Review
BibTex RIS Cite

Will Machine Learning Take a Leading Role in Emergency Medicine Applications?

Year 2025, Volume: 7 Issue: 1, 118 - 123, 25.02.2025
https://doi.org/10.52827/hititmedj.1467697

Abstract

'The main problems in the workflows of emergency services can be summarised as over-crowding,unnecessary usage trends and long waiting times. Emergency services experienced a breaking point during the pandemic, and new approaches regarding to management have come to the agenda. Health care providers around the world are looking to artificial intelligence as the solution to these challenges. applications into emergency department business processes.
In the future, artifical intelligence-based machine learning models will be integrated to the clinical decision making support systems to reduce the workload of physicians, and also play an auxiliary role in the emergency services. In this article, we will discuss on the basis of the reasons that led to the combination of machine learning to summarize the current status of modeling in emergency services. It is brought to the fore that machine learning models enhance clinicians' decision-making abilities, reduce diagnostic errors, and alleviate cognitive load

References

  • Alzubi J, Nayyar A, Kumar A. Machine learning from theory to algorithms: an overview. J. Phys. Conf. Ser.; NCCI 2018, 1142012012. Grant K, McParland A, Mehda S, Acckery AD. Artificial intelligent in emergency medicine: surmountable barrierswith revolutionary potential. Ann Emerg Med 2020;75:721-726.
  • Kalhori SRN. Towards the application of machine learning in emergency informatics. Stud Health Technol Inform 2022;291:3-16.
  • Hooker EA, Mallow PJ, Oglesby MM. Characteristics and trends of emergency department visits in the United States (2010-2014). J Emerg Med 2019;56:344-351.
  • Hoot NR, Aronsky D. Systematic review of emergency department crowding: causes, effects, and solutions. Ann Emerg Med 2008;52:126-136.
  • Richardson DB. Increase in patient mortality at 10 days associated with emergency department overcrowding. Med J Aust 2006;184:213-216.
  • Priesol AJ, Cao M, Brodley CE, Lewis RF. Clinical vestibular test ingassessed with machine-learning algorithms. JAMA Otolaryngol-Head Neck Surg. 2015; 141:364–372.
  • Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W,et al. Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med Off J Soc Acad Emerg Med. 2016;23:269–278.
  • Kuhn M, Johnson K. Applied predictive modeling. NewYork:Springer Verlag; 2013.
  • Sun Y, Heng BH, Seow YT, et al. Forecasting daily attendances at an emergency department to aid resource planning. BMC Emerg Med 2009;9:1 .
  • Haug PJ, Ferraro JP, Holmen J, et al. An ontology-driven, diagnostic modeling system. J Am Med Inform Assoc 2013;20:e102-110.
  • Ramesh AN, Kambhampati C, Monson JRT, et al. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86:334-338.
  • Levin S, Toerper M, et al. Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index. Ann. Emerg. Med. 2017;71:565-574 .
  • Mistry B, Stewart DeRamirez S, Kelen G, PSKS, Balhara KS, LevinS,etal. Accuracy and reliability of emergency department triage using the Emergency Severity Index: An International Multicenter Assessment. Ann EmergMed. 2018;71:581–587. Bora S, Kantarcı A, Erdoğan A, Beynek B, Kheibari B, Eren V, Erdogan MA, Kavak F, Afyoncu F, Eryaz C, Gonullu H. Machine learning for E-trigae. International Journal of Multidisciplinary Studies and Innovative Technologies 2022;6:86-90.
  • Goto T, Camargo CA Jr, Faridi MK, et al. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am J Emerg Med 2018;36:1650-1654.
  • Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA Jr, Hasegawa K. Emergency department tirage prediction of clinical outcomes using machine learning models. Crit Care. 2019;23:64. Shafaf N, Malek H. “Applications of machine learning approaches in emergency medicine; a review article,” Archives of academic emergency medicine, vol. 7, no. 1, 2019.
  • Dwarakanath L, Kamsin A, Rasheed RA, Anandhan A, Shuib L. Automated Machine Learning Approaches for Emergency Response and Coordination via Social Media in the Aftermath of a Disaster: A Review. IEEE Access. 2021;9:68917-68931.
  • Zabor EC, Reddy CA, Tendulkar RD, Patil S. Logistic regression in clinical studies. Int J Radiat Oncol Biol Phys. 2022;112:271–277.
  • Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial Intelligence in Cardiology. J Am Coll Cardiol 2018;71:2668-2679.
  • Fernandez-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014;15:3133–3181.
  • James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with applications in R.NewYork:Springer- Verlag;2013.
  • Vapnik V. The Nature of Statistical Learning Theory. New York:Springer-Verlag, 2000.
  • 26. Hastie T, Tibshirani R and. Friedman JH, The elements of statistical learning: data mining, inference, and prediction, New York Springer, 2009.
  • Bounsaythip C, Rinta-Runsala E. 2001. “Overview of data mining for customer behavior modeling”, VTT Information Tech. Rep., 2001;1:1-53.
  • Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot.2013.
  • Biau G, Scornet E, A random forest guided tour, Test, 2016;25:197-227.
  • Quinlan JR , C4.5 Programs for Machine Learning, USA, Morgan Kauffman, 1993 Breiman L, “Random Forests”, Machine Learning, 2001;45:5-32.
  • Obermeyer Z, Emanuel EJ. Predicting the future-bigdata, machine learning, and clinical medicine. N Engl J Med.2016;375:1216–1219.
  • Vantu A, Vasilescu A, Baicoianu A. Medical emergency department tirage data processing using a machine-learning solution. Heliyon 2023;9:e18402.

