Research Article
BibTex RIS Cite

Analysis of Volatility Spillover Between Cryptocurrencies: Evidence from High-Cap Cryptocurrencies

Year 2025, Volume: 18 Issue: 1, 18 - 38
https://doi.org/10.17218/hititsbd.1555090

Abstract

Cryptocurrencies are financial assets that have left their mark on the first quarter of the 21st century. After they started to be traded in the financial markets, with the increase in transaction volumes in a short time, many new cryptocurrencies were produced and started to be traded in the market. The features that distinguish cryptocurrencies from traditional financial assets such as their production processes, their lack of physical existence and their decentralized structure have attracted attention. Another important feature that attracts attention is undoubtedly the serious price fluctuations in cryptocurrencies. The serious price fluctuations experienced by cryptocurrencies have highlighted the volatile structure of the market. For this reason, analyzing the volatility spillover between crypto assets has become important for both investors and researchers. In this study, the volatility spillover between the top 4 cryptocurrencies with the highest market value in the cryptocurrency market was analyzed. In the analyzes, daily returns between 13.07.2020 and 05.09.2024 were used for BTC (Bitcoin), ETH (Ethereum), BNB (Binance Coin) and SOL (Solano) and the dynamic connection between cryptocurrencies was examined by creating a TVP-VAR model for the analysis of volatility spillover. From the analysis findings; It has been determined that the total dynamic connection in the volatility of cryptocurrencies was affected by the developments regarding the Covid-19 Pandemic and the approval of Bitcoin ETFs and increased during these periods. In addition, it was found that the strength of the total volatility spillover among cryptocurrencies was not high and that BNB and BTC among the cryptocurrencies were volatility transmitters, while ETH and SOL were volatility receivers during the analysis period. When the variables that are volatility transmitters among cryptocurrencies are ranked in terms of their impact, it was determined that the currency that is the strongest volatility transmitter is BNB, followed by BTC. On the other hand, SOL is the cryptocurrency that receives the most volatility among cryptocurrencies that are volatility receivers, while ETH is in second place. It was determined that the past price shocks of the relevant cryptocurrency are primarily effective in explaining the change in the volatility of cryptocurrencies. The fact that the volatility spillover relationship of the 4 cryptocurrencies included in the analysis is not very high can be evaluated as they can be kept in the same portfolio and their risk-contaminating effects on each other may be limited. In addition, considering BNB's feature as the highest volatility transmitter, creating and monitoring portfolios will be important in terms of investment efficiency. Similarly, the fact that SOL receives strong volatility from other cryptocurrencies can be evaluated as another issue to be considered in investment processes.

