BibTex RIS Cite

Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları

Year 2018, Issue: 1, 41 - 50, 01.04.2018

Abstract

Bu çalışmada, eğitimde önemli bir yeri olan laboratuvar uygulamalarının açık ve uzaktan öğrenmedeki durumu ele alınmıştır. Açık ve uzaktan öğrenmede öğrenenlerin öğrenme kaynaklarından uzakta olması, laboratuvar uygulamaları için farklı çözümler geliştirilmesini zorunlu hale getirmiştir. Tarihsel süreç içerisinde bakıldığında laboratuvar uygulamaları gerektiren disiplinlerde uygun öğrenme çıktılarının elde edilebilmesi için çeşitli yöntemlerin kullanıldığı görülmektedir. Öğrenenlerin laboratuvar araç ve gereçleri ile fiziksel olarak etkileşim kurarak uygulamalarını gerçekleştirebildikleri yoğunlaştırılmış yüz yüze laboratuvarlar, ev deney kitleri ve mobil gezici laboratuvarlar; 21. yüzyıl teknolojilerinin işe koşulduğu sanal laboratuvarlar, uzak laboratuvarlar ve sanal bilişim laboratuvarları bu yöntemlerin başında gelmektedir. Çalışma kapsamında, açık ve uzaktan öğrenmede kullanılan bu laboratuvar uygulamalarının daha iyi anlaşılması için üstünlükleri ve sınırlılıkları ele alınmıştır

