Review
BibTex RIS Cite

EVALUATION OF ARTIFICIAL SWEETENERS IN TERMS OF HEALTHY NUTRITION AND HALAL FOOD

Year 2024, , 44 - 58, 30.06.2024
https://doi.org/10.51973/head.1471043

Abstract

Today, artificial sweeteners are widely used in food production to reduce calorie intake, lose weight, and maintain a healthy diet. Artificial sweeteners stimulate hormones with their sweet taste content, some reach the microbiota without being digested, and also act as a substrate for gut bacteria. By using this effect by intestinal bacteria, it may leads to a decrease or increase in short-chain fatty acid (SCFA) production by changing the ratio of intestinal microbiota. Recent studies suggest that consumption of artificial sweeteners may induce dysbiosis of the gut microbiota and lead to the development of type 2 diabetes mellitus (T2DM) and glucose intolerance in healthy individuals. Considering that the research supporting the consumption and safety of artificial sweeteners is not sufficient, and that existing studies give conflicting results, so it is inevitable to reevaluate the healthiness and halalness of the issue. As a result, this study aimed to evaluate artificial sweeteners used in various foods in terms of healthy nutrition and halal food production.

References

  • Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E., & Schiffman, S. S. (2008). Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 71(21), 1415–1429. https://doi.org/10.1080/15287390802328630
  • Ahmad, S. Y., Friel, J., & Mackay, D. (2020). The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: Secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients, 12(11), 1–16. https://doi.org/10.3390/nu12113408
  • Azeez, OH, Alkass, SY ve Persike, DS (2019). Sıçanlarda uzun süreli sakarin tüketimi ve artan obezite, diyabet, karaciğer fonksiyon bozukluğu ve böbrek yetmezliği riski. Tıp , 55 (10), 681.
  • Basson, A. R., Rodriguez-Palacios, A., & Cominelli, F. (2021). Artificial Sweeteners: History and New Concepts on Inflammation. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.746247
  • Baumgartner, R., Forteza, M. J., & Ketelhuth, D. F. J. (2019). The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine, 122. https://doi.org/10.1016/j.cyto.2017.09.004
  • Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V., & Fedotcheva, N. (2012). Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. Journal of Biomedical Science, 19(1). https://doi.org/10.1186/1423-0127-19-89
  • Bernardo, W. M., Simões, R. S., Buzzini, R. F., Nunes, V. M., & Glina, F. P. A. (2016). Adverse effects of the consumption of artificial sweeteners - Systematic review. Revista Da Associacao Medica Brasileira, 62(2), 120–122. https://doi.org/10.1590/1806-9282.62.02.120
  • Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017a). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in Physiology, 8(JUL). https://doi.org/10.3389/fphys.2017.00487
  • Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017b). The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178426
  • Bian, X., Tu, P., Chi, L., Gao, B., Ru, H., & Lu, K. (2017). Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 107, 530–539. https://doi.org/10.1016/j.fct.2017.04.045
  • Büyüközer, H. K. (2013). Yeni Dünya Düzeni ve Helal gıda, 2. Baskı, Erkam Matbaası, İstanbul.
  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491
  • Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food and Chemical Toxicology, 107, 302–317. https://doi.org/10.1016/j.fct.2017.06.046
  • Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370. https://doi.org/10.1016/j.foodchem.2021.130991
  • Chattopadhyay, S., Raychaudhuri, U., & Chakraborty, R. (2014). Artificial sweeteners–a review. Journal of Food Science and Technology, 51(4), 611–621.
  • Chi, L., Bian, X., Gao, B., Tu, P., Lai, Y., Ru, H., & Lu, K. (2018). Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules, 23(2). https://doi.org/10.3390/molecules23020367
  • Daly, K., Darby, A. C., & Shirazi-Beechey, S. P. (2016). Low calorie sweeteners and gut microbiota. Physiology and Behavior, 164, 494–500. https://doi.org/10.1016/j.physbeh.2016.03.014
