Research Article
BibTex RIS Cite

Borsa İstanbul’da Yatırımcı İlgisi Google Trendleri ve Youtube İzlenmelerinin İlk Halka Arz Performanslarına Etkisinin Rassal Orman Yöntemi ile Analizi

Year 2024, Volume: 17 Issue: 1, 70 - 90, 30.04.2024
https://doi.org/10.17218/hititsbd.1391709

Abstract

Geleneksel finans teorisinin varlık fiyatlama modellerinden biri olan “etkin piyasalar hipotezi”, kamuya açık bilginin tam bilgiye sahip olan rasyonel yatırımcılar tarafından fiyatlara yansıtıldığı varsayımına dayanmakta ve dolayısıyla normalüstü getiri elde etmenin mümkün olmadığı görüşünü savunmaktadır. Diğer taraftan sınırlı rasyonalite varsayımına dayanan modellerde ise yatırımcıların bilişsel kısıtlarının olduğu ve bu kısıtlardan birisinin de yatırımcı ilgisi olduğu görüşü hakimdir. Yatırımcı ilgisi, yatırımcıların sadece bir dizi bilgiye odaklanabilmesine neden olan ve dolayısıyla yatırımcıların bilgiye erişimlerini sınırlandıran bilişsel bir kısıttır. Bu kısıt yatırımcıları sadece hakkında bilgi sahibi oldukları hisse senetlerini satın almaya yönlendirdiğinden hisse senedi fiyat hareketleri için bir sinyal olarak kullanılmaktadır. Ancak yatırımcı ilgisinin nasıl ölçüleceği konusunda farklı görüşler söz konusudur. Yatırımcı ilgisini dolaylı olarak ölçen yaklaşımlarda fiyat, likidite, getiri, reklam harcamaları gibi dolaylı temsilciler kullanılmakta, doğrudan ölçen yaklaşımlarda ise ya doğrudan yatırımcıya sorulmakta ya da yatırımcıların davranışları izlenmektedir. Özellikle bilgi ve iletişim teknolojilerindeki gelişmelerle birlikte sosyal medyanın yatırımcılar tarafından yatırım fikirlerine ulaşmak için yaygın bir şekilde kullanımı yatırımcı ilgisini doğrudan ölçmek için yeni araçlar sunmaktadır. Yatırımcıların bilgi arayışlarına dayanan bu araçlar arasında Google ve Baidu arama hacimleri, Wikipedia sayfalarının görüntülenme sayısı ve tweetler sayılabilir. Yatırımcı ilgisinin etkili olduğu bir diğer finansal dinamik ise ilk halka arzlardır. İlk halka arz (IPO), bir firmanın hisselerinin birincil piyasada halka arz edilmesi sürecini ifade etmektedir. Dolayısıyla ilk halka arzda firmalar birincil piyasa yoluyla hisse senetlerini arz ederek sermaye elde ederler. İlk halka arzda hisse senedinin performansının öngörülmesi gerek firmalar gerek yatırımcılar açısından oldukça önemlidir. Bu araştırmada, yatırımcı ilgisinin temsilcileri olarak ilk halka arz öncesinde firma isimlerinin ve sembollerinin Google’da aranma hacimleri ile halka arz olacak şirket hakkında kısa bilgilerin verildiği YouTube içeriklerinin görüntülenme sayıları kullanılmakta ve bunların Borsa İstanbul’da ilk halka arz performansı üzerindeki etkisi incelenmektedir. Çalışmada ayrıca yatırımcı ilgisinin firmalara özgü hangi niteliklerle ilgili olduğu da araştırılmaktadır. Başka bir ifadeyle halka arz büyüklüğü, hisse sayısı, halka arz fiyatı, halka arz nedeni, firmanın sektörü, finansal oranları gibi değişkenlerden hangilerinin yatırımcı ilgisini daha fazla çektiği de araştırılmaktadır. Araştırma sonucunda YouTube izlenme sayılarının Google arama hacimlerine kıyasla yatırımcı ilgisinin daha iyi bir temsilcisi olduğu bulgusuna ulaşılmıştır. Bu çalışma kapsamında, yatırımcı ilgisinin temsilcisi olarak kullanılan her iki araç da tam bilginin olmadığı ve bilişsel yeteneklerin kısıtlı olduğu sınırlı rasyonalite varsayımıyla örtüşmektedir. Ayrıca bulgular yatırımcıların firmanın temel değerine ve içsel büyüme potansiyeline önem verdiğine de işaret etmektedir. Bu çalışmanın amaçlarından bir diğeri de algoritmik finansal işlemler kapsamında, ilk halka arza ilişkin kararları verebilecek ya da yatırımcıların kararlarına destek olabilecek dar bir yapay zekâ geliştirmektedir. Yapay zekâ, bir bilgisayarın zeki canlılara benzer şekilde çeşitli faaliyetleri gerçekleştirme yeteneği olarak tanımlanmaktadır. Süper yapay zekâ, insanüstü yeteneklere sahip olan; genel yapay zekâ, bir insanın yapabileceği herhangi bir görevi yerine getirmek için tasarlanmış olan; dar yapay zekâ ise belirli bir görevi gerçekleştirmek için tasarlanmış yapay zekâyı ifade etmektedir. Dolayısıyla dar yapay zekâ kapsamında geliştirilen her bir model, esasında genel yapay zekâya yeni bir yetenek kazandırmaktadır. Bu bağlamda bu çalışmadan elde edilen bulgular, özellikle finansal yapay zekâ uygulamalarının geliştirilmesinde ve algoritmik finansal işlemler yapan botların eğitilmesinde ilk halka arz kapsamında önemli bir katkı sunmaktadır. Başka bir ifadeyle bu çalışma, pratikte çerçevesi halka arz performansları ile sınırlı olan finansal dar bir yapay zekâ ürünü ortaya koyarken teoride yatırımcı ilgisinin belirleyicilerini ortaya koymaktadır.

