Posterior segment optical coherence tomography findings in patients with COVID-19
Year 2023,
Volume: 5 Issue: 1, 1 - 6, 20.02.2023
Alev Koçkar
,
Hayati Yılmaz
,
Betül İlkay Sezgin
,
Erdal Yüzbaşıoğlu
Abstract
Abstract:
Purpose: COVID – 19 which is still the leading health problem in the world, is not yet fully understood, therefore the study aims to investigate the posterior segment of the eye in patients with COVID – 19 using optical coherence tomography (OCT).
Materials and Methods: The present study was designed prospective and cross-sectional. Patients with a positive test result of COVID – 19 and healthy controls who were older than 18 years were included in the study. Excluded from the study were the patients with any systemic comorbidity and ocular disease. The demographic and clinical data, including ocular findings and the OCT data, including hyper-reflective (HR) lesions, retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), and macular thicknesses (MT) were recorded as outcomes and analyzed.
Results: Twenty patients with SARS-CoV-2 and 20 healthy subjects were included in this study. There was no difference between COVID -19 patients and healthy controls in terms of the RNFL, GCC, and macular thicknesses (P > 0.05). HR lesions were detected in 18(45%) eyes of 9(45%) patients with COVID – 19 and 15(37,5%) eyes of 8(40%) healthy subjects’ retinae with no significant difference between groups (P = 0.165).
Conclusions: Hyper-reflective lesions could only be retinal vessels' tangential cuts seen in OCT B-Scans. There was not enough data that could indicate posterior segment involvement of COVID – 19.
References
- 1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.
- 2. To KF, Lo AWI. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 2004;203(3):740–3.
- 3. Li K, Wohlford-Lenane C, Perlman, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2015;213(5):712–22.
- 4. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of Host Defense following Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) Pulmonary Infection of Mice. J Immunol. 2004;173(6):4030–9.
- 5. Wu P, Duan F, Luo C, et al. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020;2019:4–7.
- 6. Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004;10:88–97.
- 7. Marinho PM, Marcos AAA, Romano AC, Nascimento H, Belfort Jr R. Retinal findings in patients with COVID-19. Lancet. 2020;395(10237):1610.
- 8. Gascon P, Briantais A, Bertrand E, et al. Covid-19-Associated Retinopathy: A Case Report. Ocul Immunol Inflamm [Internet]. 2020 Nov 16 [cited 2022 Feb 18];28(8):1293–7. Available from: https://pubmed.ncbi.nlm.nih.gov/33021856/
- 9. Sawalha K, Adeodokun S, Kamoga GR. COVID-19-Induced Acute Bilateral Optic Neuritis. J Investig Med High Impact Case Reports [Internet]. 2020 Nov 25 [cited 2022 Feb 18];8. Available from: https://journals.sagepub.com/doi/10.1177/2324709620976018
- 10. Turkish Health Ministry, Scientific Comity Study, Guidelines for COVID-19 [Internet]. 2020. Available from: https://covid19bilgi.saglik.gov.tr/depo/rehberler/COVID-19_Rehberi.pdf?type=file
- 11. Seah I, Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals. Ocul Immunol Inflamm [Internet]. 2020;28(3):391–5. Available from: https://doi.org/10.1080/09273948.2020.1738501
- 12. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185–95.
- 13. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9.
- 14. Yüzbaşioğlu E. The Latest Pandemic : Covid-19 & Eye. Clin Exp Ocul Trauma Infect. 2020;2(1):3–5.
- 15. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5(4):335–7.
- 16. Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med [Internet]. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32367431
- 17. Collison FT, Carroll J. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e38. Available from: http://www.thelancet.com/article/S0140673620319176/fulltext
- 18. Brandão-de-Resende C, Diniz-Filho A, Vasconcelos-Santos D V. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e37. Available from: http://www.thelancet.com/article/S0140673620319188/fulltext
- 19. Ouyang P, Zhang X, Peng Y, Jiang B. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e35. Available from: http://www.thelancet.com/article/S0140673620319218/fulltext
- 20. Venkatesh P. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e36. Available from: http://www.thelancet.com/article/S014067362031922X/fulltext
- 21. Vavvas DG, Sarraf D, Sadda SVR, et al. Concerns about the interpretation of OCT and fundus findings in COVID-19 patients in recent Lancet publication. Eye (Lond) [Internet]. 2020 Dec 1 [cited 2022 Feb 18];34(12):2153–4. Available from: https://pubmed.ncbi.nlm.nih.gov/32647303/
- 22. Gündogan M, Kiliç S, Göktas S, et al. Severe COVID-19 and Retina: Are There Any Retinal Manifestations? Klin Monbl Augenheilkd [Internet]. 2021 [cited 2022 Feb 18]; Available from: https://pubmed.ncbi.nlm.nih.gov/34528229/
- 23. Pereira LA, Soares LCM, Nascimento PA, et al. Retinal findings in hospitalised patients with severe COVID-19. Br J Ophthalmol [Internet]. 2022 Jan 1 [cited 2022 Feb 18];106(1):102–5. Available from: https://pubmed.ncbi.nlm.nih.gov/33067361/
- 24. Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis virus transmission pathways. J Pathol. 2004;203(2):622–30.