References

  • Ahmed, M. S., El-Masry, A. A., Al-Maghyereh, A. I., & Kumar, S. (2024). Cryptocurrency volatility: A review, synthesis and research agenda. Research in International Business and Finance, 102472. https://doi.org/10.1016/j.ribaf.2024.102472
  • Ali, S., Moussa, F., & Youssef, M. (2023). Connectedness between cryptocurrencies using high-frequency data: A novel insight from the silicon valley banks collapse. Finance Research Letters, 58, 104352. https://doi.org/10.1016/j.frl.2023.104352
  • Antonakakis, N., Cuñado, J., Filis, G., Gabauer, D., & de Gracia, F., P. (2019), Oil and asset classes implied volatilities: Dynamic connectedness and investment strategies (June 6, 2019). Available at SSRN: https://ssrn.com/abstract=3399996 or http://dx.doi.org/10.2139/ssrn.3399996
  • Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. https://doi.org/10.3390/jrfm13040084
  • Aslanidis, N., Bariviera, A. F., & Perez-Laborda, A. (2021). Are cryptocurrencies becoming more interconnected? Economics Letters, 199, 109725. https://doi.org/10.1016/j.econlet.2021.109725
  • Ataş, B. (2022). Kripto para piyasalarının Covid-19 pandemisinde asimetrik volatilite karakteristiği. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 22(1), 121-136. https://doi.org/10.18037/ausbd.1095129
  • Balli, F., de Bruin, A., Chowdhury, M. I. H. & Naeem, M. A. (2020). Connectedness of cryptocurrencies and prevailing uncertainties. Applied Economics Letters, 27(16), 1316-1322. https://doi.org/10.1080/13504851.2019.1678724
  • Baur, D. G., & Dimpfl, T. (2018). Asymmetric volatility in cryptocurrencies. Economics Letters, 173, 148-151. https://doi.org/10.1016/j.econlet.2018.10.008
  • Beneki, C., Koulis, A., Kyriazis, N. A., & Papadamou, S. (2019). Investigating volatility transmission and hedging properties between Bitcoin and Ethereum. Research in International Business and Finance, 48, 219-227. https://doi.org/10.1016/j.ribaf.2019.01.001
  • Bouri, E., Gabauer, D., Gupta, R., & Tiwari, A. K. (2021). Volatility connectedness of major cryptocurrencies: The role of investor happiness. Journal of Behavioral and Experimental Finance, 30, 100463. https://doi.org/10.1016/j.jbef.2021.100463
  • Büberkökü, Ö. (2021). Kripto para kripto para birimleri arasındaki getiri ve volatilite yayılımının incelenmesi. Çağ Üniversitesi Sosyal Bilimler Dergisi, 18(2), 1-16. Erişim adresi: https://dergipark.org.tr/en/download/article-file/1930746
  • Chen, B. X., & Sun, Y. L. (2024). Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework. The North American Journal of Economics and Finance, 69, 102036. https://doi.org/10.1016/j.najef.2023.102036
  • Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182, 119–34. https://doi.org/10.1016/j.jeconom.2014.04.012
  • Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F., & Li, L. (2022). Cryptocurrency trading: A comprehensive survey. Financial Innovation, 8(1), 13. https://doi.org/10.1186/s40854-021-00321-6
  • Gemici, E. & Polat, M. (2021). Causality-in-mean and sausality-in-variance among Bitcoin, Litecoin and Ethereum. Studies in Economics and Finance, 38(4), 861-872. https://doi.org/10.1108/SEF-07-2020-0251
  • Gubadlı, M., & Sarıkovanlık, V. (2023). Kripto para piyasasında volatil davranışların asimetrik stokastik volatilite modeli ile testi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 19(1), 61-82. https://doi.org/10.17130/ijmeb.1175863
  • Gupta, H., & Chaudhary, R. (2022). An empirical study of volatility in cryptocurrency market. Journal of Risk and Financial Management, 15(11), 513. https://doi.org/10.3390/jrfm15110513
  • Güven, V., & Şahinöz E. (2021), Blokzincir, kripto paralar, Bitcoin, Satoshi dünyayı değiştiriyor, İstanbul: Kronik Kitap.
  • Ji, Q., Bouri, E., Lau, C. K. M., & Roubaud, D. (2019). Dynamic connectedness and integration in cryptocurrency markets. International Review of Financial Analysis, 63, 257-272. https://doi.org/10.1016/j.irfa.2018.12.002
  • Katsiampa, P., Corbet, S., & Lucey, B. (2019). Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis. Finance Research Letters, 29, 68-74. https://doi.org/10.1016/j.frl.2019.03.009