Acil Tıp Uygulamalarında Makine Öğrenimleri Başrolü Alır mı?

Year 2025, Volume: 7 Issue: 1, 118 - 123, 25.02.2025
https://doi.org/10.52827/hititmedj.1467697

Abstract

Acil servislerde iş akışlarındaki temel problemler; yoğunluk, gereksiz kullanım eğilimleri ve uzun bekleme süreleri olarak özetlenebilir. Covid-19 pandemisi sırasında kırılma noktasını yaşayan acil servis yönetiminde yeni yaklaşımlar gündeme gelmiştir. Sağlık hizmeti sağlayıcıları, dünya çapında bu zorlukların çözümü olarak, yapay zekâ uygulamalarını acil servis iş süreçlerine dâhil etmeye başlamışlardır. Yapay zeka tabanlı makine öğrenimi modelleri, gelecekte klinik karar destek sistemlerine entegre edilerek hekimlerin iş yükünü azaltmalarının yanında acil servis işleyişleri için de yardımcı rol oynayacaklar gibi görünmektedir. Biz bu yazımızda, acil serviste makine öğrenimi birlikteliğine götüren nedenler temelinde modellemelerin acil servis hizmetlerindeki güncel durumu özetlemeye çalıştık. Makine öğrenimi modellerinin klinisyenlerin karar verme yetilerini geliştirdiği, tanısal hataları ve bilişsel yüklenmeyi azalttığı görüşleri öne çıkmaktadır.

Ethical Statement

Yazarın çıkar çatışması oluşturabilecek herhangi bir ticari birliği veya destek kaynağı yoktur.