References

  • Akyildirim, E., Goncu, A., & Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297, 3-36. https://doi.org/10.1007/s10479-020-03575-y
  • American Psychological Association. (n.d.). Attention. In APA dictionary of psychology. Erişim adresi: https://dictionary.apa.org/attention
  • Andrews, M. (2023, 2 May). The rise of the retail investor continues – here’s how the financial system can accommodate them. World Economic Forum. Erişim adresi: https://www.weforum.org/agenda/2023/05/retail-investors-financial-systems-to-accommodate-them/
  • Bajo, E., Chemmanur, T.J., Simonyan, K., & Tehranian, H. (2016). Underwriter networks, investor attention, and initial public offerings. Journal of Financial Economics, 122(2), 376-408. https://doi.org/10.1016/j.jfineco.2015.12.001
  • Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial Markets and Portfolio Management, 25, 239-264. https://doi.org/10.1007/s11408-011-0165-y
  • Barber, B.M., & Odean, T. (2000). Trading is hazardous to your wealth: The common stock investment performance of individual investors. The Journal of Finance, 55(2), 773-806. https://doi.org/10.1111/0022-1082.00226
  • Barber, B. M., & Odean, T. (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies, 21(2), 785-818. https://doi.org/10.1093/rfs/hhm079
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Bilgiç, M.E. (2017). Google Trends Search Volume Index in Estimation of Istanbul Stock Market Index (BIST). (Tez No. 456715) [Yüksek lisans tezi, Istanbul Bilgi University]. YÖK Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150-156. https://doi.org/10.1016/j.irfa.2016.03.015
  • Boulton, T., Francis, B. B., Shohfi, T., &Xin, D. (2021). Investor awareness or information asymmetry? Wikipedia and IPO underpricing. Financial Review, 56(3), 535-561. https://doi.org/10.1111/fire.12276
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  • Bui, V. X., & Nguyen, H. T. (2019). Stock market activity and Google Trends: the case of a developing economy. Journal of Economics and Development, 21(2), 191-212. https://doi.org/10.1108/JED-07-2019-0017
  • Chang, Y. B., & Kwon, Y. (2020). Attention-grabbing IPOs in early stages for IT firms: An empirical analysis of post-IPO performance. Journal of Business Research, 109, 111-119. https://doi.org/10.1016/j.jbusres.2019.10.061
  • Chemmanur, T. J., & Yan, A. (2019). Advertising, attention, and stock returns. Quarterly Journal of Finance, 9(03), 1950009. https://doi.org/10.1142/S2010139219500095
  • Chen, T. (2017). Investor attention and global stock returns. Journal of Behavioral Finance, 18(3), 358-372. https://doi.org/10.1080/15427560.2017.1331235
  • Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of The Total Environment, 644, 1006-1018. https://doi.org/10.1016/j.scitotenv.2018.06.389
  • Chivianti, M., & Sukamulja, S. (2021). The effect of Google search volume index on underpriced IPOs and divergence of opinions. Journal of Indonesian Economy and Business (JIEB), 36(1), 1-13. https://doi.org/10.22146/jieb.55759
  • Colaco, H. M., De Cesari, A., & Hegde, S. P. (2017). Retail investor attention and IPO valuation. European Financial Management, 23(4), 691-727. https://doi.org/10.1111/eufm.12113
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi Başkanlığı ve Sanayi ve Teknoloji Bakanlığı. (2021). Ulusal Yapay Zekâ Stratejisi 2021-2025. https://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021- 2025.pdf
  • Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461-1499. https://doi.org/10.1111/j.1540-6261.2011.01679.x
  • Ekinci, C., & Bulut, A.E. (2021). Google search and stock returns: A study on BIST 100 stocks. Global Finance Journal, 47, 100518. https://doi.org/10.1016/j.gfj.2020.100518
  • Fang, L., & Peress, J. (2009). Media coverage and the cross‐section of stock returns. The Journal of Finance, 64(5), 2023-2052. https://doi.org/10.1111/j.1540-6261.2009.01493.x
  • Farrell, M., Green, T. C., Jame, R., & Markov, S. (2022). The democratization of investment research and the informativeness of retail investor trading. Journal of Financial Economics, 145(2), 616-641. https://doi.org/10.1016/j.jfineco.2021.07.018
  • Gargano, A., & Rossi, A.G. (2018). Does it pay to pay attention?. The Review of Financial Studies, 31(12), 4595-4649. https://doi.org/10.1093/rfs/hhy050
  • Géron, A. (2021). Scikit-Learn, keras ve tensorflow ile uygulamalı makine öğrenmesi (1. baskı). (B. Aksoy, ve Ö. Kaya, Çev.). Buzdağı Yayınevi. (Orijinal eserin basım tarihi 2019)