  • Kazova, F., & Ercan, A. B. (2021). Kripto para birimlerinin volatilite yapılarının karşılaştırmalı analizi. EKOIST Journal of Econometrics and Statistics. (35), 33-57. https://doi.org/10.26650/ekoist.2021.36.984568
  • Kırhasanoğlu, Ş., & Karavardar, A. (2023). Kripto para piyasasında işlem gören seçili kripto paraların volatilite tahmini: GARCH, TGARCH ve EGARCH modelleri ile bir uygulama. Mali Çözüm Dergisi, 32, 83-108. Erişim adresi: https://archive.ismmmo.org.tr/docs/malicozum/175malicozum/06.pdf
  • Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74, 119–147. https://doi.org/10.1016/0304-4076(95)01753-4
  • Koutmos, D. (2018). Return and volatility spillovers among cryptocurrencies. Economics Letters, 173, 122-127. https://doi.org/10.1016/j.econlet.2018.10.004
  • Kumar, A. S., & Anandarao, S. (2019). Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis. Physica A: Statistical Mechanics and its Applications, 524, 448-458. https://doi.org/10.1016/j.physa.2019.04.154
  • Kyriazis, N. A. (2021). A survey on volatility fluctuations in the decentralized cryptocurrency financial assets. Journal of Risk and Financial Management, 14(7), 293. https://doi.org/10.3390/jrfm14070293
  • Liu, J., & Serletis, A. (2019). Volatility in the cryptocurrency market. Open Economies Review, 30(4), 779-811. https://doi.org/10.1007/s11079-019-09547-5
  • Mensi, W., Al-Yahyaee, K. H., Al-Jarrah, I. M. W., Vo, X. V. & Kang, S. H. (2021). Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis. International Review of Economics & Finance, 76, 96-113. https://doi.org/10.1016/j.iref.2021.05.009
  • Nguyen, A. P. N., Mai, T. T., Bezbradica, M., & Crane, M. (2023). Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods. Physica A: Statistical Mechanics and its Applications, 632, 129349. https://doi.org/10.1016/j.physa.2023.129349
  • Pesaran, M. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58, 17–29. https://doi.org/10.1016/S0165-1765(97)00214-0
  • Polat, O. (2023). Dynamic volatility connectedness among cryptocurrencies: Evidence from time-frequency connectedness networks. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 23(1), 29-50. https://doi.org/10.18037/ausbd.1272534
  • Polat, O., & Kabakçı Günay, E. (2021). Cryptocurrency connectedness nexus the Covid-19 Pandemic: Evidence from time-frequency domains. Studies in Economics and Finance, 38(5), 946-963. http://dx.doi.org/10.1108/SEF-01-2021-0011
  • Qiao, X., Zhu, H., & Hau, L. (2020). Time-frequency co-movement of cryptocurrency return and volatility: Evidence from wavelet coherence analysis. International Review of Financial Analysis, 71, 101541. https://doi.org/10.1016/j.irfa.2020.101541
  • Sensoy, A., Silva, T. C., Corbet, S., & Tabak, B. M. (2021). High-frequency return and volatility spillovers among cryptocurrencies. Applied Economics, 53(37), 4310-4328. https://doi.org/10.1080/00036846.2021.1899119
  • Sila, J., Kočenda, E., Kristoufek, L., & Kukacka, J. (2024). Good vs. bad volatility in major cryptocurrencies: The dichotomy and drivers of connectedness. Available at SSRN 4522873. https://doi.org/10.1016/j.intfin.2024.102062
  • Smales, L. A. (2021). Volatility spillovers among cryptocurrencies. Journal of Risk and Financial Management, 14(10), 493. https://doi.org/10.3390/jrfm14100493
  • Wang, J., & Ngene, G. M. (2020). Does Bitcoin still own the dominant power? An intraday analysis. International Review of Financial Analysis, 71, 101551. https://doi.org/10.1016/j.irfa.2020.101551
  • Woebbeking, F. (2021). Cryptocurrency volatility markets. Digital Finance, 3(3), 273-298. https://doi.org/10.1007/s42521-021-00037-3
  • Yi, S., Xu, Z., & Wang, G. J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98-114. https://doi.org/10.1016/j.irfa.2018.08.012
  • Yousaf, I., & Ali, S. (2020). The Covid-19 outbreak and high frequency information transmission between major cryptocurrencies: Evidence from the VAR-DCC-GARCH approach. Borsa Istanbul Review, 20, 1-10. https://doi.org/10.1016/j.bir.2020.10.003