  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2013). Scientific Opinion on the re‐evaluation of aspartame (E 951) as a food additive. Efsa Journal, 11(12), 3496.
  • FDA. (2018). Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. US Food & Drug Administration, 1–7.
  • Fernández, J., Redondo-Blanco, S., Gutiérrez-del-Río, I., Miguélez, E. M., Villar, C. J., & Lombó, F. (2016). Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods, 25, 511–522. https://doi.org/10.1016/j.jff.2016.06.032
  • Foletto, K. C., Melo Batista, B. A., Neves, A. M., de Matos Feijó, F., Ballard, C. R., Marques Ribeiro, M. F., & Bertoluci, M. C. (2016). Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats. Appetite, 96, 604–610. https://doi.org/10.1016/j.appet.2015.11.003
  • Gao, B., Bian, X., Mahbub, R., & Lu, K. (2017). Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environmental Health Perspectives, 125(2), 198–206. https://doi.org/10.1289/EHP202
  • Grotz, V. L., Pi-Sunyer, X., Porte, D., Roberts, A., & Richard Trout, J. (2017). A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regulatory Toxicology and Pharmacology, 88, 22–33. https://doi.org/10.1016/j.yrtph.2017.05.011
  • Hagger, M. S., Trost, N., Keech, J. J., Chan, D. K. C., & Hamilton, K. (2017). Predicting sugar consumption: Application of an integrated dual-process, dual-phase model. Appetite, 116, 147–156. https://doi.org/10.1016/j.appet.2017.04.032
  • Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H., & Nicholson, J. K. (2011). Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends in Microbiology, 19(7), 349–359. https://doi.org/10.1016/j.tim.2011.05.006
  • Keszthelyi, D., Troost, F. J., & Masclee, A. A. M. (2009). Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterology and Motility, 21(12), 1239–1249. https://doi.org/10.1111/j.1365-2982.2009.01370.x
  • Kızgın, Y., & Özkan, B. (2014). A study on determining the halal food consumption tendencies of the consumers. Business & Management Studies: An International Journal, 2(1), 18.
  • La Mura, V., Pasarín, M., Rodriguez-Vilarrupla, A., García-Pagán, J. C., Bosch, J., & Abraldes, J. G. (2014). Liver sinusoidal endothelial dysfunction after LPS administration: A role for inducible-nitric oxide synthase. Journal of Hepatology, 61(6), 1321–1327. https://doi.org/10.1016/j.jhep.2014.07.014
  • Liauchonak, I., Qorri, B., Dawoud, F., Riat, Y., & Szewczuk, M. R. (2019). Non-nutritive sweeteners and their implications on the development of metabolic syndrome. Nutrients, 11(3). https://doi.org/10.3390/nu11030644
  • Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., Spencer, P. S., Waddell, W. J., Walker, R., & Williams, G. M. (2007). Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology, 37(8), 629–727. https://doi.org/10.1080/10408440701516184
  • Magnuson, Bernadene A., Carakostas, M. C., Moore, N. H., Poulos, S. P., & Renwick, A. G. (2016). Biological fate of low-calorie sweeteners. Nutrition Reviews, 74(11), 670–689. https://doi.org/10.1093/nutrit/nuw032
  • Martínez-Carrillo, B. E., Rosales-Gómez, C. A., Ramírez-Durán, N., Reséndiz-Albor, A. A., Escoto-Herrera, J. A., Mondragón-Velásquez, T., Valdés-Ramos, R., & Castillo-Cardiel, A. (2019). Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. International Journal of Food Science, 2019. https://doi.org/10.1155/2019/9619020
  • Moriconi, E., Feraco, A., Marzolla, V., Infante, M., Lombardo, M., Fabbri, A., & Caprio, M. (2020). Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.00444
  • Nakagawa, Y., Nagasawa, M., Yamada, S., Hara, A., Mogami, H., Nikolaev, V. O., Lohse, M. J., Shigemura, N., Ninomiya, Y., & Kojima, I. (2009). Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005106
  • Nettleton, J. E., Reimer, R. A., & Shearer, J. (2016). Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiology and Behavior, 164, 488–493. https://doi.org/10.1016/j.physbeh.2016.04.029
  • Omran, A., Ahearn, G., Bowers, D., Swenson, J., & Coughlin, C. (2013). Metabolic effects of sucralose on environmental bacteria. Journal of Toxicology, 2013. https://doi.org/10.1155/2013/372986
