Review Article
BibTex RIS Cite
Year 2024, Volume: 1 Issue: 1, 8 - 21, 31.07.2024

Abstract

References

  • Adamson A.S., Smith A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018;154(11):1247-1248. https://doi.org/10.1001/jamadermatol.2018.2348
  • Andrade E.L., Bento A.F., Cavalli J. et al. Non-clinical studies required for new drug development - Part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies, 2016; 49(11): e5644.
  • Ardila D, Kiralyap, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. 2019;25(6):954-961.
  • Askr H., Elgeldawi E., Ella H.A. et al. Deep learning in drug discovery: an integrative review and future challenges, 2023;56(7): 5975–6037.
  • Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. 2019;3(6):6. https://doi.org/10.1038/ s41698-019-0078-1
  • Baskin I.I., Winkler D.D., Tetko I.V., A renaissance of neural networks in drug discovery, 2016;11(8):785-95.
  • Bhhatarai, B.; Walters, W.P.; Hop, C.E.C.A. et al. Opportunities and Challenges Using Artificial Intelligence in ADME/Tox. 2019;18(5):418-422.
  • Bielza C., Larrañaga P. Discrete Bayesian Network Classifiers: A Survey, 2014;47(1):1-43. https://doi.org/10.1145/2576868
  • Bonini CP. Simulation of Information and Decision System in the Firm. Englewood Cliffs, NJ: Prentice Hall; 1963.
  • Breiman L., Random Forests, 2001;45:5-32, http://dx.doi.org/10.1023/A:1010933404324
  • Cano G., Rodriguez J.G., Garcia A.G. et al. Automatic selection of molecular descriptors using random forest: Application to drug discovery, 2017;72:151-159.
  • Chan H.C.S., Shan H., Dahoun T. et al. Advancing Drug Discovery via Artificial Intelligence. 2019;40(8):592-604.
  • Chapelle O, Schölkopf B, Zein A. Semi-supervised Learning. Cambridge, MA: MIT Press; 2006.
  • Chauhan R., Ghanshala K.K., Joshi R.C. Convolutional Neural Network (CNN) for Image Detection and Recognition, 2018. First International Conference on Secure Cyber Computing and Communication (ICSCCC). doi:10.1109/icsccc.2018.8703316
  • Chavda, V.P. Chapter 1 - Nanotherapeutics and Nanobiotechnology, 2019;1-13. https://doi.org/10.1016/B978-0- 12-814029-1.00001-6
  • Chen R., Liu X., Jin S. et al. Machine Learning for Drug-Target Interaction Prediction. 2018;23(9):2208.
  • Choy G, Khalilzadeh O, Michalski M, et al. Current applications an future impact of machine learning in radiology. 2018;288(2):318-328.
  • Chui M, Loeffler M, Roberts R. The Internet of Things. McKinsey Quarterly. March 2010. https://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things. Accessed June 21, 2019.
  • Colombo, S. Chapter 4 - Applications of artificial intelligence in drug delivery and pharmaceutical development. 2020;85-116. https://doi.org/10.1016/B978-0-12-818438-7.00004-6
  • Çelik İ.N., Arslan F.K., Tunç R. et al. ARTIFICIAL INTELLIGENCE ON DRUG DISCOVERY AND DEVELOPMENT, 2021;45(2): 400-427.
  • D’Souza S., Prema K.V., Balaji S., Machine learning models for drug–target interactions: current knowledge and future directions, 2020;25(4):748-756.
  • Dana D., Gadhiya S.V., Surin L.G.ST. et al. Deep Learning in Drug Discovery and Medicine; Scratching the Surface. 2018;23(9):2384.
  • Das P.J., Preuss C., Mazumder B. Artificial Neural Network as Helping Tool for Drug Formulation and Drug Administration Strategies. 2016;263-276.
  • Deo R.C. Machine learning in medicine. 2015;132(20):1920-1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
  • Dodd F.S., Target-based drug discovery: is something wrong?, 2005;10(2):139-147. https://doi.org/10.1016/S1359- 6446(04)03316-1
  • Dreyfus S., The numerical solution of variational problems. 1962;5(1):30-45. https://doi.org/10.1016/0022- 247X(62)90004-5
  • Bejnordi B.E., Veta M. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. 2017;318(22):2199-2210.
  • Ekins S., The Next Era: Deep Learning in Pharmaceutical Research. 2016;33(11):2594-603. DOI: 10.1007/s11095-016-2029-
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. 2017;542(7639):115-118.