References

  • Abdel-Salam, T. M., Kauffmann, P. J., & Crossman, G. R. (2007). Are distance laboratories effective tools for technology education? American Journal of Distance Education, 21(2), 77–91. Retrieved from https://doi.org/10.1080/08923640701299041
  • Abdulwahed, M., & Nagy, Z. K. (2009). The impact of the virtual lab on the hands-on lab learning outcomes, a two years empirical study. In C. Kestell, S. Grainger, & J. Cheung (Eds.), Proceedings of the 20th annual conference for the Australasian Association for Engineering Education (pp. 255-260), Adelaide, Australia: The School of Mechanical Engineering, The University of Adelaide.
  • Al-Shamali, F., & Connors, M. (2010). Low-cost physics home laboratory. In D. Kennepohl, & L. Shaw, (Eds.), Accessible Elements: Teaching Science Online and at a Distance (pp. 131–145). Canada: AU Press.
  • Al-Sharif, L., Saleem, A., Ayoub, W., & Naser, M. (2011). Teaching control system principles using remote laboratories over the internet. In S. I. Ao, L. Gelman, D. W. Hukins, A. Hunter, & A. M. Korsunsky (Eds.), Proceedings of the World Congress on Engineering 2011 (pp. 1375-1379), London, U.K.
  • Alhalabi, B., Anandapuram, S., & Hamza, K. (2000). Real laboratories: An innovative repartee for distance learning. In Proceedings of the 4th Multiconference on Systemic, Cybernetics and Informatics, SCI2000. Orlando, USA.
  • Alhalabi, B., Hamza, M. K., & Humos, A. A. E. (2008). Distance education: Remote labs environment. In ASEE Middle Atlantic Annual Meet proceedings. Retrieved from https://www. asee.org/documents/sections/northeast/2008/Distance- Education-Remote-Labs-Environment.pdf
  • Aktan, B., Bohus, C. A., Crowl, L. A., & Shor, M. H. (1996). Distance learning applied to control engineering laboratories. IEEE Tran- sactions on Education, 39(3), 320–326. doi:10.1109/13.538754
  • Anderson, T. (2010). Interactions affording distance science edu- cation. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 1–18). Edmon- ton: Athabasca University Press.
  • Arjamand, M. J., & Khattak, M. D. (2013). Virtual labs: A new horizon for localised distance education. Paper presented at the 27th Annual Conference of Asian Association of Open Universities 2013, Islamabad, Pakistan. Retrieved from http:// www.aaou2013.com/pdf/190.pdf
  • Corter, J. E., Nickerson, J. V., Esche, S. K., & Chassapis, C. (2004). Remote versus hands-on labs: A comparative study. In 34th Annual Frontiers in Education, 2004 (pp. F1G-17-21), Savannah, GA, USA. Retrieved from https://doi.org/10.1109/ FIE.2004.1408586
  • Corter, J. E., Nickerson, J. V., Esche, S. K., Chassapis, C., Im, S., & Ma, J. (2007). Constructing reality: A study of remote, hands-on, and simulated laboratories. ACM Transactions on Computer- Human Interaction (TOCHI), 14(2).
  • Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely- operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054–2067.
  • Couture, M. (2004). Realism in the design process and credibility of a simulation-based virtual laboratory. Journal of Computer Assisted Learning, 20(1), 40–49. Retrieved from https://doi. org/10.1111/j.1365-2729.2004.00064.x
  • Dalgarno, B. (2002). The potential of 3D virtual learning environments: A constructivist analysis. Electronic Journal of Instructional Science and Technology, 5(2). Retrieved from https://www.researchgate.net/publication/216458729_ The_Potential_of_3D_Virtual_Learning_Environments_A_ Constructivist_Analysis
  • Dalgarno, B., Bishop, A. G., & Bedgood-Jr., D. R. (2003). The potential of virtual laboratories for distance education science teaching: Reflections from the development and evaluation of a virtual chemistry laboratory. In K. Placing, (Ed.), Proceedings of Improving Learning Outcomes Through Flexible Science Teaching (pp. 90-95), Sydney, Australia. Retrieved from http:// openjournals.library.usyd.edu.au/index.php/IISME/articl0e/ view/6527
  • Doiron, J. B. (2009). Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class (PhD Thesis). Retrieved from ProQuest Dissertations and Theses database (UMI No. 3344919).
  • Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., & Reid, S. (2005a). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics - Physics Education Research, 1(1), 1- 8. Retrieved from https://doi.org/10.1103/PhysRevS- TPER.1.010103
  • Finkelstein, N. D., Perkins, K. K., Adams, W., Kohl, P., & Podolefsky, N. (2005b). Can computer simulations replace real equipment in undergraduate laboratories? In J. Marx, P. Heron, & S. Franklin, (Eds.), Physics Education Research Conference Proceedings (pp. 101-104). Sacramento, California.
  • Fozdar, B. I., Kumar, L. S., & Kannan, S. (2006). A survey of a study on the reasons responsible for student dropout from the bachelor of science programme at Indira Gandhi National Open University. International Review of Research in Open and Distance Learning, 7(3). Retrieved from https://doi. org/10.19173/irrodl.v7i3.291