Kripto Para Birimleri Arasındaki Volatilite Yayılımının Analizi: Piyasa Değeri Yüksek Kripto Para Birimlerinden Kanıtlar

Year 2025, Volume: 18 Issue: 1, 18 - 38
https://doi.org/10.17218/hititsbd.1555090

Abstract

Kripto paralar 21. yüzyılın ilk çeyreğine damgasını vuran finansal varlıklardır. Finansal piyasalarda işlem görmeye başlamalarının ardından kısa süre içerisinde işlem hacimlerinin artması ile çok sayıda yeni kripto para birimi üretilerek piyasada işlem görmeye başlamıştır. Kripto paraların üretim süreçleri, fiziksel varlığa sahip olmamaları, merkeziyetsiz yapıları gibi geleneksel finansal varlıklardan ayrılan özellikleri dikkat çekmiştir. Dikkat çeken bir diğer önemli özellikleri ise şüphesiz kripto para birimlerinde yaşanan ciddi fiyat dalgalanmaları olmuştur. Kripto para birimlerinin yaşamış oldukları bu fiyat dalgalanmaları piyasanın volatil yapısını ön plana çıkarmıştır. Bu nedenle kripto varlıklar arasındaki volatilite yayılımın analiz edilmesi gerek yatırımcılar gerekse araştırmacılar açısından önem kazanmıştır. Bu çalışmada kripto para piyasasında en yüksek piyasa değerine sahip 4 kripto para birimi arasındaki volatilite yayılımı analiz edilmiştir. Analizlerde BTC (Bitcoin), ETH (Ethereum), BNB (Binance Coin) ve SOL (Solano) için 13.07.2020 ile 05.09.2024 tarihleri arasına ait günlük getiriler kullanılmış ve volatilite yayılımının analizi için TVP-VAR modeli oluşturularak kripto para birimleri arasındaki dinamik bağlantı incelenmiştir. Analiz bulgularından, kripto para birimlerinin volatilitelerindeki toplam dinamik bağlantının Covid-19 Pandemisi ve Bitcoin ETF’lerinin onaylanmasına ilişkin gelişmelerden etkilendiği ve bu dönemlerde artış gösterdiği tespit edilmiştir. Ayrıca, kripto para birimleri arasındaki toplam volatilite yayılımının gücünün yüksek olmadığı, kripto para birimlerinden BNB ve BTC’nin analiz dönemi içerisinde volatilite yayıcısı, ETH ve SOL’un ise volatilite alıcısı özellik gösterdiği bulgusu elde edilmiştir. Kripto para birimleri arasında volatilite yayıcısı olan değişkenler etki güçleri açısından sıralandığında en güçlü volatilite yayıcısı olan para biriminin BNB olduğu ve bunu BTC’nin takip ettiği belirlenmiştir. Diğer yandan SOL, volatilite alıcısı olan kripto para birimleri arasında volatiliteyi en çok alan kripto para birimi olurken, ETH ise ikinci sıradadır. Kripto para birimlerinin volatilitelerindeki değişimin açıklanmasında öncelikle ilgili kripto para biriminin kendi geçmiş fiyat şoklarının etkili olduğu belirlenmiştir. Analizlerde dikkat çeken bir diğer husus ise özellikle BNB ve BTC’nin SOL’a güçlü şekilde volatilite yaymasıdır. Analize dahil edilen 4 kripto para biriminin volatilite yayılım ilişkisinin çok yüksek olmaması, aynı portföyde bulundurulabilecekleri ve birbirlerine risk bulaştırıcı etkilerinin sınırlı olabileceği şeklinde değerlendirilebilir. Bunun yanı sıra BNB’nin en yüksek volatilite yayıcısı olma özelliği dikkate alınarak portföylerin oluşturulması ve takip edilmesi, yatırım verimliliği açısından önem taşıyacaktır. Benzer şekilde SOL’un da diğer kripto para birimlerinden güçlü şekilde volatilite alması, yatırım süreçlerinde dikkat edilmesi gereken bir diğer husus olarak değerlendirilebilir.