  • Fleming N., How artificial intelligence is changing drug discovery. 2018;557(7707):S55-S57. DOI: 10.1038/d41586-018-05267-x
  • Fukushima K., Neocognitron: a hierarchical neural network capable of visual pattern recognition. 1988;1(2):119–130. https:// doi.org/10.1016/0893-6080(88)90014-7
  • Galata D.L., Könyves Z., Nagy B. et al., Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data. 2021;597:120338.
  • Ghasemi F., Mehridehnavi A., Garrido A.P. et al. Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. 2018;23(10):1784-1790.
  • Ghourichay M.P., Kiaie S.H., Nokhodchi A. Formulation and Quality Control of Orally Disintegrating Tablets (ODTs): Recent Advances and Perspectives. 2021;24:2021:6618934.
  • Gilboa E., Saatçi Y., Cunningham J.P. Scaling Multidimensional Inference for Structured Gaussian Processes. 2015;37(2):424-36.
  • Goel A.K., Davies J. Artificial intelligence. In: Cambridge Handbook of Intelligence Cambridge. 2019.
  • Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA: MIT Press; 2016.
  • Gulsen V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. 2016;316(22):2401-2410.
  • Gupta R., Srivastava D., Sahu M. et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. 2021;25(3):1315-1360.
  • Gurung A.B., Ali M.A., Lee J. et al. An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. 2021; 24:2021:8853056.
  • Hamet P, Tremblay J., Artificial intelligence in medicine, 2017;69:S36-S40. https://doi.org/10.1016/j.metabol.2017.01.011
  • Hassanzadeh P., Atyabi F., Dinarvand R. The significance of artificial intelligence in drug delivery system design. 2019;151- 159:169-190.
  • Haugeland J., Artificial Intelligence: The Very Idea. Cambridge, MA: MIT Press; 1985.
  • Heikamp K., Bajorath J. Support vector machines for drug discovery. 2014;9(1):93-104. doi: 10.1517/17460441.2014.866943.
  • Hessler G., Baringhaus K.H., Artificial Intelligence in Drug Design, 2018; 23(10):2520. https://doi.org/10.3390/molecules23102520
  • Hinselmann G., Rosenbaum L., Jahn A. et al. Large-Scale Learning of Structure−Activity Relationships Using a Linear Support Vector Machine and Problem-Specific Metrics. 2011;51(2):203-213.
  • Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. 2012;29(6):82-97.
  • Hinton G., Sejnowski T.J., Unsupervised Learning: Foundations of Neural Computation. Cambridge, MA: MIT Press; 1999.
  • Hirschberg J, Manning C.D. Advances in natural language processing. 2015;349(6245):261-266. https://doi.org/10.1126/ science.aaa8685
  • Howard J. Artificial intelligence:Implications for the future of work. 2019; 62(11):917-926. https://doi.org/10.1002/ajim23037
  • Hughes J.P., Rees S., Kalindjian S.B. et al. Principles of early drug discovery. 2011;162(6):1239-49.
  • James G, Witten D, Hastic T, Tibshirani R. An Introduction to Statistical Learning. 2013;87.
  • Jeon J., Nim S., Teyra J. et al. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. 2014; 6(7):57.
  • Jiang J., Ma X., Ouyang D.et al. , Emerging Artificial Intelligence (AI) Technologies Used in the Development of Solid Dosage Forms. 2022;14(11):2257.
  • Jordan A.M., Artificial Intelligence in Drug Design—The Storm Before the Calm? 2018; 9(12):1150-1152. doi: 10.1021/ acsmedchemlett.8b00500.
  • Jordan M.I., Mitchell T.M., Machine learning: trends, perspectives, and prospects. 2015;349(6245):255-260. https://doi. org/10.1126/science.aaa8415
  • Jorgensen W.L., The Many Roles of Computation in Drug Discovery. 2004; 303(5665):1813-8. DOI: 10.1126/science.1096361
  • Kanagasingam Y., Xiao D., Vignarajan J. et al. Mehrotra A., Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. 2018;1(5):e182665-e182671.
  • Kapetanovic I.M., Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. 2008; 171(2):165-76. https://doi.org/10.1016/j.cbi.2006.12.006.
  • Katsila T., Spyroulias G.A., Patrinos G.P. et al. Computational approaches in target identification and drug discovery, 2016; 14: 177–184.
  • Kawato T., Mizohata T., Shimizu Y. et al. Structure-based design of a streptavidin mutant specific for an artificial biotin analogue. 2015;157(6):467-475.
  • Kehoe B, Patil S, Abbeel P. et al. A survey of research on cloud robotics and automation. 2015;12(2):398-409.
  • Kelley H.J., Gradient Theory of Optimal Flight Paths, 1960;30(10):947-954. https://doi.org/10.2514/8.5282
  • Kim S.B., Han K.S., Rim H.C. et al. Some Effective Techniques for Naive Bayes Text Classification. 2006; 18(11):1457-1466.