  • Gómez‐Martínez, R., Orden‐Cruz, C., & Martínez‐Navalón, J. G. (2022). Wikipedia pageviews as investors’ attention indicator for Nasdaq. Intelligent Systems in Accounting, Finance and Management, 29(1), 41-49. https://doi.org/10.1002/isaf.1508
  • Grossman, S. J., & Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. The American Economic Review, 70(3), 393-408
  • Grullon, G., Kanatas, G., & Weston, J.P. (2004). Advertising, breadth of ownership, and liquidity. The Review of Financial Studies, 17(2), 439-461. https://doi.org/10.1093/rfs/hhg039
  • Guo, J., Zan, X., Wang, L., Lei, L., Ou, C., & Bai, S. (2023). A random forest regression with Bayesian optimization-based method for fatigue strength prediction of ferrous alloys. Engineering Fracture Mechanics, 109714. https://doi.org/10.1016/j.engfracmech.2023.109714
  • Hou, K., Xiong, W., & Peng, L. (2009). A tale of two anomalies: The implications of investor attention for price and earnings momentum. Available at SSRN 976394. https://doi.org/10.2139/ssrn.976394
  • Hsieh, S. F., Chan, C. Y., & Wang, M. C. (2020). Retail investor attention and herding behavior. Journal of Empirical Finance, 59, 109-132. https://doi.org/10.1016/j.jempfin.2020.09.005
  • Huang, M.Y., Rojas, R.R., & Convery, P.D. (2020) Forecasting stock market movements using Google Trend searches. Empirical Economics, 59, 2821–2839. https://doi.org/10.1007/s00181-019-01725-1
  • Kahneman, D. (1973). Attention and effort (Vol. 1063, pp. 218-226). Englewood Cliffs, NJ: Prentice-Hall. Keynes, J. M. (1936). The general theory of employment, interest and money
  • Kim, N., Lučivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28, 208-220. https://doi.org/10.1016/j.frl.2018.05.003
  • Korkmaz, T., Çevik, E. I., & Kırcı Çevik, N. (2017). Yatırımcı ilgisi ile pay piyasası arasındaki ilişki: BİST-100 endeksi üzerine bir uygulama. İşletme ve Ekonomi Araştırmaları Dergisi. Erişim adresi: https://www.ceeol.com/search/article-detail?id=562145
  • Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the internet era. Scientific Reports, 3(1), 3415. https://doi.org/10.1038/srep03415
  • Li, X., Hendler, J. A., & Teall, J. L. (2016). Investor attention on the social web. Journal of Behavioral Finance, 17(1), 45-59. https://doi.org/10.1080/15427560.2015.1095752
  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13–37. https://doi.org/10.1016/B978-0-12-780850-5.50018-6
  • Liu, R., An, E., & Zhou, W. (2021). The effect of online search volume on financial performance: Marketing insight from Google trends data of the top five US technology firms. Journal of Marketing Theory and Practice, 29(4), 423-434. https://doi.org/10.1080/10696679.2020.1867478
  • Lou, D. (2014). Attracting investor attention through advertising. The Review of Financial Studies, 27(6), 1797-1829. https://doi.org/10.1093/rfs/hhu019
  • Madsen, J., & Niessner, M. (2019). Is investor attention for sale? The role of advertising in financial markets. Journal of Accounting Research, 57(3), 763-795. https://doi.org/10.1111/1475-679X.12257
  • Mayer, E. J. (2021). Advertising, investor attention, and stock prices: Evidence from a natural experiment. Financial Management, 50(1), 281-314. https://doi.org/10.1111/fima.12324
  • Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098
  • Mulchandani, P., Pandey, R., Debata, B., & Renganathan, J. (2023). Investor attention and IPO returns: evidence from Indian markets. Journal of Economic and Administrative Sciences. https://doi.org/10.1108/JEAS-03-2022-0075
  • Nabipour, M., Nayyeri, P., Jabani, H., Mosavi, A., & Salwana, E. (2020). Deep learning for stock market prediction. Entropy, 22(8), 840. https://doi.org/10.3390/e22080840
  • Nguyen, C. P., Schinckus, C., & Nguyen, T. V. H. (2019). Google search and stock returns in emerging markets. Borsa Istanbul Review, 19(4), 288-296. https://doi.org/10.1016/j.bir.2019.07.001
  • Osabuohien-Irabor, O. (2021). Investors’ attention: does it impact the Nigerian stock market activities? Journal of Economics and Development, 23(1), 59-76. https://doi.org/10.1108/JED-02-2020-0015
  • Padungsaksawasdi C., Treepongkaruna S., & Brooks, R. (2019). Investor attention and stock market activities: New evidence from panel data. International Journal of Financial Studies, 7(2), 30. https://doi.org/3390/ijfs7020030