References

  • Ahmed, M. S., El-Masry, A. A., Al-Maghyereh, A. I., & Kumar, S. (2024). Cryptocurrency volatility: A review, synthesis and research agenda. Research in International Business and Finance, 102472. https://doi.org/10.1016/j.ribaf.2024.102472
  • Ali, S., Moussa, F., & Youssef, M. (2023). Connectedness between cryptocurrencies using high-frequency data: A novel insight from the silicon valley banks collapse. Finance Research Letters, 58, 104352. https://doi.org/10.1016/j.frl.2023.104352
  • Antonakakis, N., Cuñado, J., Filis, G., Gabauer, D., & de Gracia, F., P. (2019), Oil and asset classes implied volatilities: Dynamic connectedness and investment strategies (June 6, 2019). Available at SSRN: https://ssrn.com/abstract=3399996 or http://dx.doi.org/10.2139/ssrn.3399996
  • Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. https://doi.org/10.3390/jrfm13040084
  • Aslanidis, N., Bariviera, A. F., & Perez-Laborda, A. (2021). Are cryptocurrencies becoming more interconnected? Economics Letters, 199, 109725. https://doi.org/10.1016/j.econlet.2021.109725
  • Ataş, B. (2022). Kripto para piyasalarının Covid-19 pandemisinde asimetrik volatilite karakteristiği. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 22(1), 121-136. https://doi.org/10.18037/ausbd.1095129
  • Balli, F., de Bruin, A., Chowdhury, M. I. H. & Naeem, M. A. (2020). Connectedness of cryptocurrencies and prevailing uncertainties. Applied Economics Letters, 27(16), 1316-1322. https://doi.org/10.1080/13504851.2019.1678724
  • Baur, D. G., & Dimpfl, T. (2018). Asymmetric volatility in cryptocurrencies. Economics Letters, 173, 148-151. https://doi.org/10.1016/j.econlet.2018.10.008
  • Beneki, C., Koulis, A., Kyriazis, N. A., & Papadamou, S. (2019). Investigating volatility transmission and hedging properties between Bitcoin and Ethereum. Research in International Business and Finance, 48, 219-227. https://doi.org/10.1016/j.ribaf.2019.01.001
  • Bouri, E., Gabauer, D., Gupta, R., & Tiwari, A. K. (2021). Volatility connectedness of major cryptocurrencies: The role of investor happiness. Journal of Behavioral and Experimental Finance, 30, 100463. https://doi.org/10.1016/j.jbef.2021.100463
  • Büberkökü, Ö. (2021). Kripto para kripto para birimleri arasındaki getiri ve volatilite yayılımının incelenmesi. Çağ Üniversitesi Sosyal Bilimler Dergisi, 18(2), 1-16. Erişim adresi: https://dergipark.org.tr/en/download/article-file/1930746
  • Chen, B. X., & Sun, Y. L. (2024). Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework. The North American Journal of Economics and Finance, 69, 102036. https://doi.org/10.1016/j.najef.2023.102036
  • Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182, 119–34. https://doi.org/10.1016/j.jeconom.2014.04.012
  • Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F., & Li, L. (2022). Cryptocurrency trading: A comprehensive survey. Financial Innovation, 8(1), 13. https://doi.org/10.1186/s40854-021-00321-6
  • Gemici, E. & Polat, M. (2021). Causality-in-mean and sausality-in-variance among Bitcoin, Litecoin and Ethereum. Studies in Economics and Finance, 38(4), 861-872. https://doi.org/10.1108/SEF-07-2020-0251
  • Gubadlı, M., & Sarıkovanlık, V. (2023). Kripto para piyasasında volatil davranışların asimetrik stokastik volatilite modeli ile testi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 19(1), 61-82. https://doi.org/10.17130/ijmeb.1175863
  • Gupta, H., & Chaudhary, R. (2022). An empirical study of volatility in cryptocurrency market. Journal of Risk and Financial Management, 15(11), 513. https://doi.org/10.3390/jrfm15110513
  • Güven, V., & Şahinöz E. (2021), Blokzincir, kripto paralar, Bitcoin, Satoshi dünyayı değiştiriyor, İstanbul: Kronik Kitap.
  • Ji, Q., Bouri, E., Lau, C. K. M., & Roubaud, D. (2019). Dynamic connectedness and integration in cryptocurrency markets. International Review of Financial Analysis, 63, 257-272. https://doi.org/10.1016/j.irfa.2018.12.002
  • Katsiampa, P., Corbet, S., & Lucey, B. (2019). Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis. Finance Research Letters, 29, 68-74. https://doi.org/10.1016/j.frl.2019.03.009
  • Kazova, F., & Ercan, A. B. (2021). Kripto para birimlerinin volatilite yapılarının karşılaştırmalı analizi. EKOIST Journal of Econometrics and Statistics. (35), 33-57. https://doi.org/10.26650/ekoist.2021.36.984568