  • Knight W. Reinforcement learning: ten breakthrough technologies 2017. MIT Technol Rev. 2017. https://www. technologyreview.com/s/603501/10-breakthroughtechnologies- 2017-reinforcement-learning/.
  • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. 2001;23(1):89-109. doi: 10.1016/s0933-3657(01)00077-x.
  • Korotcov A., Tkachenko V., Russo D.P. et al. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets. 2017;14(12): 4462– 4475.
  • Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional networks. Proceedings of Advances in Neural Information Processing Systems. 2012;25:1090-1098.
  • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. 2017;284(2):574-582. doi: 10.1148/radiol.2017162326.
  • Lavecchia A., Deep learning in drug discovery: opportunities, challenges and future prospects, 2019;24(10): 2017-2032, https://doi.org/10.1016/j.drudis.2019.07.006
  • Lee J., Bogyo M., Target deconvolution techniques in modern phenotypic profiling, 2013;17(1):118-126, https://doi.org/10.1016/j. cbpa.2012.12.022
  • Lee I., Keum J., Nam H., DeepConv-DTI: Prediction of drugtarget interactions via deep learning with convolution on protein sequences. 2019; 15(6): e1007129.
  • Lengauer T., Rarey M., Computational methods for biomolecular docking, 1996;6(3):402-406.https://doi.org/10.1016/S0959- 440X(96)80061-3
  • Li X., Xu Y., Cui H. et al. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. 2017;83:35-43.
  • Lipinski C.F., Maltarollo V.G., Oliveira P.R. et al. Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery. 2019;5:6:108.
  • Lv B.M., Quan Y., Zhang H.Y. Causal Inference in Microbiome Medicine: Principles and Applications. 2021;29(8):736-746.
  • Mayr A., Klambauer G., Unterthiner T. et al. DeepTox: Toxicity Prediction using Deep Learning. Fronti-ers. 2016.
  • McFedries A., Schwaid A., Saghatelian A. Methods for the Elucidation of Protein-Small Molecule Interactions. 2013; 20(5):667-73.
  • Mencattini A., Giuseppe D.D., Comes M.C. et al. Discovering the hidden messages within cell trajectories using a deep learning approach for in vitro evaluation of cancer drug treatments. 2020; 10(1):7653.
  • Mohamed C., Nsiri B., Abdelmajid S. et al. Deep Convolutional Networks for Image Segmentation: Application to Optic Disc detection. FLORIDA INTERNATIONAL UNIVERSITY, July 24,2020.
  • Muegge I., Bergner A., Kriegl J.M., Computer-aided drug design at Boehringer Ingelheim, 2017;31(3): 275-285.
  • Mukhamediev R.I., Popova Y., Kuchin Y. et al. Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges. 2022;10(15):2552.
  • Nag A, Mukhopadhyay SC, Kosel J. Wearable flexible sensors: a review. 2017;17(13):3949-3960.
  • Navya K., Kamaraj R., Bharathi M., The Trending Role of Artificial Intelligence and Its Applications in Formulation of Solid Dosage Forms: A Review. 2022;107(1):20049.
  • Nicolaou C.A., Brown N. Multi-objective optimization methods in drug design. 2013;10(3):e427-e435, https://doi.org/10.1016/j. ddtec.2013.02.001
  • Notodiputro K.A., Sartono B., Zubedi F. Implementation of Winsorizing and random oversampling on data containing outliers and unbalanced data with the random forest classification method. 2022;22(2),108-116.
  • Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. 2016;375(13):1216-1219. https://doi.org/10.1056/NEJMp1606181
  • Öztürk H., Özgür A., Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction. 2018; 34(17):i821-i829.
  • Park H., Chien P.N., Ryu S.E. Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. 2012;22(20):6333-6337.
  • Patel L., Shukla T., Huang X. et al. Machine Learning Methods in Drug Discovery. 2020; 25(22): 5277.
  • Paul D., Sanap G., Shenoy S. et al. Artificial intelligence in drug discovery and development. 2021;26(1):80-93.
  • Pervan G., Willcocks L.,. Introduction to the special issue on decision support systems. 2005;20:65-66.
  • Phillips-Wren G. AI tools in decision support systems: a review. 2012;21(2):1240005.
  • Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. 2018;2(3):158-164.
  • Pratt G.A. Is a Cambrian explosion coming for robotics? 2015;29(3):51-60. https://pubs.aeaweb.org/doi/ pdfplus/10.1257/jep.29.3.51.
  • Pun F.W., Ozerov I.V., Zhavoronkov A., AI-powered therapeutic target discovery. 2023; 44(9):561-572.