  • Gercek, G., & Saleem, N. (2008). Transforming traditional labs into virtual computing labs for distance education. International Journal of Online Engineering, 4(1), 46–51.
  • Gröber, S., Vetter, M., Eckert, B., & Jodl, H. J. (2007). Experimenting from a distance-remotely controlled laboratory (RCL). European Journal of Physics, 28(3), 127–141. https://doi. org/10.1088/0143-0807/28/3/S12
  • Kennepohl, D. (2010). Remote control teaching laboratories and practicals. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 167–187). Edmonton: Athabasca University Press.
  • Kennepohl, D. K. (2013). Learning from blended chemistry labo- ratories. In S. Iyer (Ed.), 2013 IEEE Fifth International Confe- rence on Technology for Education (pp. 135-138), Kharagpur, West Bengal, India. Retrieved from https://doi.org/10.1109/ T4E.2013.40
  • Kennepohl, D., & Last, A. M. (2000). Teaching chemistry at Canada’s Open University. Distance Education, 21(1), 183–197. Retrieved from https://doi.org/10.1080/0158791000210111
  • Kennepohl, D., & Shaw, L. (2010). Accessible elements: Teaching science online and at a distance. Edmonton: AU Press.
  • Lammi, M. D. (2009). Student achievement and affective traits in electrical engineering laboratories using traditional and computer-based instrumentation (Unpublished Master thesis). Retrieved from https://digitalcommons.usu.edu/etd/228
  • Lang, J. (2012). Comparative study of hands-on and remote physics labs for first year university level physics students. Transformative Dialogues: Teaching & Learning Journal, 6(1), 1–25.
  • Lindsay, E. D., & Good, M. C. (2005). Effects of laboratory access modes upon learning outcomes. IEEE Transactions on Education, 48(4), 619–631.
  • Lyall, R., & Patti, A. F. (2010). Taking the chemistry experience home - home experiments or “kitchen chemistry.” In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 83–108). Edmonton: Athabasca University Press.
  • Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 1–24.
  • Malaric, R., Jurcevic, M., Hegedus, H., Cmuk, D., & Mostarac, P. (2008). Electrical measurements student laboratory-replacing hands-on with remote and virtual experiments. International Journal of Electrical Engineering Education, 45(4), 299–309.
  • Martínez-Jiménez, P., Pontes-Pedrajas, A., Climent-Bellido, M. S., & Polo, J. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80(3), 346–352.
  • Meester, M. A. M., & Kirschner, P. A. (1995). Practical work at the Open University of the Netherlands. Journal of Science Education and Technology, 4(2), 127–140.
  • Moore, M. G. (2010). Foreword. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance. Edmonton: Athabasca University Press.
  • Mosse, J., & Wright, W. (2010). Acquisition of laboratory skills by on-campus and distance education students. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 109–129). Edmonton: Athabasca University Press.
  • Muthusamy, K., Kumar, P. R., & Latif, S. R. S. A. (2005). Virtual laboratories in engineering education. Asian Journal of Distance Education, 3(2), 55–58.
  • Nedic, Z., Machotka, J., & Nafalski, A. (2003). Remote laboratories versus virtual and real laboratories. In 33rd ASEE/IEEE Frontiers in Education Conference (pp. T3E-1-T3E-6), Westminster, CO, USA. Retrieved from https://doi.org/10.1109/FIE.2003. 1263343
  • Sonnenwald, D. H., Whitton, M. C., & Maglaughlin, K. L. (2003). Evaluating a scientific collaboratory: Results of a controlled experiment. ACM Transactions on Computer-Human Interac- tion, 10(2), 150–176.
  • Stefanovic, M. (2013). The objectives, architectures and effects of distance learning laboratories for industrial engineering education. Computers & Education, 69, 250–262. Retrieved from https://doi.org/10.1016/j.compedu.2013.07.011
  • Stefanovic, M., Tadic, D., Nestic, S., & Djordjevic, A. (2013). An assessment of distance learning laboratory objectives for control engineering education. Computer Applications in Engineering Education, 23(2), 191–202. Retrieved from https://doi.org/10.1002/cae.21589
  • Stuckey-Mickell, T. A., & Stuckey-Danner, B. D. (2007). Virtual labs in the online biology course: Student perceptions of effectiveness and usability. MERLOT Journal of Online Learning and Teaching, 3(2), 105–111.
  • Tatlı, Z., & Ayas, A. (2012). Virtual chemistry laboratory: Effect of constructivist learning environment. Turkish Online Journal of Distance Education, 13(1), 183–199. Retrieved from http:// dergipark.gov.tr/download/article-file/155895
  • Tüysüz, C. (2010). The effect of the virtual laboratory on students’ achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37–53.
  • Wedemeyer, C. A., & Najem, C. (1969). AIM: From concept to reality. The articulated ınstructional media program at Wisconsin. Syracuse, NY: Center for the Study of Liberal Education for Adults, Syracuse University.
  • Zacharia, Z., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of Physics. American Journal of Physics, 71, 618–629.

