Today, artificial sweeteners are widely used in food production to reduce calorie intake, lose weight, and maintain a healthy diet. Artificial sweeteners stimulate hormones with their sweet taste content, some reach the microbiota without being digested, and also act as a substrate for gut bacteria. By using this effect by intestinal bacteria, it may leads to a decrease or increase in short-chain fatty acid (SCFA) production by changing the ratio of intestinal microbiota. Recent studies suggest that consumption of artificial sweeteners may induce dysbiosis of the gut microbiota and lead to the development of type 2 diabetes mellitus (T2DM) and glucose intolerance in healthy individuals. Considering that the research supporting the consumption and safety of artificial sweeteners is not sufficient, and that existing studies give conflicting results, so it is inevitable to reevaluate the healthiness and halalness of the issue. As a result, this study aimed to evaluate artificial sweeteners used in various foods in terms of healthy nutrition and halal food production.
Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E., & Schiffman, S. S. (2008). Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 71(21), 1415–1429. https://doi.org/10.1080/15287390802328630
Ahmad, S. Y., Friel, J., & Mackay, D. (2020). The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: Secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients, 12(11), 1–16. https://doi.org/10.3390/nu12113408
Azeez, OH, Alkass, SY ve Persike, DS (2019). Sıçanlarda uzun süreli sakarin tüketimi ve artan obezite, diyabet, karaciğer fonksiyon bozukluğu ve böbrek yetmezliği riski. Tıp , 55 (10), 681.
Basson, A. R., Rodriguez-Palacios, A., & Cominelli, F. (2021). Artificial Sweeteners: History and New Concepts on Inflammation. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.746247
Baumgartner, R., Forteza, M. J., & Ketelhuth, D. F. J. (2019). The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine, 122. https://doi.org/10.1016/j.cyto.2017.09.004
Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V., & Fedotcheva, N. (2012). Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. Journal of Biomedical Science, 19(1). https://doi.org/10.1186/1423-0127-19-89
Bernardo, W. M., Simões, R. S., Buzzini, R. F., Nunes, V. M., & Glina, F. P. A. (2016). Adverse effects of the consumption of artificial sweeteners - Systematic review. Revista Da Associacao Medica Brasileira, 62(2), 120–122. https://doi.org/10.1590/1806-9282.62.02.120
Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017a). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in Physiology, 8(JUL). https://doi.org/10.3389/fphys.2017.00487
Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017b). The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178426
Bian, X., Tu, P., Chi, L., Gao, B., Ru, H., & Lu, K. (2017). Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 107, 530–539. https://doi.org/10.1016/j.fct.2017.04.045
Büyüközer, H. K. (2013). Yeni Dünya Düzeni ve Helal gıda, 2. Baskı, Erkam Matbaası, İstanbul.
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491
Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food and Chemical Toxicology, 107, 302–317. https://doi.org/10.1016/j.fct.2017.06.046
Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370. https://doi.org/10.1016/j.foodchem.2021.130991
Chattopadhyay, S., Raychaudhuri, U., & Chakraborty, R. (2014). Artificial sweeteners–a review. Journal of Food Science and Technology, 51(4), 611–621.
Chi, L., Bian, X., Gao, B., Tu, P., Lai, Y., Ru, H., & Lu, K. (2018). Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules, 23(2). https://doi.org/10.3390/molecules23020367
Daly, K., Darby, A. C., & Shirazi-Beechey, S. P. (2016). Low calorie sweeteners and gut microbiota. Physiology and Behavior, 164, 494–500. https://doi.org/10.1016/j.physbeh.2016.03.014
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2013). Scientific Opinion on the re‐evaluation of aspartame (E 951) as a food additive. Efsa Journal, 11(12), 3496.
FDA. (2018). Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. US Food & Drug Administration, 1–7.