  • Qureshi R., Zou B., Alam T. et al. Computational Methods for the Analysis and Prediction of EGFR-Mutated Lung Cancer Drug Resistance: Recent Advances in Drug Design, Challenges and Future Prospects. 2023; 20(1):238-255.
  • Ragoza M., Hochuli J., Idrobo E. et al. Protein–Ligand Scoring with Convolutional Neural Networks. 2017; 57(4):942-957.
  • Rahman R., Dhruba S.R., Ghosh S., Pal R. Functional random forest with applications in dose-response predictions, Scientific Reports. 2019;9 (1):1628.
  • Ratanamahatana C., Gunopulos D. Feature selection for the naive bayesian classifier using decision trees. 2003;17:475-487.
  • Rathi P.C., Ludlow R.F., Verdonk M.L. Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network. 2020;63(16):8778–8790,
  • Reddy A.S., Zhang S. Polypharmacology: drug discovery for the future. 2013;6(1):10. doi: 10.1586/ecp.12.74
  • Reher R., Kim H.W., Zhang C. et al. , A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. 2020;142(9):4114-4120.
  • Rifaioglu A.S., Atas H., Martin M.J. et al. , Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. 2019;20(5):1878-1912.
  • Rosenblatt F (1957) The Perceptron: A Perceiving and Recognizing Automaton, Report 85–60–1.
  • Russel S.J., Norvig P., Artificial Intelligence A Modern Approach Third Edition, 2003.
  • Sarica A., Ceresa A., Quattrone A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review. 2017; 6:9:329.
  • Sarkar C., Das B., Rawat V.S. et al. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. 2023; 24(3):2026.
  • Schenone M., Dančík V., Wagner B.K. et al. Target identification mechanism of action in chemical biology and drug discovery. 2013; 9(4):232-40.
  • Siepmann, J., Siepmann, F. Modeling of Diffusion Controlled Drug Delivery. 2012;161(2):351–362. https://doi.org/10.1016/j. jconrel.2011.10.006
  • Sliwoski G., Kothiwale S., Meiler J. et al. Computational Methods in Drug Discovery. 2014;66(1):334-395.
  • Sun H. A Naive Bayes Classifier for Prediction of Multidrug Resistance Reversal Activity on the Basis of Atom Typing. 2005;48(12):4031–4039. https://doi.org/10.1021/jm050180t
  • Sutton R.S., Barto A.G., Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA: MIT Press; 2018.
  • Swinney D.C. Phenotypic vs. Target-Based Drug Discovery for First-in-Class Medicines. 2013; 93(4):299-301. https://doi. org/10.1038/clpt.2012.236
  • Swinney D.C., Anthony J. How were new medicines discovered? 2011;10(7):507–519. DOI: 10.1038/nrd3480
  • Tajbakhsh N., Shin J.Y., Gurudu S.R. et al. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? 2016;35(5):1299-1312.
  • Tan M. Prediction of anticancer drug response by kernelized multitask learning. Artif Intell Med. 2016;73:70-77. https://doi. org/10.1016/j.artmed.2016.09.004
  • Terstappen G.C., Reggiani A. In silico research in drug discovery. 2001;22(1):23-26. DOI:https://doi.org/10.1016/S0165- 6147(00)01584-4
  • Terstappen G.C., Schlüpen C., Raggiaschi R., Gaviraghi G. Target deconvolution strategies in drug discovery. 2007;6(11):891–903. DOI: 10.1038/nrd2410
  • Thorndike E. The Fundamentals of Learning. New York, NY: Teachers College Bureau of Publications; 1932.
  • Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York, NY: Basic Books; 2019.
  • Vamathevan J., Clark D., Czodrowski P. et al. Applications of machine learning in drug discovery and development. 2019;18(6):463-477.
  • Varian H. Artificial Intelligence, Economics, and Industrial Organizations. In: Agrawal A, Gans J, Goldfarb A, eds. The Economics of Artificial Intelligence: An Agenda. Chicago, IL: University of Chicago Press; 2019:399-422.
  • Vemula D., Jayasurya P., Sushmitha V. et al. CADD, AI and ML in drug discovery: A comprehensive review. 2023:181:106324.
  • Vora K.L., Gholap A.D., Jetha K. et al. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. 2023;15(7), 1916.
  • Wang S., Sim T.B., Kim Y.S. et al. Tools for target identification and validation. 2004; 8(4):371-7.
  • Wann F., Zeng J.M., 2016, Deep learning with feature embedding for compound-protein interaction prediction, doi: https://doi. org/10.1101/086033
  • Wann F., Zeng J.M. Deep learning with feature embedding for compound-protein interaction prediction. 2016. doi: https://doi. org/10.1101/086033
  • Waring M.J., Arrowsmith J., Leach A.R. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nature Reviews Drug Discovery,2015;14(7):475–486.