Laboratory Applications in Open and Distance Learning

Year 2018, Issue: 1, 41 - 50, 01.04.2018

Abstract

In this study, the practice of open and distance learning of laboratory applications which have an important place in education is discussed. The fact that learners in open and distance learning are away from learning resources has made it necessary to develop different solutions for laboratory applications. Looking at the historical process, it has been seen that various methods are used to obtain appropriate learning outputs in the disciplines that require laboratory applications. Intensive face-to-face laboratories, home experiment kits, and mobile laboratories, where learners can physically interact with and perform their laboratory instruments and equipment; Virtual laboratories, remote laboratories and virtual computing laboratories, where 21st century technologies are used, are at the forefront of these methods. Within the scope of the study, the advantages and limitations of these laboratory applications for open and distance learning are discussed

References

  • Abdel-Salam, T. M., Kauffmann, P. J., & Crossman, G. R. (2007). Are distance laboratories effective tools for technology education? American Journal of Distance Education, 21(2), 77–91. Retrieved from https://doi.org/10.1080/08923640701299041
  • Abdulwahed, M., & Nagy, Z. K. (2009). The impact of the virtual lab on the hands-on lab learning outcomes, a two years empirical study. In C. Kestell, S. Grainger, & J. Cheung (Eds.), Proceedings of the 20th annual conference for the Australasian Association for Engineering Education (pp. 255-260), Adelaide, Australia: The School of Mechanical Engineering, The University of Adelaide.
  • Al-Shamali, F., & Connors, M. (2010). Low-cost physics home laboratory. In D. Kennepohl, & L. Shaw, (Eds.), Accessible Elements: Teaching Science Online and at a Distance (pp. 131–145). Canada: AU Press.
  • Al-Sharif, L., Saleem, A., Ayoub, W., & Naser, M. (2011). Teaching control system principles using remote laboratories over the internet. In S. I. Ao, L. Gelman, D. W. Hukins, A. Hunter, & A. M. Korsunsky (Eds.), Proceedings of the World Congress on Engineering 2011 (pp. 1375-1379), London, U.K.
  • Alhalabi, B., Anandapuram, S., & Hamza, K. (2000). Real laboratories: An innovative repartee for distance learning. In Proceedings of the 4th Multiconference on Systemic, Cybernetics and Informatics, SCI2000. Orlando, USA.
  • Alhalabi, B., Hamza, M. K., & Humos, A. A. E. (2008). Distance education: Remote labs environment. In ASEE Middle Atlantic Annual Meet proceedings. Retrieved from https://www. asee.org/documents/sections/northeast/2008/Distance- Education-Remote-Labs-Environment.pdf
  • Aktan, B., Bohus, C. A., Crowl, L. A., & Shor, M. H. (1996). Distance learning applied to control engineering laboratories. IEEE Tran- sactions on Education, 39(3), 320–326. doi:10.1109/13.538754
  • Anderson, T. (2010). Interactions affording distance science edu- cation. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 1–18). Edmon- ton: Athabasca University Press.
  • Arjamand, M. J., & Khattak, M. D. (2013). Virtual labs: A new horizon for localised distance education. Paper presented at the 27th Annual Conference of Asian Association of Open Universities 2013, Islamabad, Pakistan. Retrieved from http:// www.aaou2013.com/pdf/190.pdf
  • Corter, J. E., Nickerson, J. V., Esche, S. K., & Chassapis, C. (2004). Remote versus hands-on labs: A comparative study. In 34th Annual Frontiers in Education, 2004 (pp. F1G-17-21), Savannah, GA, USA. Retrieved from https://doi.org/10.1109/ FIE.2004.1408586
  • Corter, J. E., Nickerson, J. V., Esche, S. K., Chassapis, C., Im, S., & Ma, J. (2007). Constructing reality: A study of remote, hands-on, and simulated laboratories. ACM Transactions on Computer- Human Interaction (TOCHI), 14(2).
  • Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely- operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054–2067.
  • Couture, M. (2004). Realism in the design process and credibility of a simulation-based virtual laboratory. Journal of Computer Assisted Learning, 20(1), 40–49. Retrieved from https://doi. org/10.1111/j.1365-2729.2004.00064.x
  • Dalgarno, B. (2002). The potential of 3D virtual learning environments: A constructivist analysis. Electronic Journal of Instructional Science and Technology, 5(2). Retrieved from https://www.researchgate.net/publication/216458729_ The_Potential_of_3D_Virtual_Learning_Environments_A_ Constructivist_Analysis
  • Dalgarno, B., Bishop, A. G., & Bedgood-Jr., D. R. (2003). The potential of virtual laboratories for distance education science teaching: Reflections from the development and evaluation of a virtual chemistry laboratory. In K. Placing, (Ed.), Proceedings of Improving Learning Outcomes Through Flexible Science Teaching (pp. 90-95), Sydney, Australia. Retrieved from http:// openjournals.library.usyd.edu.au/index.php/IISME/articl0e/ view/6527
  • Doiron, J. B. (2009). Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class (PhD Thesis). Retrieved from ProQuest Dissertations and Theses database (UMI No. 3344919).
  • Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., & Reid, S. (2005a). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics - Physics Education Research, 1(1), 1- 8. Retrieved from https://doi.org/10.1103/PhysRevS- TPER.1.010103
  • Finkelstein, N. D., Perkins, K. K., Adams, W., Kohl, P., & Podolefsky, N. (2005b). Can computer simulations replace real equipment in undergraduate laboratories? In J. Marx, P. Heron, & S. Franklin, (Eds.), Physics Education Research Conference Proceedings (pp. 101-104). Sacramento, California.