Fernández, J., Redondo-Blanco, S., Gutiérrez-del-Río, I., Miguélez, E. M., Villar, C. J., & Lombó, F. (2016). Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods, 25, 511–522. https://doi.org/10.1016/j.jff.2016.06.032
Foletto, K. C., Melo Batista, B. A., Neves, A. M., de Matos Feijó, F., Ballard, C. R., Marques Ribeiro, M. F., & Bertoluci, M. C. (2016). Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats. Appetite, 96, 604–610. https://doi.org/10.1016/j.appet.2015.11.003
Gao, B., Bian, X., Mahbub, R., & Lu, K. (2017). Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environmental Health Perspectives, 125(2), 198–206. https://doi.org/10.1289/EHP202
Grotz, V. L., Pi-Sunyer, X., Porte, D., Roberts, A., & Richard Trout, J. (2017). A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regulatory Toxicology and Pharmacology, 88, 22–33. https://doi.org/10.1016/j.yrtph.2017.05.011
Hagger, M. S., Trost, N., Keech, J. J., Chan, D. K. C., & Hamilton, K. (2017). Predicting sugar consumption: Application of an integrated dual-process, dual-phase model. Appetite, 116, 147–156. https://doi.org/10.1016/j.appet.2017.04.032
Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H., & Nicholson, J. K. (2011). Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends in Microbiology, 19(7), 349–359. https://doi.org/10.1016/j.tim.2011.05.006
Keszthelyi, D., Troost, F. J., & Masclee, A. A. M. (2009). Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterology and Motility, 21(12), 1239–1249. https://doi.org/10.1111/j.1365-2982.2009.01370.x
Kızgın, Y., & Özkan, B. (2014). A study on determining the halal food consumption tendencies of the consumers. Business & Management Studies: An International Journal, 2(1), 18.
La Mura, V., Pasarín, M., Rodriguez-Vilarrupla, A., García-Pagán, J. C., Bosch, J., & Abraldes, J. G. (2014). Liver sinusoidal endothelial dysfunction after LPS administration: A role for inducible-nitric oxide synthase. Journal of Hepatology, 61(6), 1321–1327. https://doi.org/10.1016/j.jhep.2014.07.014
Liauchonak, I., Qorri, B., Dawoud, F., Riat, Y., & Szewczuk, M. R. (2019). Non-nutritive sweeteners and their implications on the development of metabolic syndrome. Nutrients, 11(3). https://doi.org/10.3390/nu11030644
Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., Spencer, P. S., Waddell, W. J., Walker, R., & Williams, G. M. (2007). Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology, 37(8), 629–727. https://doi.org/10.1080/10408440701516184
Magnuson, Bernadene A., Carakostas, M. C., Moore, N. H., Poulos, S. P., & Renwick, A. G. (2016). Biological fate of low-calorie sweeteners. Nutrition Reviews, 74(11), 670–689. https://doi.org/10.1093/nutrit/nuw032
Martínez-Carrillo, B. E., Rosales-Gómez, C. A., Ramírez-Durán, N., Reséndiz-Albor, A. A., Escoto-Herrera, J. A., Mondragón-Velásquez, T., Valdés-Ramos, R., & Castillo-Cardiel, A. (2019). Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. International Journal of Food Science, 2019. https://doi.org/10.1155/2019/9619020
Moriconi, E., Feraco, A., Marzolla, V., Infante, M., Lombardo, M., Fabbri, A., & Caprio, M. (2020). Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.00444
Nakagawa, Y., Nagasawa, M., Yamada, S., Hara, A., Mogami, H., Nikolaev, V. O., Lohse, M. J., Shigemura, N., Ninomiya, Y., & Kojima, I. (2009). Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005106
Nettleton, J. E., Reimer, R. A., & Shearer, J. (2016). Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiology and Behavior, 164, 488–493. https://doi.org/10.1016/j.physbeh.2016.04.029
Omran, A., Ahearn, G., Bowers, D., Swenson, J., & Coughlin, C. (2013). Metabolic effects of sucralose on environmental bacteria. Journal of Toxicology, 2013. https://doi.org/10.1155/2013/372986