  • Wassermann A.M., Geppert H., Bajorath J. Application of Support Vector Machine-Based Ranking Strategies to Search for Target-Selective Compounds. Methods Mol Biol. 2011:672:517-30.
  • West DM, Allen JR. How Artificial Intelligence is Transforming the World. Access date: April 24, 2018. Access Adress: https:// www.brookings.edu/research/how-artificial-intelligence-istransforming-the-world/.
  • Yamashita R., Nishio M., Do R.K.G. et al. Convolutional neural networks: an overview and application in radiology. 2018; 9(4):611-629.
  • Yang X., Wang Y., Byrne R. et al. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. 2019;119(18): 10520– 10594.
  • Yu W., MacKerell A.D., Computer-Aided Drug Design Methods. 2017;1520:85-106. doi: 10.1007/978-1-4939-6634-9_5
  • Zang Q., Mansouri K., Williams A.J. et al. , In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. 2017;57(1):36-49.
  • Zhang L., Tan J., Dan H. et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. 2017;22(11):1680-1685.
  • Zhou, Y., Wang, F., Tang, J. et al. Artificial intelligence in COVID19 drug repurposing. The Lancet Digital Health, 2020;2(12): e667– e676.

Artificial Intelligence-assisted Drug Development

Year 2024, Volume: 1 Issue: 1, 8 - 21, 31.07.2024

Abstract

Deep learning and machine learning algorithms, two types of artificial intelligence, have come to light as potential solutions to issues and roadblocks in the drug design and discovery process. Both in vitro and in silico techniques have the potential to significantly lower drug development costs when compared to conventional animal models. Early on in the drug research and development process, drug candidates with relevant therapeutic activities can be identified, unsuitable compounds with unwanted side effects can be excluded, and in vitro and in silico techniques can be used to limit the number of drug poisonings. Drug discovery procedures, illness modeling, target identification, artificial intelligence, drug screening, and molecular design can all be completed far more quickly and affordably than with conventional techniques.

References

  • Adamson A.S., Smith A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018;154(11):1247-1248. https://doi.org/10.1001/jamadermatol.2018.2348
  • Andrade E.L., Bento A.F., Cavalli J. et al. Non-clinical studies required for new drug development - Part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies, 2016; 49(11): e5644.
  • Ardila D, Kiralyap, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. 2019;25(6):954-961.
  • Askr H., Elgeldawi E., Ella H.A. et al. Deep learning in drug discovery: an integrative review and future challenges, 2023;56(7): 5975–6037.
  • Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. 2019;3(6):6. https://doi.org/10.1038/ s41698-019-0078-1
  • Baskin I.I., Winkler D.D., Tetko I.V., A renaissance of neural networks in drug discovery, 2016;11(8):785-95.
  • Bhhatarai, B.; Walters, W.P.; Hop, C.E.C.A. et al. Opportunities and Challenges Using Artificial Intelligence in ADME/Tox. 2019;18(5):418-422.
  • Bielza C., Larrañaga P. Discrete Bayesian Network Classifiers: A Survey, 2014;47(1):1-43. https://doi.org/10.1145/2576868
  • Bonini CP. Simulation of Information and Decision System in the Firm. Englewood Cliffs, NJ: Prentice Hall; 1963.
  • Breiman L., Random Forests, 2001;45:5-32, http://dx.doi.org/10.1023/A:1010933404324
  • Cano G., Rodriguez J.G., Garcia A.G. et al. Automatic selection of molecular descriptors using random forest: Application to drug discovery, 2017;72:151-159.
  • Chan H.C.S., Shan H., Dahoun T. et al. Advancing Drug Discovery via Artificial Intelligence. 2019;40(8):592-604.
  • Chapelle O, Schölkopf B, Zein A. Semi-supervised Learning. Cambridge, MA: MIT Press; 2006.
  • Chauhan R., Ghanshala K.K., Joshi R.C. Convolutional Neural Network (CNN) for Image Detection and Recognition, 2018. First International Conference on Secure Cyber Computing and Communication (ICSCCC). doi:10.1109/icsccc.2018.8703316
  • Chavda, V.P. Chapter 1 - Nanotherapeutics and Nanobiotechnology, 2019;1-13. https://doi.org/10.1016/B978-0- 12-814029-1.00001-6
  • Chen R., Liu X., Jin S. et al. Machine Learning for Drug-Target Interaction Prediction. 2018;23(9):2208.