  • Onaolapo, A. Y., Onaolapo, O. J., & Olowe, O. A. (2020). An overview of addiction to sugar. Dietary Sugar, Salt and Fat in Human Health, 195–216. https://doi.org/10.1016/b978-0-12-816918-6.00009-3
  • Palmnäs, M. S. A., Cowan, T. E., Bomhof, M. R., Su, J., Reimer, R. A., Vogel, H. J., Hittel, D. S., & Shearer, J. (2014). Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0109841
  • Ren, X., Zhou, L., Terwilliger, R., Newton, S. S., & de Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 3(JUN). https://doi.org/10.3389/neuro.07.012.2009
  • Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J., & Gil, A. (2019). Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Advances in Nutrition, 10, S31–S48. https://doi.org/10.1093/advances/nmy037
  • Rycerz, K., & Jaworska-Adamu, J. E. (2013). Effects of aspartame metabolites on astrocytes and neurons. Folia Neuropathologica, 51(1), 10–17. https://doi.org/10.5114/fn.2013.34191
  • Sánchez-Tapia, M., Martínez-Medina, J., Tovar, A. R., & Torres, N. (2019). Natural and artificial sweeteners and high fat diet modify differential taste receptors, insulin, and TLR4-mediated inflammatory pathways in adipose tissues of rats. Nutrients, 11(4). https://doi.org/10.3390/nu11040880
  • Sánchez-Tapia, M., Miller, A. W., Granados-Portillo, O., Tovar, A. R., & Torres, N. (2020). The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet. Gut Microbes, 12(1). https://doi.org/10.1080/19490976.2020.1801301
  • Santos, P. S., Caria, C. R. P., Gotardo, E. M. F., Ribeiro, M. L., Pedrazzoli, J., & Gambero, A. (2018). Artificial sweetener saccharin disrupts intestinal epithelial cells’ barrier function in vitro. Food and Function, 9(7), 3815–3822. https://doi.org/10.1039/c8fo00883c
  • Saraiva, A., Carrascosa, C., Raheem, D., Ramos, F., & Raposo, A. (2020). Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health, 17(17), 1–22. https://doi.org/10.3390/ijerph17176285
  • Schiffman, S. S., & Rother, K. I. (2013). Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 16(7), 399–451. https://doi.org/10.1080/10937404.2013.842523
  • Smeets, P. A. M., De Graaf, C., Stafleu, A., Van Osch, M. J. P., & Van Der Grond, J. (2005). Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. American Journal of Clinical Nutrition, 82(5), 1011–1016. https://doi.org/10.1093/ajcn/82.5.1011
  • Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186. https://doi.org/10.1038/nature13793
  • Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I.,
  • Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2015). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstetrical and Gynecological Survey, 70(1), 31–32. https://doi.org/10.1097/01.ogx.0000460711.58331.94
  • Tanti, J. F., Ceppo, F., Jager, J., & Berthou, F. (2013). Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Frontiers in Endocrinology, 3(JAN). https://doi.org/10.3389/fendo.2012.00181
  • Thomson, P., Santibañez, R., Aguirre, C., Galgani, J. E., & Garrido, D. (2019). Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. British Journal of Nutrition, 122(8), 856–862. https://doi.org/10.1017/S0007114519001570
  • Türker, S. (2020). Helal ve güvenilir gıda. Helal ve Etik Araşt. Derg. 2 (1): 85-97, 2020.
  • Valle, M., St-Pierre, P., Pilon, G., & Marette, A. (2020). Differential effects of chronic ingestion of refined sugars versus natural sweeteners on insulin resistance and hepatic steatosis in a rat model of diet-induced obesity. Nutrients, 12(8), 1–14. https://doi.org/10.3390/nu12082292
  • Vamanu, E. (2014). The interaction between bacteria and bile. Annals of Microbiology, 64(3), 625–651. https://doi.org/10.3923/ijps.2007.694.704
  • Venegas, D. P., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00277
  • Wilk, K., Korytek, W., Pelczyńska, M., Moszak, M., & Bogdański, P. (2022). The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients, 14(6). https://doi.org/10.3390/nu14061261
  • Yetim, H. ve Türker, S. (2020). Helal ve Sağlıklı Gıda. İst. S. Zaim Üniversitesi Yayınları, No: 51, İstanbul, 149 sh.