  • Kırhasanoğlu, Ş., & Karavardar, A. (2023). Kripto para piyasasında işlem gören seçili kripto paraların volatilite tahmini: GARCH, TGARCH ve EGARCH modelleri ile bir uygulama. Mali Çözüm Dergisi, 32, 83-108. Erişim adresi: https://archive.ismmmo.org.tr/docs/malicozum/175malicozum/06.pdf
  • Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74, 119–147. https://doi.org/10.1016/0304-4076(95)01753-4
  • Koutmos, D. (2018). Return and volatility spillovers among cryptocurrencies. Economics Letters, 173, 122-127. https://doi.org/10.1016/j.econlet.2018.10.004
  • Kumar, A. S., & Anandarao, S. (2019). Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis. Physica A: Statistical Mechanics and its Applications, 524, 448-458. https://doi.org/10.1016/j.physa.2019.04.154
  • Kyriazis, N. A. (2021). A survey on volatility fluctuations in the decentralized cryptocurrency financial assets. Journal of Risk and Financial Management, 14(7), 293. https://doi.org/10.3390/jrfm14070293
  • Liu, J., & Serletis, A. (2019). Volatility in the cryptocurrency market. Open Economies Review, 30(4), 779-811. https://doi.org/10.1007/s11079-019-09547-5
  • Mensi, W., Al-Yahyaee, K. H., Al-Jarrah, I. M. W., Vo, X. V. & Kang, S. H. (2021). Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis. International Review of Economics & Finance, 76, 96-113. https://doi.org/10.1016/j.iref.2021.05.009
  • Nguyen, A. P. N., Mai, T. T., Bezbradica, M., & Crane, M. (2023). Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods. Physica A: Statistical Mechanics and its Applications, 632, 129349. https://doi.org/10.1016/j.physa.2023.129349
  • Pesaran, M. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58, 17–29. https://doi.org/10.1016/S0165-1765(97)00214-0
  • Polat, O. (2023). Dynamic volatility connectedness among cryptocurrencies: Evidence from time-frequency connectedness networks. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 23(1), 29-50. https://doi.org/10.18037/ausbd.1272534
  • Polat, O., & Kabakçı Günay, E. (2021). Cryptocurrency connectedness nexus the Covid-19 Pandemic: Evidence from time-frequency domains. Studies in Economics and Finance, 38(5), 946-963. http://dx.doi.org/10.1108/SEF-01-2021-0011
  • Qiao, X., Zhu, H., & Hau, L. (2020). Time-frequency co-movement of cryptocurrency return and volatility: Evidence from wavelet coherence analysis. International Review of Financial Analysis, 71, 101541. https://doi.org/10.1016/j.irfa.2020.101541
  • Sensoy, A., Silva, T. C., Corbet, S., & Tabak, B. M. (2021). High-frequency return and volatility spillovers among cryptocurrencies. Applied Economics, 53(37), 4310-4328. https://doi.org/10.1080/00036846.2021.1899119
  • Sila, J., Kočenda, E., Kristoufek, L., & Kukacka, J. (2024). Good vs. bad volatility in major cryptocurrencies: The dichotomy and drivers of connectedness. Available at SSRN 4522873. https://doi.org/10.1016/j.intfin.2024.102062
  • Smales, L. A. (2021). Volatility spillovers among cryptocurrencies. Journal of Risk and Financial Management, 14(10), 493. https://doi.org/10.3390/jrfm14100493
  • Wang, J., & Ngene, G. M. (2020). Does Bitcoin still own the dominant power? An intraday analysis. International Review of Financial Analysis, 71, 101551. https://doi.org/10.1016/j.irfa.2020.101551
  • Woebbeking, F. (2021). Cryptocurrency volatility markets. Digital Finance, 3(3), 273-298. https://doi.org/10.1007/s42521-021-00037-3
  • Yi, S., Xu, Z., & Wang, G. J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98-114. https://doi.org/10.1016/j.irfa.2018.08.012
  • Yousaf, I., & Ali, S. (2020). The Covid-19 outbreak and high frequency information transmission between major cryptocurrencies: Evidence from the VAR-DCC-GARCH approach. Borsa Istanbul Review, 20, 1-10. https://doi.org/10.1016/j.bir.2020.10.003
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Finance
Journal Section Articles
Authors

Murat Kaya 0000-0002-5988-0773

Early Pub Date April 6, 2025
Publication Date
Submission Date September 24, 2024
Acceptance Date February 14, 2025
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Kaya, M. (2025). Kripto Para Birimleri Arasındaki Volatilite Yayılımının Analizi: Piyasa Değeri Yüksek Kripto Para Birimlerinden Kanıtlar. Hitit Sosyal Bilimler Dergisi, 18(1), 18-38. https://doi.org/10.17218/hititsbd.1555090
Hitit Journal of Social Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).