- 25. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–24.
- 26. Xu J, Zhong S, Liu J, et al. Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis. Clin Infect Dis. 2005;41(8):1089–96.
- 27. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–5.
- 28. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis [Internet]. 2020;94(March):55–8. Available from: https://doi.org/10.1016/j.ijid.2020.03.062
- 29. Shindler KS, Kenyon LC, Dutt M, Hingley ST, Sarma J Das. Experimental Optic Neuritis Induced by a Demyelinating Strain of Mouse Hepatitis Virus. J Virol. 2008;82(17):8882–6.
- 30. Chin MS, Hooper LC, Hooks JJ, Detrick B. Identification of α-fodrin as an autoantigen in experimental coronavirus retinopathy (ECOR). J Neuroimmunol [Internet]. 2014;272(1–2):42–50. Available from: http://dx.doi.org/10.1016/j.jneuroim.2014.05.002
- 31. Hooper LC, Chin MS, Detrick B, Hooks JJ. Retinal degeneration in experimental coronavirus retinopathy (ECOR) is associated with increased TNF-α, soluble TNFR2 and altered TNF-α signaling. J Neuroimmunol. 2005;166(1–2):65–74.
COVID -19 hastalarında arka segment optik koherens tomografi bulguları
Year 2023,
Volume: 5 Issue: 1, 1 - 6, 20.02.2023
Alev Koçkar
,
Hayati Yılmaz
,
Betül İlkay Sezgin
,
Erdal Yüzbaşıoğlu
Abstract
Amaç:
Kliniği tam olarak anlaşılamamış olan COVID – 19, hala dünyanın önde gelen sağlık problemi olmaya devam etmektedir. Bu nedenle bu çalışmada optik koherens tomografi (OKT) kullanılarak COVID – 19 hastalarının gözlerinin arka segmentini araştırmayı amaçladık.
Gereç ve Yöntem:
Çalışma prospektif ve kesitsel olarak tasarlanmıştır. Onsekiz yaşından büyük COVID – 19 test sonucu pozitif olan hastalar ve sağlıklı kontroller çalışmaya dahil edilmiştir. Göz ya da sistemik komorbiditesi olan hastalar çalışma dışı bırakılmıştır.Göz muayene bulguları, hiper-reflektiv lezyonlar (HR lezyon), retina sinir lifi tabakası (RSLT), ganglion hücre kompleksi (GHK) ve maküler kalınlıkları (MK) olmak üzere OKT verilerini de içeren demografik ve klinik veriler kayıt edilmiş ve sonuçlar analiz edilmiştir.
Bulgular:
Yirmi COVID – 19 hastası ve 20 sağlıklı göznüllü çalışmaya dahil edilmiştir. Sağlıklı gönüllüler ile hastalar arasında RSLT, GHK ve MK açısından anlamlı fark görülmemiştir (P > 0.05). HR lezyonlar 9 (%45) hastanın 18 (%45) gözünde ve 8 (%40) sağlıklı gönüllünün 15 (%37,5) gözünün retinalarında tespit edildi. HR lezyon varlığı açısından gruplar arasında anlamlı bir fark tespit edilmemiştir.
Sonuç:
Hiper-reflektiv lezyonlar yalnızca retinal damarların OKT B taramalarında izlenen tanjansiyal kesiti olabilir. COVID – 19’un gözün arka segmentini etkileyebiliceğini gösteren yeterli veri elde edilememiştir.
References
- 1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.
- 2. To KF, Lo AWI. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 2004;203(3):740–3.
- 3. Li K, Wohlford-Lenane C, Perlman, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2015;213(5):712–22.
- 4. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of Host Defense following Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) Pulmonary Infection of Mice. J Immunol. 2004;173(6):4030–9.
- 5. Wu P, Duan F, Luo C, et al. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020;2019:4–7.
- 6. Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004;10:88–97.