  • Fozdar, B. I., Kumar, L. S., & Kannan, S. (2006). A survey of a study on the reasons responsible for student dropout from the bachelor of science programme at Indira Gandhi National Open University. International Review of Research in Open and Distance Learning, 7(3). Retrieved from https://doi. org/10.19173/irrodl.v7i3.291
  • Gercek, G., & Saleem, N. (2008). Transforming traditional labs into virtual computing labs for distance education. International Journal of Online Engineering, 4(1), 46–51.
  • Gröber, S., Vetter, M., Eckert, B., & Jodl, H. J. (2007). Experimenting from a distance-remotely controlled laboratory (RCL). European Journal of Physics, 28(3), 127–141. https://doi. org/10.1088/0143-0807/28/3/S12
  • Kennepohl, D. (2010). Remote control teaching laboratories and practicals. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 167–187). Edmonton: Athabasca University Press.
  • Kennepohl, D. K. (2013). Learning from blended chemistry labo- ratories. In S. Iyer (Ed.), 2013 IEEE Fifth International Confe- rence on Technology for Education (pp. 135-138), Kharagpur, West Bengal, India. Retrieved from https://doi.org/10.1109/ T4E.2013.40
  • Kennepohl, D., & Last, A. M. (2000). Teaching chemistry at Canada’s Open University. Distance Education, 21(1), 183–197. Retrieved from https://doi.org/10.1080/0158791000210111
  • Kennepohl, D., & Shaw, L. (2010). Accessible elements: Teaching science online and at a distance. Edmonton: AU Press.
  • Lammi, M. D. (2009). Student achievement and affective traits in electrical engineering laboratories using traditional and computer-based instrumentation (Unpublished Master thesis). Retrieved from https://digitalcommons.usu.edu/etd/228
  • Lang, J. (2012). Comparative study of hands-on and remote physics labs for first year university level physics students. Transformative Dialogues: Teaching & Learning Journal, 6(1), 1–25.
  • Lindsay, E. D., & Good, M. C. (2005). Effects of laboratory access modes upon learning outcomes. IEEE Transactions on Education, 48(4), 619–631.
  • Lyall, R., & Patti, A. F. (2010). Taking the chemistry experience home - home experiments or “kitchen chemistry.” In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 83–108). Edmonton: Athabasca University Press.
  • Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 1–24.
  • Malaric, R., Jurcevic, M., Hegedus, H., Cmuk, D., & Mostarac, P. (2008). Electrical measurements student laboratory-replacing hands-on with remote and virtual experiments. International Journal of Electrical Engineering Education, 45(4), 299–309.
  • Martínez-Jiménez, P., Pontes-Pedrajas, A., Climent-Bellido, M. S., & Polo, J. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80(3), 346–352.
  • Meester, M. A. M., & Kirschner, P. A. (1995). Practical work at the Open University of the Netherlands. Journal of Science Education and Technology, 4(2), 127–140.
  • Moore, M. G. (2010). Foreword. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance. Edmonton: Athabasca University Press.
  • Mosse, J., & Wright, W. (2010). Acquisition of laboratory skills by on-campus and distance education students. In D. Kennepohl, & L. Shaw, (Eds.), Accessible elements: Teaching science online and at a distance (pp. 109–129). Edmonton: Athabasca University Press.
  • Muthusamy, K., Kumar, P. R., & Latif, S. R. S. A. (2005). Virtual laboratories in engineering education. Asian Journal of Distance Education, 3(2), 55–58.
  • Nedic, Z., Machotka, J., & Nafalski, A. (2003). Remote laboratories versus virtual and real laboratories. In 33rd ASEE/IEEE Frontiers in Education Conference (pp. T3E-1-T3E-6), Westminster, CO, USA. Retrieved from https://doi.org/10.1109/FIE.2003. 1263343
  • Sonnenwald, D. H., Whitton, M. C., & Maglaughlin, K. L. (2003). Evaluating a scientific collaboratory: Results of a controlled experiment. ACM Transactions on Computer-Human Interac- tion, 10(2), 150–176.
  • Stefanovic, M. (2013). The objectives, architectures and effects of distance learning laboratories for industrial engineering education. Computers & Education, 69, 250–262. Retrieved from https://doi.org/10.1016/j.compedu.2013.07.011
  • Stefanovic, M., Tadic, D., Nestic, S., & Djordjevic, A. (2013). An assessment of distance learning laboratory objectives for control engineering education. Computer Applications in Engineering Education, 23(2), 191–202. Retrieved from https://doi.org/10.1002/cae.21589
  • Stuckey-Mickell, T. A., & Stuckey-Danner, B. D. (2007). Virtual labs in the online biology course: Student perceptions of effectiveness and usability. MERLOT Journal of Online Learning and Teaching, 3(2), 105–111.
  • Tatlı, Z., & Ayas, A. (2012). Virtual chemistry laboratory: Effect of constructivist learning environment. Turkish Online Journal of Distance Education, 13(1), 183–199. Retrieved from http:// dergipark.gov.tr/download/article-file/155895
  • Tüysüz, C. (2010). The effect of the virtual laboratory on students’ achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37–53.
  • Wedemeyer, C. A., & Najem, C. (1969). AIM: From concept to reality. The articulated ınstructional media program at Wisconsin. Syracuse, NY: Center for the Study of Liberal Education for Adults, Syracuse University.
  • Zacharia, Z., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of Physics. American Journal of Physics, 71, 618–629.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Hanife Çivril This is me