  • Prayudani, S., Hizriadi, A., Lase, Y. Y., & Fatmi, Y. (2019, November). Analysis accuracy of forecasting measurement technique on random K-nearest neighbor (RKNN) using MAPE and MSE. In Journal of Physics: Conference Series, 1361(1), 012089). IOP Publishing. https://doi.org/10.1088/1742-6596/1361/1/012089
  • Python Package Index - PyPI. (n.d.). Python Software Foundation. Erişim adresi: https://pypi.org/
  • Rakowski, D., Shirley, S. E., & Stark, J. R. (2021). Twitter activity, investor attention, and the diffusion of information. Financial Management, 50(1), 3-46. https://doi.org/10.1111/fima.12307
  • Russell, S. J., & Norvig, P. (2021). Artificial intelligence a modern approach (4rd ed.). London
  • Rutkowska, A., & Kliber, A. (2018). Can Google Trends affect sentiment of individual investors? The case of the United States. Mathematical Economics, 14(21)), 51-70. Erişim adresi: https://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-db7dc823-6339-481f-b631-b987dd8bdcb0
  • Salisu, A.A., Ogbonna, A. E., & Adediran, I. (2021). Stock‐induced Google Trends and the predictability of sectoral stock returns. Journal of Forecasting, 40(2), 327-345. https://doi.org/10.1002/for.2722
  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540- 6261.1964.tb02865.x
  • Shen, D., Urquhart, A., & Wang, P. (2019). Does twitter predict Bitcoin?. Economics Letters, 174, 118-122. https://doi.org/10.1016/j.econlet.2018.11.007
  • Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99-118. https://doi.org/10.2307/1884852
  • Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129-138. https://doi.org/10.1037/h0042769
  • Singh, A., Thakur, N., & Sharma, A. (2016, March). A review of supervised machine learning algorithms. In 2016 3rd international conference on computing for sustainable global development (INDIACom) (pp. 1310-1315). IEEE
  • Suardi, S., Rasel, A. R., & Liu, B. (2022). On the predictive power of tweet sentiments and attention on bitcoin. International Review of Economics & Finance, 79, 289-301. https://doi.org/10.1016/j.iref.2022.02.017
  • Sun, D., Xu, J., Wen, H., & Wang, D. (2021). Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Engineering Geology, 281, 105972. https://doi.org/10.1016/j.enggeo.2020.105972
  • Swamy, V., & Dharani, M. (2019). Investor attention using the Google search volume index–impact on stock returns. Review of Behavioral Finance, 11(1), 56-70. https://doi.org/10.1108/RBF-04-2018-0033
  • Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal, 27, 1-18. https://doi.org/10.1016/j.pacfin.2014.01.003
  • Topaloğlu, T. N., & İlhan, E.G.E. (2020). Yatırımcı ilgisinin pay piyasaları üzerindeki etkisi: Borsa İstanbul’da işlem gören bankalar üzerine panel veri analizi. Sosyoekonomi, 28(44), 191-214. https://doi.org/10.17233/sosyoekonomi.2020.02.09
  • Torikka, V. (2016). Capturing investor attention–do pre-IPO Google Searches predict stock performance? Evidence from Europe. Erişim adresi: https://aaltodoc.aalto.fi/items/d63e8546-4e63-46c6-89f5-3bc0d8618e96
  • Treynor, J. L. (1962). Toward a theory of market value of risky assets. Unpublished manuscript. A final version was published in 1999, in Asset Pricing and Portfolio Performance: Models, Strategy and Performance Metrics. Robert A. Korajczyk (editor) London: Risk Books, pp. 15–22
  • Vlastakis, N., & Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance, 36(6), 1808-1821. https://doi.org/10.1016/j.jbankfin.2012.02.007
  • Vozlyublennaia, N. (2014). Investor attention, index performance, and return predictability. Journal of Banking & Finance, 41, 17-35. https://doi.org/10.1016/j.jbankfin.2013.12.010
  • World Economic Forum, (2022, 4 August). The Future of capital markets: democratization of retail ınvesting. Erişim adresi: https://www.weforum.org/publications/the-future-of-capital-markets-democratization-of-retail-investing/
  • Yuan, Y. (2015). Market-wide attention, trading, and stock returns. Journal of Financial Economics, 116(3), 548-564. https://doi.org/10.1016/j.jfineco.2015.03.006
  • Zhang, B. (2019). Individual investor’s limited attention and IPO performance. Applied Economics, 51(57), 6089-6099. https://doi.org/10.1080/00036846.2019.1646404
  • Zhang, W., Shen, D., Zhang, Y., & Xiong, X. (2013). Open source information, investor attention, and asset pricing. Economic Modelling, 33, 613-619. https://doi.org/10.1016/j.econmod.2013.03.018
  • Zhao, R., Xiong, X., & Shen, D. (2018). Investor attention and performance of IPO firms: Evidence from online searches. Physica A: Statistical Mechanics and Its Applications, 508, 342-348. https://doi.org/10.1016/j.physa.2018.05.115