- 7. Marinho PM, Marcos AAA, Romano AC, Nascimento H, Belfort Jr R. Retinal findings in patients with COVID-19. Lancet. 2020;395(10237):1610.
- 8. Gascon P, Briantais A, Bertrand E, et al. Covid-19-Associated Retinopathy: A Case Report. Ocul Immunol Inflamm [Internet]. 2020 Nov 16 [cited 2022 Feb 18];28(8):1293–7. Available from: https://pubmed.ncbi.nlm.nih.gov/33021856/
- 9. Sawalha K, Adeodokun S, Kamoga GR. COVID-19-Induced Acute Bilateral Optic Neuritis. J Investig Med High Impact Case Reports [Internet]. 2020 Nov 25 [cited 2022 Feb 18];8. Available from: https://journals.sagepub.com/doi/10.1177/2324709620976018
- 10. Turkish Health Ministry, Scientific Comity Study, Guidelines for COVID-19 [Internet]. 2020. Available from: https://covid19bilgi.saglik.gov.tr/depo/rehberler/COVID-19_Rehberi.pdf?type=file
- 11. Seah I, Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals. Ocul Immunol Inflamm [Internet]. 2020;28(3):391–5. Available from: https://doi.org/10.1080/09273948.2020.1738501
- 12. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185–95.
- 13. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9.
- 14. Yüzbaşioğlu E. The Latest Pandemic : Covid-19 & Eye. Clin Exp Ocul Trauma Infect. 2020;2(1):3–5.
- 15. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5(4):335–7.
- 16. Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med [Internet]. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32367431
- 17. Collison FT, Carroll J. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e38. Available from: http://www.thelancet.com/article/S0140673620319176/fulltext
- 18. Brandão-de-Resende C, Diniz-Filho A, Vasconcelos-Santos D V. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e37. Available from: http://www.thelancet.com/article/S0140673620319188/fulltext
- 19. Ouyang P, Zhang X, Peng Y, Jiang B. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e35. Available from: http://www.thelancet.com/article/S0140673620319218/fulltext
- 20. Venkatesh P. Seeking clarity on retinal findings in patients with COVID-19. Lancet [Internet]. 2020 Sep 19 [cited 2022 Feb 18];396(10254):e36. Available from: http://www.thelancet.com/article/S014067362031922X/fulltext
- 21. Vavvas DG, Sarraf D, Sadda SVR, et al. Concerns about the interpretation of OCT and fundus findings in COVID-19 patients in recent Lancet publication. Eye (Lond) [Internet]. 2020 Dec 1 [cited 2022 Feb 18];34(12):2153–4. Available from: https://pubmed.ncbi.nlm.nih.gov/32647303/
- 22. Gündogan M, Kiliç S, Göktas S, et al. Severe COVID-19 and Retina: Are There Any Retinal Manifestations? Klin Monbl Augenheilkd [Internet]. 2021 [cited 2022 Feb 18]; Available from: https://pubmed.ncbi.nlm.nih.gov/34528229/
- 23. Pereira LA, Soares LCM, Nascimento PA, et al. Retinal findings in hospitalised patients with severe COVID-19. Br J Ophthalmol [Internet]. 2022 Jan 1 [cited 2022 Feb 18];106(1):102–5. Available from: https://pubmed.ncbi.nlm.nih.gov/33067361/
- 24. Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis virus transmission pathways. J Pathol. 2004;203(2):622–30.
- 25. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–24.
- 26. Xu J, Zhong S, Liu J, et al. Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis. Clin Infect Dis. 2005;41(8):1089–96.
- 27. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–5.
- 28. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis [Internet]. 2020;94(March):55–8. Available from: https://doi.org/10.1016/j.ijid.2020.03.062
- 29. Shindler KS, Kenyon LC, Dutt M, Hingley ST, Sarma J Das. Experimental Optic Neuritis Induced by a Demyelinating Strain of Mouse Hepatitis Virus. J Virol. 2008;82(17):8882–6.
- 30. Chin MS, Hooper LC, Hooks JJ, Detrick B. Identification of α-fodrin as an autoantigen in experimental coronavirus retinopathy (ECOR). J Neuroimmunol [Internet]. 2014;272(1–2):42–50. Available from: http://dx.doi.org/10.1016/j.jneuroim.2014.05.002
- 31. Hooper LC, Chin MS, Detrick B, Hooks JJ. Retinal degeneration in experimental coronavirus retinopathy (ECOR) is associated with increased TNF-α, soluble TNFR2 and altered TNF-α signaling. J Neuroimmunol. 2005;166(1–2):65–74.