YAPAY TATLANDIRICILARIN SAĞLIKLI BESLENME VE HELAL GIDA AÇISINDAN DEĞERLENDİRİLMESİ

Year 2024, , 44 - 58, 30.06.2024
https://doi.org/10.51973/head.1471043

Abstract

Günümüzde, kalori alımını azaltmak ve kilo vermek amacıyla gıdalarda yapay tatlandırıcılar yaygın olarak kullanılmaktadır. Yiyeceklerde bulunan yapay tatlandırıcılar, tatlı tat içeriği ile hormonların uyarılmasını sağlar, bazıları sindirilmeden mikrobiyotaya ulaşır ve bağırsak bakterilerinin substratı olarak da işlev görür. Bu etkisi bağırsak bakterileri tarafından kullanılarak kısa zincirli yağ asidi (KZYA) üretimi artırılabildiği gibi bağırsak bakteri oranlarını değiştirerek KZYA üretiminin azalmasına da yol açabilmektedir. Son çalışmalar, yapay tatlandırıcı tüketiminin intestinal mikrobiyota disbiyozunu (bağırsak ekosistemini bozan sağlıksız bağırsak florası oluşumu) indükleyebileceğini ve sağlıklı bireylerde tip 2 diyabetes mellitus (T2DM) gelişimine ve glukoz intoleransına neden olabileceğini göstermektedir. Yapay tatlandırıcı tüketimi ve güvenliğini destekleyen araştırmaların henüz yeterli düzeyde olmadığı ve mevcut çalışmaların da birbirinden farklı sonuçlar verdiği göz önüne alınarak konunun sağlık ve helallik boyutunun yeniden değerlendirilmesi gerektiği açıktır. Sonuç olarak bu çalışmada, çeşitli gıdalarda kullanılan yapay tatlandırıcılar ve bunların sağlıklı beslenme açısından önemi ve helallik durumunun değerlendirilmesi amaçlanmıştır.