Investor attention in Borsa Istanbul: analysis of the effect of Google Trends and Youtube views on initial public offering performances by Random Forest Method

Year 2024, Volume: 17 Issue: 1, 70 - 90, 30.04.2024
https://doi.org/10.17218/hititsbd.1391709

Abstract

The "efficient markets hypothesis", which is one of the asset pricing models of traditional finance theory, is based on the assumption that publicly available information is reflected in prices by rational investors with perfect information, and therefore it is not possible to obtain abnormal returns. On the other hand, models based on the assumption of bounded rationality argue that investors have cognitive constraints and one of these constraints is investor attention. Investor attention is a cognitive constraint that leads investors to focus only on a set of information, thus limiting their access to information. This constraint is used as a signal for stock price movements because it leads investors to buy only those stocks about which they have information. However, there are different views on how to measure investor attention. Approaches that measure investor attention indirectly use indirect proxies such as price, liquidity, return, and advertising expenditures, while approaches that measure investor attention directly either ask investors directly or monitor their behavior. Especially with the advancements in information and communication technologies, the widespread use of social media by investors to access investment ideas offers new tools to directly measure investor attention. Among these tools based on investors' information-seeking behaviors are Google and Baidu search volumes, Wikipedia page views, and tweets. Another financial dynamic influenced by investor attention is initial public offerings (IPOs). An IPO refers to the process of offering a firm's shares to the public in the primary market. Therefore, in an IPO, firms raise capital by offering their shares through the primary market. Predicting the performance of a stock in an IPO is crucial for both firms and investors. In this study, we use Google search volumes of firm names and symbols prior to the IPO as proxies of investor attention and the number of views of YouTube content that provides brief information about the IPO company and examine their impact on the performance of initial public offerings in Borsa Istanbul. The study also investigates which firm-specific characteristics are related to investor attention. In other words, it is also investigated which variables such as IPO size, number of shares, IPO price, reason for IPO, sector of the firm, and financial ratios attract more investor attention. As a result of the research, it was found that YouTube view counts are a better proxy for investor attention than Google search volumes. Within the scope of this study, both instruments used as proxies of investor attention are consistent with the assumption of bounded rationality, where perfect information is not available and cognitive abilities are limited. Additionally, the findings also suggest that investors value a firm's fundamental value and internal growth potential. Another aim of this study is to develop narrow artificial intelligence capable of making decisions regarding IPOs or supporting investor decisions within the scope of algorithmic financial transactions. Artificial intelligence is defined as the ability of a computer to perform various activities similar to intelligent beings. Super artificial intelligence refers to those with superhuman abilities; general artificial intelligence is designed to perform any task a human can perform; narrow artificial intelligence refers to artificial intelligence designed to perform a specific task. Therefore, each model developed within the scope of narrow artificial intelligence actually adds a new skill to general artificial intelligence. In this context, the findings obtained from this study provide a significant contribution to the development of financial artificial intelligence applications, especially in training bots engaged in algorithmic financial transactions related to IPOs. In other words, in practice, this study presents a narrow financial artificial intelligence product whose framework is limited to IPO performances, while in theory it reveals the determinants of investor attention.