Onaolapo, A. Y., Onaolapo, O. J., & Olowe, O. A. (2020). An overview of addiction to sugar. Dietary Sugar, Salt and Fat in Human Health, 195–216. https://doi.org/10.1016/b978-0-12-816918-6.00009-3
Palmnäs, M. S. A., Cowan, T. E., Bomhof, M. R., Su, J., Reimer, R. A., Vogel, H. J., Hittel, D. S., & Shearer, J. (2014). Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0109841
Ren, X., Zhou, L., Terwilliger, R., Newton, S. S., & de Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 3(JUN). https://doi.org/10.3389/neuro.07.012.2009
Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J., & Gil, A. (2019). Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Advances in Nutrition, 10, S31–S48. https://doi.org/10.1093/advances/nmy037
Rycerz, K., & Jaworska-Adamu, J. E. (2013). Effects of aspartame metabolites on astrocytes and neurons. Folia Neuropathologica, 51(1), 10–17. https://doi.org/10.5114/fn.2013.34191
Sánchez-Tapia, M., Martínez-Medina, J., Tovar, A. R., & Torres, N. (2019). Natural and artificial sweeteners and high fat diet modify differential taste receptors, insulin, and TLR4-mediated inflammatory pathways in adipose tissues of rats. Nutrients, 11(4). https://doi.org/10.3390/nu11040880
Sánchez-Tapia, M., Miller, A. W., Granados-Portillo, O., Tovar, A. R., & Torres, N. (2020). The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet. Gut Microbes, 12(1). https://doi.org/10.1080/19490976.2020.1801301
Santos, P. S., Caria, C. R. P., Gotardo, E. M. F., Ribeiro, M. L., Pedrazzoli, J., & Gambero, A. (2018). Artificial sweetener saccharin disrupts intestinal epithelial cells’ barrier function in vitro. Food and Function, 9(7), 3815–3822. https://doi.org/10.1039/c8fo00883c
Saraiva, A., Carrascosa, C., Raheem, D., Ramos, F., & Raposo, A. (2020). Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health, 17(17), 1–22. https://doi.org/10.3390/ijerph17176285
Schiffman, S. S., & Rother, K. I. (2013). Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 16(7), 399–451. https://doi.org/10.1080/10937404.2013.842523
Smeets, P. A. M., De Graaf, C., Stafleu, A., Van Osch, M. J. P., & Van Der Grond, J. (2005). Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. American Journal of Clinical Nutrition, 82(5), 1011–1016. https://doi.org/10.1093/ajcn/82.5.1011
Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186. https://doi.org/10.1038/nature13793
Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I.,
Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2015). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstetrical and Gynecological Survey, 70(1), 31–32. https://doi.org/10.1097/01.ogx.0000460711.58331.94
Tanti, J. F., Ceppo, F., Jager, J., & Berthou, F. (2013). Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Frontiers in Endocrinology, 3(JAN). https://doi.org/10.3389/fendo.2012.00181
Thomson, P., Santibañez, R., Aguirre, C., Galgani, J. E., & Garrido, D. (2019). Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. British Journal of Nutrition, 122(8), 856–862. https://doi.org/10.1017/S0007114519001570
Türker, S. (2020). Helal ve güvenilir gıda. Helal ve Etik Araşt. Derg. 2 (1): 85-97, 2020.
Valle, M., St-Pierre, P., Pilon, G., & Marette, A. (2020). Differential effects of chronic ingestion of refined sugars versus natural sweeteners on insulin resistance and hepatic steatosis in a rat model of diet-induced obesity. Nutrients, 12(8), 1–14. https://doi.org/10.3390/nu12082292
Vamanu, E. (2014). The interaction between bacteria and bile. Annals of Microbiology, 64(3), 625–651. https://doi.org/10.3923/ijps.2007.694.704
Venegas, D. P., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00277
Wilk, K., Korytek, W., Pelczyńska, M., Moszak, M., & Bogdański, P. (2022). The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients, 14(6). https://doi.org/10.3390/nu14061261
Yetim, H. ve Türker, S. (2020). Helal ve Sağlıklı Gıda. İst. S. Zaim Üniversitesi Yayınları, No: 51, İstanbul, 149 sh.