  • Choy G, Khalilzadeh O, Michalski M, et al. Current applications an future impact of machine learning in radiology. 2018;288(2):318-328.
  • Chui M, Loeffler M, Roberts R. The Internet of Things. McKinsey Quarterly. March 2010. https://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things. Accessed June 21, 2019.
  • Colombo, S. Chapter 4 - Applications of artificial intelligence in drug delivery and pharmaceutical development. 2020;85-116. https://doi.org/10.1016/B978-0-12-818438-7.00004-6
  • Çelik İ.N., Arslan F.K., Tunç R. et al. ARTIFICIAL INTELLIGENCE ON DRUG DISCOVERY AND DEVELOPMENT, 2021;45(2): 400-427.
  • D’Souza S., Prema K.V., Balaji S., Machine learning models for drug–target interactions: current knowledge and future directions, 2020;25(4):748-756.
  • Dana D., Gadhiya S.V., Surin L.G.ST. et al. Deep Learning in Drug Discovery and Medicine; Scratching the Surface. 2018;23(9):2384.
  • Das P.J., Preuss C., Mazumder B. Artificial Neural Network as Helping Tool for Drug Formulation and Drug Administration Strategies. 2016;263-276.
  • Deo R.C. Machine learning in medicine. 2015;132(20):1920-1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
  • Dodd F.S., Target-based drug discovery: is something wrong?, 2005;10(2):139-147. https://doi.org/10.1016/S1359- 6446(04)03316-1
  • Dreyfus S., The numerical solution of variational problems. 1962;5(1):30-45. https://doi.org/10.1016/0022- 247X(62)90004-5
  • Bejnordi B.E., Veta M. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. 2017;318(22):2199-2210.
  • Ekins S., The Next Era: Deep Learning in Pharmaceutical Research. 2016;33(11):2594-603. DOI: 10.1007/s11095-016-2029-
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. 2017;542(7639):115-118.
  • Fleming N., How artificial intelligence is changing drug discovery. 2018;557(7707):S55-S57. DOI: 10.1038/d41586-018-05267-x
  • Fukushima K., Neocognitron: a hierarchical neural network capable of visual pattern recognition. 1988;1(2):119–130. https:// doi.org/10.1016/0893-6080(88)90014-7
  • Galata D.L., Könyves Z., Nagy B. et al., Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data. 2021;597:120338.
  • Ghasemi F., Mehridehnavi A., Garrido A.P. et al. Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. 2018;23(10):1784-1790.
  • Ghourichay M.P., Kiaie S.H., Nokhodchi A. Formulation and Quality Control of Orally Disintegrating Tablets (ODTs): Recent Advances and Perspectives. 2021;24:2021:6618934.
  • Gilboa E., Saatçi Y., Cunningham J.P. Scaling Multidimensional Inference for Structured Gaussian Processes. 2015;37(2):424-36.
  • Goel A.K., Davies J. Artificial intelligence. In: Cambridge Handbook of Intelligence Cambridge. 2019.
  • Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA: MIT Press; 2016.
  • Gulsen V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. 2016;316(22):2401-2410.
  • Gupta R., Srivastava D., Sahu M. et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. 2021;25(3):1315-1360.
  • Gurung A.B., Ali M.A., Lee J. et al. An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. 2021; 24:2021:8853056.
  • Hamet P, Tremblay J., Artificial intelligence in medicine, 2017;69:S36-S40. https://doi.org/10.1016/j.metabol.2017.01.011
  • Hassanzadeh P., Atyabi F., Dinarvand R. The significance of artificial intelligence in drug delivery system design. 2019;151- 159:169-190.
  • Haugeland J., Artificial Intelligence: The Very Idea. Cambridge, MA: MIT Press; 1985.
  • Heikamp K., Bajorath J. Support vector machines for drug discovery. 2014;9(1):93-104. doi: 10.1517/17460441.2014.866943.
  • Hessler G., Baringhaus K.H., Artificial Intelligence in Drug Design, 2018; 23(10):2520. https://doi.org/10.3390/molecules23102520
  • Hinselmann G., Rosenbaum L., Jahn A. et al. Large-Scale Learning of Structure−Activity Relationships Using a Linear Support Vector Machine and Problem-Specific Metrics. 2011;51(2):203-213.
  • Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. 2012;29(6):82-97.
  • Hinton G., Sejnowski T.J., Unsupervised Learning: Foundations of Neural Computation. Cambridge, MA: MIT Press; 1999.
  • Hirschberg J, Manning C.D. Advances in natural language processing. 2015;349(6245):261-266. https://doi.org/10.1126/ science.aaa8685
  • Howard J. Artificial intelligence:Implications for the future of work. 2019; 62(11):917-926. https://doi.org/10.1002/ajim23037
  • Hughes J.P., Rees S., Kalindjian S.B. et al. Principles of early drug discovery. 2011;162(6):1239-49.