References

  • Akyildirim, E., Goncu, A., & Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297, 3-36. https://doi.org/10.1007/s10479-020-03575-y
  • American Psychological Association. (n.d.). Attention. In APA dictionary of psychology. Erişim adresi: https://dictionary.apa.org/attention
  • Andrews, M. (2023, 2 May). The rise of the retail investor continues – here’s how the financial system can accommodate them. World Economic Forum. Erişim adresi: https://www.weforum.org/agenda/2023/05/retail-investors-financial-systems-to-accommodate-them/
  • Bajo, E., Chemmanur, T.J., Simonyan, K., & Tehranian, H. (2016). Underwriter networks, investor attention, and initial public offerings. Journal of Financial Economics, 122(2), 376-408. https://doi.org/10.1016/j.jfineco.2015.12.001
  • Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial Markets and Portfolio Management, 25, 239-264. https://doi.org/10.1007/s11408-011-0165-y
  • Barber, B.M., & Odean, T. (2000). Trading is hazardous to your wealth: The common stock investment performance of individual investors. The Journal of Finance, 55(2), 773-806. https://doi.org/10.1111/0022-1082.00226
  • Barber, B. M., & Odean, T. (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies, 21(2), 785-818. https://doi.org/10.1093/rfs/hhm079
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Bilgiç, M.E. (2017). Google Trends Search Volume Index in Estimation of Istanbul Stock Market Index (BIST). (Tez No. 456715) [Yüksek lisans tezi, Istanbul Bilgi University]. YÖK Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150-156. https://doi.org/10.1016/j.irfa.2016.03.015
  • Boulton, T., Francis, B. B., Shohfi, T., &Xin, D. (2021). Investor awareness or information asymmetry? Wikipedia and IPO underpricing. Financial Review, 56(3), 535-561. https://doi.org/10.1111/fire.12276
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  • Bui, V. X., & Nguyen, H. T. (2019). Stock market activity and Google Trends: the case of a developing economy. Journal of Economics and Development, 21(2), 191-212. https://doi.org/10.1108/JED-07-2019-0017
  • Chang, Y. B., & Kwon, Y. (2020). Attention-grabbing IPOs in early stages for IT firms: An empirical analysis of post-IPO performance. Journal of Business Research, 109, 111-119. https://doi.org/10.1016/j.jbusres.2019.10.061
  • Chemmanur, T. J., & Yan, A. (2019). Advertising, attention, and stock returns. Quarterly Journal of Finance, 9(03), 1950009. https://doi.org/10.1142/S2010139219500095
  • Chen, T. (2017). Investor attention and global stock returns. Journal of Behavioral Finance, 18(3), 358-372. https://doi.org/10.1080/15427560.2017.1331235
  • Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of The Total Environment, 644, 1006-1018. https://doi.org/10.1016/j.scitotenv.2018.06.389
  • Chivianti, M., & Sukamulja, S. (2021). The effect of Google search volume index on underpriced IPOs and divergence of opinions. Journal of Indonesian Economy and Business (JIEB), 36(1), 1-13. https://doi.org/10.22146/jieb.55759
  • Colaco, H. M., De Cesari, A., & Hegde, S. P. (2017). Retail investor attention and IPO valuation. European Financial Management, 23(4), 691-727. https://doi.org/10.1111/eufm.12113
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi Başkanlığı ve Sanayi ve Teknoloji Bakanlığı. (2021). Ulusal Yapay Zekâ Stratejisi 2021-2025. https://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021- 2025.pdf
  • Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461-1499. https://doi.org/10.1111/j.1540-6261.2011.01679.x
  • Ekinci, C., & Bulut, A.E. (2021). Google search and stock returns: A study on BIST 100 stocks. Global Finance Journal, 47, 100518. https://doi.org/10.1016/j.gfj.2020.100518
  • Fang, L., & Peress, J. (2009). Media coverage and the cross‐section of stock returns. The Journal of Finance, 64(5), 2023-2052. https://doi.org/10.1111/j.1540-6261.2009.01493.x
  • Farrell, M., Green, T. C., Jame, R., & Markov, S. (2022). The democratization of investment research and the informativeness of retail investor trading. Journal of Financial Economics, 145(2), 616-641. https://doi.org/10.1016/j.jfineco.2021.07.018
  • Gargano, A., & Rossi, A.G. (2018). Does it pay to pay attention?. The Review of Financial Studies, 31(12), 4595-4649. https://doi.org/10.1093/rfs/hhy050
  • Géron, A. (2021). Scikit-Learn, keras ve tensorflow ile uygulamalı makine öğrenmesi (1. baskı). (B. Aksoy, ve Ö. Kaya, Çev.). Buzdağı Yayınevi. (Orijinal eserin basım tarihi 2019)
  • Gómez‐Martínez, R., Orden‐Cruz, C., & Martínez‐Navalón, J. G. (2022). Wikipedia pageviews as investors’ attention indicator for Nasdaq. Intelligent Systems in Accounting, Finance and Management, 29(1), 41-49. https://doi.org/10.1002/isaf.1508