YAPAY TATLANDIRICILARIN SAĞLIKLI BESLENME VE HELAL GIDA AÇISINDAN DEĞERLENDİRİLMESİ
Günümüzde, kalori alımını azaltmak ve kilo vermek amacıyla gıdalarda yapay tatlandırıcılar yaygın olarak kullanılmaktadır. Yiyeceklerde bulunan yapay tatlandırıcılar, tatlı tat içeriği ile hormonların uyarılmasını sağlar, bazıları sindirilmeden mikrobiyotaya ulaşır ve bağırsak bakterilerinin substratı olarak da işlev görür. Bu etkisi bağırsak bakterileri tarafından kullanılarak kısa zincirli yağ asidi (KZYA) üretimi artırılabildiği gibi bağırsak bakteri oranlarını değiştirerek KZYA üretiminin azalmasına da yol açabilmektedir. Son çalışmalar, yapay tatlandırıcı tüketiminin intestinal mikrobiyota disbiyozunu (bağırsak ekosistemini bozan sağlıksız bağırsak florası oluşumu) indükleyebileceğini ve sağlıklı bireylerde tip 2 diyabetes mellitus (T2DM) gelişimine ve glukoz intoleransına neden olabileceğini göstermektedir. Yapay tatlandırıcı tüketimi ve güvenliğini destekleyen araştırmaların henüz yeterli düzeyde olmadığı ve mevcut çalışmaların da birbirinden farklı sonuçlar verdiği göz önüne alınarak konunun sağlık ve helallik boyutunun yeniden değerlendirilmesi gerektiği açıktır. Sonuç olarak bu çalışmada, çeşitli gıdalarda kullanılan yapay tatlandırıcılar ve bunların sağlıklı beslenme açısından önemi ve helallik durumunun değerlendirilmesi amaçlanmıştır.
Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E., & Schiffman, S. S. (2008). Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 71(21), 1415–1429. https://doi.org/10.1080/15287390802328630
Ahmad, S. Y., Friel, J., & Mackay, D. (2020). The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: Secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients, 12(11), 1–16. https://doi.org/10.3390/nu12113408
Azeez, OH, Alkass, SY ve Persike, DS (2019). Sıçanlarda uzun süreli sakarin tüketimi ve artan obezite, diyabet, karaciğer fonksiyon bozukluğu ve böbrek yetmezliği riski. Tıp , 55 (10), 681.
Basson, A. R., Rodriguez-Palacios, A., & Cominelli, F. (2021). Artificial Sweeteners: History and New Concepts on Inflammation. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.746247
Baumgartner, R., Forteza, M. J., & Ketelhuth, D. F. J. (2019). The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine, 122. https://doi.org/10.1016/j.cyto.2017.09.004
Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V., & Fedotcheva, N. (2012). Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. Journal of Biomedical Science, 19(1). https://doi.org/10.1186/1423-0127-19-89
Bernardo, W. M., Simões, R. S., Buzzini, R. F., Nunes, V. M., & Glina, F. P. A. (2016). Adverse effects of the consumption of artificial sweeteners - Systematic review. Revista Da Associacao Medica Brasileira, 62(2), 120–122. https://doi.org/10.1590/1806-9282.62.02.120
Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017a). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in Physiology, 8(JUL). https://doi.org/10.3389/fphys.2017.00487
Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017b). The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178426
Bian, X., Tu, P., Chi, L., Gao, B., Ru, H., & Lu, K. (2017). Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 107, 530–539. https://doi.org/10.1016/j.fct.2017.04.045
Büyüközer, H. K. (2013). Yeni Dünya Düzeni ve Helal gıda, 2. Baskı, Erkam Matbaası, İstanbul.
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491
Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food and Chemical Toxicology, 107, 302–317. https://doi.org/10.1016/j.fct.2017.06.046
Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370. https://doi.org/10.1016/j.foodchem.2021.130991
Chattopadhyay, S., Raychaudhuri, U., & Chakraborty, R. (2014). Artificial sweeteners–a review. Journal of Food Science and Technology, 51(4), 611–621.
Chi, L., Bian, X., Gao, B., Tu, P., Lai, Y., Ru, H., & Lu, K. (2018). Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules, 23(2). https://doi.org/10.3390/molecules23020367
Daly, K., Darby, A. C., & Shirazi-Beechey, S. P. (2016). Low calorie sweeteners and gut microbiota. Physiology and Behavior, 164, 494–500. https://doi.org/10.1016/j.physbeh.2016.03.014
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2013). Scientific Opinion on the re‐evaluation of aspartame (E 951) as a food additive. Efsa Journal, 11(12), 3496.
FDA. (2018). Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. US Food & Drug Administration, 1–7.