Supporting Institution

Yok

References

  • Alzubi J, Nayyar A, Kumar A. Machine learning from theory to algorithms: an overview. J. Phys. Conf. Ser.; NCCI 2018, 1142012012. Grant K, McParland A, Mehda S, Acckery AD. Artificial intelligent in emergency medicine: surmountable barrierswith revolutionary potential. Ann Emerg Med 2020;75:721-726.
  • Kalhori SRN. Towards the application of machine learning in emergency informatics. Stud Health Technol Inform 2022;291:3-16.
  • Hooker EA, Mallow PJ, Oglesby MM. Characteristics and trends of emergency department visits in the United States (2010-2014). J Emerg Med 2019;56:344-351.
  • Hoot NR, Aronsky D. Systematic review of emergency department crowding: causes, effects, and solutions. Ann Emerg Med 2008;52:126-136.
  • Richardson DB. Increase in patient mortality at 10 days associated with emergency department overcrowding. Med J Aust 2006;184:213-216.
  • Priesol AJ, Cao M, Brodley CE, Lewis RF. Clinical vestibular test ingassessed with machine-learning algorithms. JAMA Otolaryngol-Head Neck Surg. 2015; 141:364–372.
  • Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W,et al. Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med Off J Soc Acad Emerg Med. 2016;23:269–278.
  • Kuhn M, Johnson K. Applied predictive modeling. NewYork:Springer Verlag; 2013.
  • Sun Y, Heng BH, Seow YT, et al. Forecasting daily attendances at an emergency department to aid resource planning. BMC Emerg Med 2009;9:1 .
  • Haug PJ, Ferraro JP, Holmen J, et al. An ontology-driven, diagnostic modeling system. J Am Med Inform Assoc 2013;20:e102-110.
  • Ramesh AN, Kambhampati C, Monson JRT, et al. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86:334-338.
  • Levin S, Toerper M, et al. Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index. Ann. Emerg. Med. 2017;71:565-574 .
  • Mistry B, Stewart DeRamirez S, Kelen G, PSKS, Balhara KS, LevinS,etal. Accuracy and reliability of emergency department triage using the Emergency Severity Index: An International Multicenter Assessment. Ann EmergMed. 2018;71:581–587. Bora S, Kantarcı A, Erdoğan A, Beynek B, Kheibari B, Eren V, Erdogan MA, Kavak F, Afyoncu F, Eryaz C, Gonullu H. Machine learning for E-trigae. International Journal of Multidisciplinary Studies and Innovative Technologies 2022;6:86-90.
  • Goto T, Camargo CA Jr, Faridi MK, et al. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am J Emerg Med 2018;36:1650-1654.
  • Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA Jr, Hasegawa K. Emergency department tirage prediction of clinical outcomes using machine learning models. Crit Care. 2019;23:64. Shafaf N, Malek H. “Applications of machine learning approaches in emergency medicine; a review article,” Archives of academic emergency medicine, vol. 7, no. 1, 2019.
  • Dwarakanath L, Kamsin A, Rasheed RA, Anandhan A, Shuib L. Automated Machine Learning Approaches for Emergency Response and Coordination via Social Media in the Aftermath of a Disaster: A Review. IEEE Access. 2021;9:68917-68931.
  • Zabor EC, Reddy CA, Tendulkar RD, Patil S. Logistic regression in clinical studies. Int J Radiat Oncol Biol Phys. 2022;112:271–277.
  • Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial Intelligence in Cardiology. J Am Coll Cardiol 2018;71:2668-2679.
  • Fernandez-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014;15:3133–3181.
  • James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with applications in R.NewYork:Springer- Verlag;2013.
  • Vapnik V. The Nature of Statistical Learning Theory. New York:Springer-Verlag, 2000.
  • 26. Hastie T, Tibshirani R and. Friedman JH, The elements of statistical learning: data mining, inference, and prediction, New York Springer, 2009.
  • Bounsaythip C, Rinta-Runsala E. 2001. “Overview of data mining for customer behavior modeling”, VTT Information Tech. Rep., 2001;1:1-53.
  • Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot.2013.
  • Biau G, Scornet E, A random forest guided tour, Test, 2016;25:197-227.
  • Quinlan JR , C4.5 Programs for Machine Learning, USA, Morgan Kauffman, 1993 Breiman L, “Random Forests”, Machine Learning, 2001;45:5-32.
  • Obermeyer Z, Emanuel EJ. Predicting the future-bigdata, machine learning, and clinical medicine. N Engl J Med.2016;375:1216–1219.
  • Vantu A, Vasilescu A, Baicoianu A. Medical emergency department tirage data processing using a machine-learning solution. Heliyon 2023;9:e18402.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Emergency Medicine
Journal Section Review
Authors

Savaş Sezik 0000-0002-0870-1050

Publication Date February 25, 2025
Submission Date April 12, 2024
Acceptance Date August 9, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

AMA Sezik S. Acil Tıp Uygulamalarında Makine Öğrenimleri Başrolü Alır mı?. Hitit Medical Journal. February 2025;7(1):118-123. doi:10.52827/hititmedj.1467697