  • James G, Witten D, Hastic T, Tibshirani R. An Introduction to Statistical Learning. 2013;87.
  • Jeon J., Nim S., Teyra J. et al. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. 2014; 6(7):57.
  • Jiang J., Ma X., Ouyang D.et al. , Emerging Artificial Intelligence (AI) Technologies Used in the Development of Solid Dosage Forms. 2022;14(11):2257.
  • Jordan A.M., Artificial Intelligence in Drug Design—The Storm Before the Calm? 2018; 9(12):1150-1152. doi: 10.1021/ acsmedchemlett.8b00500.
  • Jordan M.I., Mitchell T.M., Machine learning: trends, perspectives, and prospects. 2015;349(6245):255-260. https://doi. org/10.1126/science.aaa8415
  • Jorgensen W.L., The Many Roles of Computation in Drug Discovery. 2004; 303(5665):1813-8. DOI: 10.1126/science.1096361
  • Kanagasingam Y., Xiao D., Vignarajan J. et al. Mehrotra A., Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. 2018;1(5):e182665-e182671.
  • Kapetanovic I.M., Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. 2008; 171(2):165-76. https://doi.org/10.1016/j.cbi.2006.12.006.
  • Katsila T., Spyroulias G.A., Patrinos G.P. et al. Computational approaches in target identification and drug discovery, 2016; 14: 177–184.
  • Kawato T., Mizohata T., Shimizu Y. et al. Structure-based design of a streptavidin mutant specific for an artificial biotin analogue. 2015;157(6):467-475.
  • Kehoe B, Patil S, Abbeel P. et al. A survey of research on cloud robotics and automation. 2015;12(2):398-409.
  • Kelley H.J., Gradient Theory of Optimal Flight Paths, 1960;30(10):947-954. https://doi.org/10.2514/8.5282
  • Kim S.B., Han K.S., Rim H.C. et al. Some Effective Techniques for Naive Bayes Text Classification. 2006; 18(11):1457-1466.
  • Knight W. Reinforcement learning: ten breakthrough technologies 2017. MIT Technol Rev. 2017. https://www. technologyreview.com/s/603501/10-breakthroughtechnologies- 2017-reinforcement-learning/.
  • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. 2001;23(1):89-109. doi: 10.1016/s0933-3657(01)00077-x.
  • Korotcov A., Tkachenko V., Russo D.P. et al. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets. 2017;14(12): 4462– 4475.
  • Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional networks. Proceedings of Advances in Neural Information Processing Systems. 2012;25:1090-1098.
  • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. 2017;284(2):574-582. doi: 10.1148/radiol.2017162326.
  • Lavecchia A., Deep learning in drug discovery: opportunities, challenges and future prospects, 2019;24(10): 2017-2032, https://doi.org/10.1016/j.drudis.2019.07.006
  • Lee J., Bogyo M., Target deconvolution techniques in modern phenotypic profiling, 2013;17(1):118-126, https://doi.org/10.1016/j. cbpa.2012.12.022
  • Lee I., Keum J., Nam H., DeepConv-DTI: Prediction of drugtarget interactions via deep learning with convolution on protein sequences. 2019; 15(6): e1007129.
  • Lengauer T., Rarey M., Computational methods for biomolecular docking, 1996;6(3):402-406.https://doi.org/10.1016/S0959- 440X(96)80061-3
  • Li X., Xu Y., Cui H. et al. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. 2017;83:35-43.
  • Lipinski C.F., Maltarollo V.G., Oliveira P.R. et al. Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery. 2019;5:6:108.
  • Lv B.M., Quan Y., Zhang H.Y. Causal Inference in Microbiome Medicine: Principles and Applications. 2021;29(8):736-746.
  • Mayr A., Klambauer G., Unterthiner T. et al. DeepTox: Toxicity Prediction using Deep Learning. Fronti-ers. 2016.
  • McFedries A., Schwaid A., Saghatelian A. Methods for the Elucidation of Protein-Small Molecule Interactions. 2013; 20(5):667-73.
  • Mencattini A., Giuseppe D.D., Comes M.C. et al. Discovering the hidden messages within cell trajectories using a deep learning approach for in vitro evaluation of cancer drug treatments. 2020; 10(1):7653.
  • Mohamed C., Nsiri B., Abdelmajid S. et al. Deep Convolutional Networks for Image Segmentation: Application to Optic Disc detection. FLORIDA INTERNATIONAL UNIVERSITY, July 24,2020.