Fernández, J., Redondo-Blanco, S., Gutiérrez-del-Río, I., Miguélez, E. M., Villar, C. J., & Lombó, F. (2016). Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods, 25, 511–522. https://doi.org/10.1016/j.jff.2016.06.032
Foletto, K. C., Melo Batista, B. A., Neves, A. M., de Matos Feijó, F., Ballard, C. R., Marques Ribeiro, M. F., & Bertoluci, M. C. (2016). Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats. Appetite, 96, 604–610. https://doi.org/10.1016/j.appet.2015.11.003
Gao, B., Bian, X., Mahbub, R., & Lu, K. (2017). Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environmental Health Perspectives, 125(2), 198–206. https://doi.org/10.1289/EHP202
Grotz, V. L., Pi-Sunyer, X., Porte, D., Roberts, A., & Richard Trout, J. (2017). A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regulatory Toxicology and Pharmacology, 88, 22–33. https://doi.org/10.1016/j.yrtph.2017.05.011
Hagger, M. S., Trost, N., Keech, J. J., Chan, D. K. C., & Hamilton, K. (2017). Predicting sugar consumption: Application of an integrated dual-process, dual-phase model. Appetite, 116, 147–156. https://doi.org/10.1016/j.appet.2017.04.032
Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H., & Nicholson, J. K. (2011). Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends in Microbiology, 19(7), 349–359. https://doi.org/10.1016/j.tim.2011.05.006
Keszthelyi, D., Troost, F. J., & Masclee, A. A. M. (2009). Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterology and Motility, 21(12), 1239–1249. https://doi.org/10.1111/j.1365-2982.2009.01370.x
Kızgın, Y., & Özkan, B. (2014). A study on determining the halal food consumption tendencies of the consumers. Business & Management Studies: An International Journal, 2(1), 18.
La Mura, V., Pasarín, M., Rodriguez-Vilarrupla, A., García-Pagán, J. C., Bosch, J., & Abraldes, J. G. (2014). Liver sinusoidal endothelial dysfunction after LPS administration: A role for inducible-nitric oxide synthase. Journal of Hepatology, 61(6), 1321–1327. https://doi.org/10.1016/j.jhep.2014.07.014
Liauchonak, I., Qorri, B., Dawoud, F., Riat, Y., & Szewczuk, M. R. (2019). Non-nutritive sweeteners and their implications on the development of metabolic syndrome. Nutrients, 11(3). https://doi.org/10.3390/nu11030644
Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., Spencer, P. S., Waddell, W. J., Walker, R., & Williams, G. M. (2007). Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology, 37(8), 629–727. https://doi.org/10.1080/10408440701516184
Magnuson, Bernadene A., Carakostas, M. C., Moore, N. H., Poulos, S. P., & Renwick, A. G. (2016). Biological fate of low-calorie sweeteners. Nutrition Reviews, 74(11), 670–689. https://doi.org/10.1093/nutrit/nuw032
Martínez-Carrillo, B. E., Rosales-Gómez, C. A., Ramírez-Durán, N., Reséndiz-Albor, A. A., Escoto-Herrera, J. A., Mondragón-Velásquez, T., Valdés-Ramos, R., & Castillo-Cardiel, A. (2019). Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. International Journal of Food Science, 2019. https://doi.org/10.1155/2019/9619020
Moriconi, E., Feraco, A., Marzolla, V., Infante, M., Lombardo, M., Fabbri, A., & Caprio, M. (2020). Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.00444
Nakagawa, Y., Nagasawa, M., Yamada, S., Hara, A., Mogami, H., Nikolaev, V. O., Lohse, M. J., Shigemura, N., Ninomiya, Y., & Kojima, I. (2009). Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005106
Nettleton, J. E., Reimer, R. A., & Shearer, J. (2016). Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiology and Behavior, 164, 488–493. https://doi.org/10.1016/j.physbeh.2016.04.029
Omran, A., Ahearn, G., Bowers, D., Swenson, J., & Coughlin, C. (2013). Metabolic effects of sucralose on environmental bacteria. Journal of Toxicology, 2013. https://doi.org/10.1155/2013/372986
Onaolapo, A. Y., Onaolapo, O. J., & Olowe, O. A. (2020). An overview of addiction to sugar. Dietary Sugar, Salt and Fat in Human Health, 195–216. https://doi.org/10.1016/b978-0-12-816918-6.00009-3