References

  • Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E., & Schiffman, S. S. (2008). Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 71(21), 1415–1429. https://doi.org/10.1080/15287390802328630
  • Ahmad, S. Y., Friel, J., & Mackay, D. (2020). The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: Secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients, 12(11), 1–16. https://doi.org/10.3390/nu12113408
  • Azeez, OH, Alkass, SY ve Persike, DS (2019). Sıçanlarda uzun süreli sakarin tüketimi ve artan obezite, diyabet, karaciğer fonksiyon bozukluğu ve böbrek yetmezliği riski. Tıp , 55 (10), 681.
  • Basson, A. R., Rodriguez-Palacios, A., & Cominelli, F. (2021). Artificial Sweeteners: History and New Concepts on Inflammation. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.746247
  • Baumgartner, R., Forteza, M. J., & Ketelhuth, D. F. J. (2019). The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine, 122. https://doi.org/10.1016/j.cyto.2017.09.004
  • Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V., & Fedotcheva, N. (2012). Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. Journal of Biomedical Science, 19(1). https://doi.org/10.1186/1423-0127-19-89
  • Bernardo, W. M., Simões, R. S., Buzzini, R. F., Nunes, V. M., & Glina, F. P. A. (2016). Adverse effects of the consumption of artificial sweeteners - Systematic review. Revista Da Associacao Medica Brasileira, 62(2), 120–122. https://doi.org/10.1590/1806-9282.62.02.120
  • Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017a). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in Physiology, 8(JUL). https://doi.org/10.3389/fphys.2017.00487
  • Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017b). The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178426
  • Bian, X., Tu, P., Chi, L., Gao, B., Ru, H., & Lu, K. (2017). Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 107, 530–539. https://doi.org/10.1016/j.fct.2017.04.045
  • Büyüközer, H. K. (2013). Yeni Dünya Düzeni ve Helal gıda, 2. Baskı, Erkam Matbaası, İstanbul.
  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491
  • Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food and Chemical Toxicology, 107, 302–317. https://doi.org/10.1016/j.fct.2017.06.046
  • Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370. https://doi.org/10.1016/j.foodchem.2021.130991
  • Chattopadhyay, S., Raychaudhuri, U., & Chakraborty, R. (2014). Artificial sweeteners–a review. Journal of Food Science and Technology, 51(4), 611–621.
  • Chi, L., Bian, X., Gao, B., Tu, P., Lai, Y., Ru, H., & Lu, K. (2018). Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules, 23(2). https://doi.org/10.3390/molecules23020367
  • Daly, K., Darby, A. C., & Shirazi-Beechey, S. P. (2016). Low calorie sweeteners and gut microbiota. Physiology and Behavior, 164, 494–500. https://doi.org/10.1016/j.physbeh.2016.03.014
  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2013). Scientific Opinion on the re‐evaluation of aspartame (E 951) as a food additive. Efsa Journal, 11(12), 3496.
  • FDA. (2018). Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. US Food & Drug Administration, 1–7.
  • Fernández, J., Redondo-Blanco, S., Gutiérrez-del-Río, I., Miguélez, E. M., Villar, C. J., & Lombó, F. (2016). Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods, 25, 511–522. https://doi.org/10.1016/j.jff.2016.06.032
  • Foletto, K. C., Melo Batista, B. A., Neves, A. M., de Matos Feijó, F., Ballard, C. R., Marques Ribeiro, M. F., & Bertoluci, M. C. (2016). Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats. Appetite, 96, 604–610. https://doi.org/10.1016/j.appet.2015.11.003
  • Gao, B., Bian, X., Mahbub, R., & Lu, K. (2017). Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environmental Health Perspectives, 125(2), 198–206. https://doi.org/10.1289/EHP202
  • Grotz, V. L., Pi-Sunyer, X., Porte, D., Roberts, A., & Richard Trout, J. (2017). A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regulatory Toxicology and Pharmacology, 88, 22–33. https://doi.org/10.1016/j.yrtph.2017.05.011
  • Hagger, M. S., Trost, N., Keech, J. J., Chan, D. K. C., & Hamilton, K. (2017). Predicting sugar consumption: Application of an integrated dual-process, dual-phase model. Appetite, 116, 147–156. https://doi.org/10.1016/j.appet.2017.04.032
  • Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H., & Nicholson, J. K. (2011). Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends in Microbiology, 19(7), 349–359. https://doi.org/10.1016/j.tim.2011.05.006
  • Keszthelyi, D., Troost, F. J., & Masclee, A. A. M. (2009). Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterology and Motility, 21(12), 1239–1249. https://doi.org/10.1111/j.1365-2982.2009.01370.x
  • Kızgın, Y., & Özkan, B. (2014). A study on determining the halal food consumption tendencies of the consumers. Business & Management Studies: An International Journal, 2(1), 18.
  • La Mura, V., Pasarín, M., Rodriguez-Vilarrupla, A., García-Pagán, J. C., Bosch, J., & Abraldes, J. G. (2014). Liver sinusoidal endothelial dysfunction after LPS administration: A role for inducible-nitric oxide synthase. Journal of Hepatology, 61(6), 1321–1327. https://doi.org/10.1016/j.jhep.2014.07.014
  • Liauchonak, I., Qorri, B., Dawoud, F., Riat, Y., & Szewczuk, M. R. (2019). Non-nutritive sweeteners and their implications on the development of metabolic syndrome. Nutrients, 11(3). https://doi.org/10.3390/nu11030644
  • Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., Spencer, P. S., Waddell, W. J., Walker, R., & Williams, G. M. (2007). Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology, 37(8), 629–727. https://doi.org/10.1080/10408440701516184
