip Özellikleri, Birinci Laktasyon Karlılığı ve Verim Özellikleri Arasındaki Genotopik Korelasyonlar. Journal of Animal Production, 61(2), 83-90. https://doi.org/10.29185/hayuretim.630155


26405

Creative Commons License Journal of Animal Production is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


26407 26406 26408   26409  26410263992641126412  26413   26414 26415