Palmnäs, M. S. A., Cowan, T. E., Bomhof, M. R., Su, J., Reimer, R. A., Vogel, H. J., Hittel, D. S., & Shearer, J. (2014). Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0109841
Ren, X., Zhou, L., Terwilliger, R., Newton, S. S., & de Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 3(JUN). https://doi.org/10.3389/neuro.07.012.2009
Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J., & Gil, A. (2019). Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Advances in Nutrition, 10, S31–S48. https://doi.org/10.1093/advances/nmy037
Rycerz, K., & Jaworska-Adamu, J. E. (2013). Effects of aspartame metabolites on astrocytes and neurons. Folia Neuropathologica, 51(1), 10–17. https://doi.org/10.5114/fn.2013.34191
Sánchez-Tapia, M., Martínez-Medina, J., Tovar, A. R., & Torres, N. (2019). Natural and artificial sweeteners and high fat diet modify differential taste receptors, insulin, and TLR4-mediated inflammatory pathways in adipose tissues of rats. Nutrients, 11(4). https://doi.org/10.3390/nu11040880
Sánchez-Tapia, M., Miller, A. W., Granados-Portillo, O., Tovar, A. R., & Torres, N. (2020). The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet. Gut Microbes, 12(1). https://doi.org/10.1080/19490976.2020.1801301
Santos, P. S., Caria, C. R. P., Gotardo, E. M. F., Ribeiro, M. L., Pedrazzoli, J., & Gambero, A. (2018). Artificial sweetener saccharin disrupts intestinal epithelial cells’ barrier function in vitro. Food and Function, 9(7), 3815–3822. https://doi.org/10.1039/c8fo00883c
Saraiva, A., Carrascosa, C., Raheem, D., Ramos, F., & Raposo, A. (2020). Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health, 17(17), 1–22. https://doi.org/10.3390/ijerph17176285
Schiffman, S. S., & Rother, K. I. (2013). Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 16(7), 399–451. https://doi.org/10.1080/10937404.2013.842523
Smeets, P. A. M., De Graaf, C., Stafleu, A., Van Osch, M. J. P., & Van Der Grond, J. (2005). Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. American Journal of Clinical Nutrition, 82(5), 1011–1016. https://doi.org/10.1093/ajcn/82.5.1011
Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186. https://doi.org/10.1038/nature13793
Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I.,
Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2015). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstetrical and Gynecological Survey, 70(1), 31–32. https://doi.org/10.1097/01.ogx.0000460711.58331.94
Tanti, J. F., Ceppo, F., Jager, J., & Berthou, F. (2013). Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Frontiers in Endocrinology, 3(JAN). https://doi.org/10.3389/fendo.2012.00181
Thomson, P., Santibañez, R., Aguirre, C., Galgani, J. E., & Garrido, D. (2019). Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. British Journal of Nutrition, 122(8), 856–862. https://doi.org/10.1017/S0007114519001570
Türker, S. (2020). Helal ve güvenilir gıda. Helal ve Etik Araşt. Derg. 2 (1): 85-97, 2020.
Valle, M., St-Pierre, P., Pilon, G., & Marette, A. (2020). Differential effects of chronic ingestion of refined sugars versus natural sweeteners on insulin resistance and hepatic steatosis in a rat model of diet-induced obesity. Nutrients, 12(8), 1–14. https://doi.org/10.3390/nu12082292
Vamanu, E. (2014). The interaction between bacteria and bile. Annals of Microbiology, 64(3), 625–651. https://doi.org/10.3923/ijps.2007.694.704
Venegas, D. P., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00277
Wilk, K., Korytek, W., Pelczyńska, M., Moszak, M., & Bogdański, P. (2022). The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients, 14(6). https://doi.org/10.3390/nu14061261
Yetim, H. ve Türker, S. (2020). Helal ve Sağlıklı Gıda. İst. S. Zaim Üniversitesi Yayınları, No: 51, İstanbul, 149 sh.
Mızrak, Ö. F. (2024). YAPAY TATLANDIRICILARIN SAĞLIKLI BESLENME VE HELAL GIDA AÇISINDAN DEĞERLENDİRİLMESİ. Helal Ve Etik Araştırmalar Dergisi, 6(1), 44-58. https://doi.org/10.51973/head.1471043