  • Grossman, S. J., & Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. The American Economic Review, 70(3), 393-408
  • Grullon, G., Kanatas, G., & Weston, J.P. (2004). Advertising, breadth of ownership, and liquidity. The Review of Financial Studies, 17(2), 439-461. https://doi.org/10.1093/rfs/hhg039
  • Guo, J., Zan, X., Wang, L., Lei, L., Ou, C., & Bai, S. (2023). A random forest regression with Bayesian optimization-based method for fatigue strength prediction of ferrous alloys. Engineering Fracture Mechanics, 109714. https://doi.org/10.1016/j.engfracmech.2023.109714
  • Hou, K., Xiong, W., & Peng, L. (2009). A tale of two anomalies: The implications of investor attention for price and earnings momentum. Available at SSRN 976394. https://doi.org/10.2139/ssrn.976394
  • Hsieh, S. F., Chan, C. Y., & Wang, M. C. (2020). Retail investor attention and herding behavior. Journal of Empirical Finance, 59, 109-132. https://doi.org/10.1016/j.jempfin.2020.09.005
  • Huang, M.Y., Rojas, R.R., & Convery, P.D. (2020) Forecasting stock market movements using Google Trend searches. Empirical Economics, 59, 2821–2839. https://doi.org/10.1007/s00181-019-01725-1
  • Kahneman, D. (1973). Attention and effort (Vol. 1063, pp. 218-226). Englewood Cliffs, NJ: Prentice-Hall. Keynes, J. M. (1936). The general theory of employment, interest and money
  • Kim, N., Lučivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28, 208-220. https://doi.org/10.1016/j.frl.2018.05.003
  • Korkmaz, T., Çevik, E. I., & Kırcı Çevik, N. (2017). Yatırımcı ilgisi ile pay piyasası arasındaki ilişki: BİST-100 endeksi üzerine bir uygulama. İşletme ve Ekonomi Araştırmaları Dergisi. Erişim adresi: https://www.ceeol.com/search/article-detail?id=562145
  • Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the internet era. Scientific Reports, 3(1), 3415. https://doi.org/10.1038/srep03415
  • Li, X., Hendler, J. A., & Teall, J. L. (2016). Investor attention on the social web. Journal of Behavioral Finance, 17(1), 45-59. https://doi.org/10.1080/15427560.2015.1095752
  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13–37. https://doi.org/10.1016/B978-0-12-780850-5.50018-6
  • Liu, R., An, E., & Zhou, W. (2021). The effect of online search volume on financial performance: Marketing insight from Google trends data of the top five US technology firms. Journal of Marketing Theory and Practice, 29(4), 423-434. https://doi.org/10.1080/10696679.2020.1867478
  • Lou, D. (2014). Attracting investor attention through advertising. The Review of Financial Studies, 27(6), 1797-1829. https://doi.org/10.1093/rfs/hhu019
  • Madsen, J., & Niessner, M. (2019). Is investor attention for sale? The role of advertising in financial markets. Journal of Accounting Research, 57(3), 763-795. https://doi.org/10.1111/1475-679X.12257
  • Mayer, E. J. (2021). Advertising, investor attention, and stock prices: Evidence from a natural experiment. Financial Management, 50(1), 281-314. https://doi.org/10.1111/fima.12324
  • Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098
  • Mulchandani, P., Pandey, R., Debata, B., & Renganathan, J. (2023). Investor attention and IPO returns: evidence from Indian markets. Journal of Economic and Administrative Sciences. https://doi.org/10.1108/JEAS-03-2022-0075
  • Nabipour, M., Nayyeri, P., Jabani, H., Mosavi, A., & Salwana, E. (2020). Deep learning for stock market prediction. Entropy, 22(8), 840. https://doi.org/10.3390/e22080840
  • Nguyen, C. P., Schinckus, C., & Nguyen, T. V. H. (2019). Google search and stock returns in emerging markets. Borsa Istanbul Review, 19(4), 288-296. https://doi.org/10.1016/j.bir.2019.07.001
  • Osabuohien-Irabor, O. (2021). Investors’ attention: does it impact the Nigerian stock market activities? Journal of Economics and Development, 23(1), 59-76. https://doi.org/10.1108/JED-02-2020-0015
  • Padungsaksawasdi C., Treepongkaruna S., & Brooks, R. (2019). Investor attention and stock market activities: New evidence from panel data. International Journal of Financial Studies, 7(2), 30. https://doi.org/3390/ijfs7020030
  • Prayudani, S., Hizriadi, A., Lase, Y. Y., & Fatmi, Y. (2019, November). Analysis accuracy of forecasting measurement technique on random K-nearest neighbor (RKNN) using MAPE and MSE. In Journal of Physics: Conference Series, 1361(1), 012089). IOP Publishing. https://doi.org/10.1088/1742-6596/1361/1/012089
  • Python Package Index - PyPI. (n.d.). Python Software Foundation. Erişim adresi: https://pypi.org/
  • Rakowski, D., Shirley, S. E., & Stark, J. R. (2021). Twitter activity, investor attention, and the diffusion of information. Financial Management, 50(1), 3-46. https://doi.org/10.1111/fima.12307
  • Russell, S. J., & Norvig, P. (2021). Artificial intelligence a modern approach (4rd ed.). London