  • Magnuson, Bernadene A., Carakostas, M. C., Moore, N. H., Poulos, S. P., & Renwick, A. G. (2016). Biological fate of low-calorie sweeteners. Nutrition Reviews, 74(11), 670–689. https://doi.org/10.1093/nutrit/nuw032
  • Martínez-Carrillo, B. E., Rosales-Gómez, C. A., Ramírez-Durán, N., Reséndiz-Albor, A. A., Escoto-Herrera, J. A., Mondragón-Velásquez, T., Valdés-Ramos, R., & Castillo-Cardiel, A. (2019). Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. International Journal of Food Science, 2019. https://doi.org/10.1155/2019/9619020
  • Moriconi, E., Feraco, A., Marzolla, V., Infante, M., Lombardo, M., Fabbri, A., & Caprio, M. (2020). Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.00444
  • Nakagawa, Y., Nagasawa, M., Yamada, S., Hara, A., Mogami, H., Nikolaev, V. O., Lohse, M. J., Shigemura, N., Ninomiya, Y., & Kojima, I. (2009). Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005106
  • Nettleton, J. E., Reimer, R. A., & Shearer, J. (2016). Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiology and Behavior, 164, 488–493. https://doi.org/10.1016/j.physbeh.2016.04.029
  • Omran, A., Ahearn, G., Bowers, D., Swenson, J., & Coughlin, C. (2013). Metabolic effects of sucralose on environmental bacteria. Journal of Toxicology, 2013. https://doi.org/10.1155/2013/372986
  • Onaolapo, A. Y., Onaolapo, O. J., & Olowe, O. A. (2020). An overview of addiction to sugar. Dietary Sugar, Salt and Fat in Human Health, 195–216. https://doi.org/10.1016/b978-0-12-816918-6.00009-3
  • Palmnäs, M. S. A., Cowan, T. E., Bomhof, M. R., Su, J., Reimer, R. A., Vogel, H. J., Hittel, D. S., & Shearer, J. (2014). Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0109841
  • Ren, X., Zhou, L., Terwilliger, R., Newton, S. S., & de Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 3(JUN). https://doi.org/10.3389/neuro.07.012.2009
  • Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J., & Gil, A. (2019). Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Advances in Nutrition, 10, S31–S48. https://doi.org/10.1093/advances/nmy037
  • Rycerz, K., & Jaworska-Adamu, J. E. (2013). Effects of aspartame metabolites on astrocytes and neurons. Folia Neuropathologica, 51(1), 10–17. https://doi.org/10.5114/fn.2013.34191
  • Sánchez-Tapia, M., Martínez-Medina, J., Tovar, A. R., & Torres, N. (2019). Natural and artificial sweeteners and high fat diet modify differential taste receptors, insulin, and TLR4-mediated inflammatory pathways in adipose tissues of rats. Nutrients, 11(4). https://doi.org/10.3390/nu11040880
  • Sánchez-Tapia, M., Miller, A. W., Granados-Portillo, O., Tovar, A. R., & Torres, N. (2020). The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet. Gut Microbes, 12(1). https://doi.org/10.1080/19490976.2020.1801301
  • Santos, P. S., Caria, C. R. P., Gotardo, E. M. F., Ribeiro, M. L., Pedrazzoli, J., & Gambero, A. (2018). Artificial sweetener saccharin disrupts intestinal epithelial cells’ barrier function in vitro. Food and Function, 9(7), 3815–3822. https://doi.org/10.1039/c8fo00883c
  • Saraiva, A., Carrascosa, C., Raheem, D., Ramos, F., & Raposo, A. (2020). Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health, 17(17), 1–22. https://doi.org/10.3390/ijerph17176285
  • Schiffman, S. S., & Rother, K. I. (2013). Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 16(7), 399–451. https://doi.org/10.1080/10937404.2013.842523
  • Smeets, P. A. M., De Graaf, C., Stafleu, A., Van Osch, M. J. P., & Van Der Grond, J. (2005). Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. American Journal of Clinical Nutrition, 82(5), 1011–1016. https://doi.org/10.1093/ajcn/82.5.1011
  • Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186. https://doi.org/10.1038/nature13793
  • Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I.,
  • Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2015). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstetrical and Gynecological Survey, 70(1), 31–32. https://doi.org/10.1097/01.ogx.0000460711.58331.94
  • Tanti, J. F., Ceppo, F., Jager, J., & Berthou, F. (2013). Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Frontiers in Endocrinology, 3(JAN). https://doi.org/10.3389/fendo.2012.00181
  • Thomson, P., Santibañez, R., Aguirre, C., Galgani, J. E., & Garrido, D. (2019). Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. British Journal of Nutrition, 122(8), 856–862. https://doi.org/10.1017/S0007114519001570
  • Türker, S. (2020). Helal ve güvenilir gıda. Helal ve Etik Araşt. Derg. 2 (1): 85-97, 2020.
  • Valle, M., St-Pierre, P., Pilon, G., & Marette, A. (2020). Differential effects of chronic ingestion of refined sugars versus natural sweeteners on insulin resistance and hepatic steatosis in a rat model of diet-induced obesity. Nutrients, 12(8), 1–14. https://doi.org/10.3390/nu12082292
  • Vamanu, E. (2014). The interaction between bacteria and bile. Annals of Microbiology, 64(3), 625–651. https://doi.org/10.3923/ijps.2007.694.704
  • Venegas, D. P., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00277
  • Wilk, K., Korytek, W., Pelczyńska, M., Moszak, M., & Bogdański, P. (2022). The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients, 14(6). https://doi.org/10.3390/nu14061261
  • Yetim, H. ve Türker, S. (2020). Helal ve Sağlıklı Gıda. İst. S. Zaim Üniversitesi Yayınları, No: 51, İstanbul, 149 sh.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review articles
Authors

Ömer Faruk Mızrak 0000-0002-0389-5626

Publication Date June 30, 2024
Submission Date April 19, 2024
Acceptance Date June 27, 2024
Published in Issue Year 2024

Cite

APA Mızrak, Ö. F. (2024). YAPAY TATLANDIRICILARIN SAĞLIKLI BESLENME VE HELAL GIDA AÇISINDAN DEĞERLENDİRİLMESİ. Helal Ve Etik Araştırmalar Dergisi, 6(1), 44-58. https://doi.org/10.51973/head.1471043

Dizinler ve Platformlar / Indexes and Platforms

22294    22295