Publication Date April 1, 2018
Published in Issue Year 2018 Issue: 1

Cite

APA Çivril, H. (2018). Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları. Yükseköğretim Ve Bilim Dergisi(1), 41-50.
AMA Çivril H. Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları. J Higher Edu Sci. April 2018;(1):41-50.
Chicago Çivril, Hanife. “Açık Ve Uzaktan Öğrenmede Laboratuvar Uygulamaları”. Yükseköğretim Ve Bilim Dergisi, no. 1 (April 2018): 41-50.
EndNote Çivril H (April 1, 2018) Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları. Yükseköğretim ve Bilim Dergisi 1 41–50.
IEEE H. Çivril, “Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları”, J Higher Edu Sci, no. 1, pp. 41–50, April 2018.
ISNAD Çivril, Hanife. “Açık Ve Uzaktan Öğrenmede Laboratuvar Uygulamaları”. Yükseköğretim ve Bilim Dergisi 1 (April 2018), 41-50.
JAMA Çivril H. Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları. J Higher Edu Sci. 2018;:41–50.
MLA Çivril, Hanife. “Açık Ve Uzaktan Öğrenmede Laboratuvar Uygulamaları”. Yükseköğretim Ve Bilim Dergisi, no. 1, 2018, pp. 41-50.
Vancouver Çivril H. Açık ve Uzaktan Öğrenmede Laboratuvar Uygulamaları. J Higher Edu Sci. 2018(1):41-50.