  • Rutkowska, A., & Kliber, A. (2018). Can Google Trends affect sentiment of individual investors? The case of the United States. Mathematical Economics, 14(21)), 51-70. Erişim adresi: https://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-db7dc823-6339-481f-b631-b987dd8bdcb0
  • Salisu, A.A., Ogbonna, A. E., & Adediran, I. (2021). Stock‐induced Google Trends and the predictability of sectoral stock returns. Journal of Forecasting, 40(2), 327-345. https://doi.org/10.1002/for.2722
  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540- 6261.1964.tb02865.x
  • Shen, D., Urquhart, A., & Wang, P. (2019). Does twitter predict Bitcoin?. Economics Letters, 174, 118-122. https://doi.org/10.1016/j.econlet.2018.11.007
  • Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99-118. https://doi.org/10.2307/1884852
  • Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129-138. https://doi.org/10.1037/h0042769
  • Singh, A., Thakur, N., & Sharma, A. (2016, March). A review of supervised machine learning algorithms. In 2016 3rd international conference on computing for sustainable global development (INDIACom) (pp. 1310-1315). IEEE
  • Suardi, S., Rasel, A. R., & Liu, B. (2022). On the predictive power of tweet sentiments and attention on bitcoin. International Review of Economics & Finance, 79, 289-301. https://doi.org/10.1016/j.iref.2022.02.017
  • Sun, D., Xu, J., Wen, H., & Wang, D. (2021). Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Engineering Geology, 281, 105972. https://doi.org/10.1016/j.enggeo.2020.105972
  • Swamy, V., & Dharani, M. (2019). Investor attention using the Google search volume index–impact on stock returns. Review of Behavioral Finance, 11(1), 56-70. https://doi.org/10.1108/RBF-04-2018-0033
  • Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal, 27, 1-18. https://doi.org/10.1016/j.pacfin.2014.01.003
  • Topaloğlu, T. N., & İlhan, E.G.E. (2020). Yatırımcı ilgisinin pay piyasaları üzerindeki etkisi: Borsa İstanbul’da işlem gören bankalar üzerine panel veri analizi. Sosyoekonomi, 28(44), 191-214. https://doi.org/10.17233/sosyoekonomi.2020.02.09
  • Torikka, V. (2016). Capturing investor attention–do pre-IPO Google Searches predict stock performance? Evidence from Europe. Erişim adresi: https://aaltodoc.aalto.fi/items/d63e8546-4e63-46c6-89f5-3bc0d8618e96
  • Treynor, J. L. (1962). Toward a theory of market value of risky assets. Unpublished manuscript. A final version was published in 1999, in Asset Pricing and Portfolio Performance: Models, Strategy and Performance Metrics. Robert A. Korajczyk (editor) London: Risk Books, pp. 15–22
  • Vlastakis, N., & Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance, 36(6), 1808-1821. https://doi.org/10.1016/j.jbankfin.2012.02.007
  • Vozlyublennaia, N. (2014). Investor attention, index performance, and return predictability. Journal of Banking & Finance, 41, 17-35. https://doi.org/10.1016/j.jbankfin.2013.12.010
  • World Economic Forum, (2022, 4 August). The Future of capital markets: democratization of retail ınvesting. Erişim adresi: https://www.weforum.org/publications/the-future-of-capital-markets-democratization-of-retail-investing/
  • Yuan, Y. (2015). Market-wide attention, trading, and stock returns. Journal of Financial Economics, 116(3), 548-564. https://doi.org/10.1016/j.jfineco.2015.03.006
  • Zhang, B. (2019). Individual investor’s limited attention and IPO performance. Applied Economics, 51(57), 6089-6099. https://doi.org/10.1080/00036846.2019.1646404
  • Zhang, W., Shen, D., Zhang, Y., & Xiong, X. (2013). Open source information, investor attention, and asset pricing. Economic Modelling, 33, 613-619. https://doi.org/10.1016/j.econmod.2013.03.018
  • Zhao, R., Xiong, X., & Shen, D. (2018). Investor attention and performance of IPO firms: Evidence from online searches. Physica A: Statistical Mechanics and Its Applications, 508, 342-348. https://doi.org/10.1016/j.physa.2018.05.115
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Behavioural Finance, Financial Forecast and Modelling, Investment and Portfolio Management
Journal Section Articles
Authors

Yunus Emre Akdoğan 0000-0002-1761-2869

Early Pub Date April 25, 2024
Publication Date April 30, 2024
Submission Date November 16, 2023
Acceptance Date April 21, 2024
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

APA Akdoğan, Y. E. (2024). Borsa İstanbul’da Yatırımcı İlgisi Google Trendleri ve Youtube İzlenmelerinin İlk Halka Arz Performanslarına Etkisinin Rassal Orman Yöntemi ile Analizi. Hitit Sosyal Bilimler Dergisi, 17(1), 70-90. https://doi.org/10.17218/hititsbd.1391709
                                                     Hitit Sosyal Bilimler Dergisi  Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.