  • Muegge I., Bergner A., Kriegl J.M., Computer-aided drug design at Boehringer Ingelheim, 2017;31(3): 275-285.
  • Mukhamediev R.I., Popova Y., Kuchin Y. et al. Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges. 2022;10(15):2552.
  • Nag A, Mukhopadhyay SC, Kosel J. Wearable flexible sensors: a review. 2017;17(13):3949-3960.
  • Navya K., Kamaraj R., Bharathi M., The Trending Role of Artificial Intelligence and Its Applications in Formulation of Solid Dosage Forms: A Review. 2022;107(1):20049.
  • Nicolaou C.A., Brown N. Multi-objective optimization methods in drug design. 2013;10(3):e427-e435, https://doi.org/10.1016/j. ddtec.2013.02.001
  • Notodiputro K.A., Sartono B., Zubedi F. Implementation of Winsorizing and random oversampling on data containing outliers and unbalanced data with the random forest classification method. 2022;22(2),108-116.
  • Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. 2016;375(13):1216-1219. https://doi.org/10.1056/NEJMp1606181
  • Öztürk H., Özgür A., Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction. 2018; 34(17):i821-i829.
  • Park H., Chien P.N., Ryu S.E. Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. 2012;22(20):6333-6337.
  • Patel L., Shukla T., Huang X. et al. Machine Learning Methods in Drug Discovery. 2020; 25(22): 5277.
  • Paul D., Sanap G., Shenoy S. et al. Artificial intelligence in drug discovery and development. 2021;26(1):80-93.
  • Pervan G., Willcocks L.,. Introduction to the special issue on decision support systems. 2005;20:65-66.
  • Phillips-Wren G. AI tools in decision support systems: a review. 2012;21(2):1240005.
  • Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. 2018;2(3):158-164.
  • Pratt G.A. Is a Cambrian explosion coming for robotics? 2015;29(3):51-60. https://pubs.aeaweb.org/doi/ pdfplus/10.1257/jep.29.3.51.
  • Pun F.W., Ozerov I.V., Zhavoronkov A., AI-powered therapeutic target discovery. 2023; 44(9):561-572.
  • Qureshi R., Zou B., Alam T. et al. Computational Methods for the Analysis and Prediction of EGFR-Mutated Lung Cancer Drug Resistance: Recent Advances in Drug Design, Challenges and Future Prospects. 2023; 20(1):238-255.
  • Ragoza M., Hochuli J., Idrobo E. et al. Protein–Ligand Scoring with Convolutional Neural Networks. 2017; 57(4):942-957.
  • Rahman R., Dhruba S.R., Ghosh S., Pal R. Functional random forest with applications in dose-response predictions, Scientific Reports. 2019;9 (1):1628.
  • Ratanamahatana C., Gunopulos D. Feature selection for the naive bayesian classifier using decision trees. 2003;17:475-487.
  • Rathi P.C., Ludlow R.F., Verdonk M.L. Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network. 2020;63(16):8778–8790,
  • Reddy A.S., Zhang S. Polypharmacology: drug discovery for the future. 2013;6(1):10. doi: 10.1586/ecp.12.74
  • Reher R., Kim H.W., Zhang C. et al. , A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. 2020;142(9):4114-4120.
  • Rifaioglu A.S., Atas H., Martin M.J. et al. , Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. 2019;20(5):1878-1912.
  • Rosenblatt F (1957) The Perceptron: A Perceiving and Recognizing Automaton, Report 85–60–1.
  • Russel S.J., Norvig P., Artificial Intelligence A Modern Approach Third Edition, 2003.
  • Sarica A., Ceresa A., Quattrone A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review. 2017; 6:9:329.
  • Sarkar C., Das B., Rawat V.S. et al. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. 2023; 24(3):2026.
  • Schenone M., Dančík V., Wagner B.K. et al. Target identification mechanism of action in chemical biology and drug discovery. 2013; 9(4):232-40.
  • Siepmann, J., Siepmann, F. Modeling of Diffusion Controlled Drug Delivery. 2012;161(2):351–362. https://doi.org/10.1016/j. jconrel.2011.10.006
  • Sliwoski G., Kothiwale S., Meiler J. et al. Computational Methods in Drug Discovery. 2014;66(1):334-395.
  • Sun H. A Naive Bayes Classifier for Prediction of Multidrug Resistance Reversal Activity on the Basis of Atom Typing. 2005;48(12):4031–4039. https://doi.org/10.1021/jm050180t
  • Sutton R.S., Barto A.G., Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA: MIT Press; 2018.
  • Swinney D.C. Phenotypic vs. Target-Based Drug Discovery for First-in-Class Medicines. 2013; 93(4):299-301. https://doi. org/10.1038/clpt.2012.236
  • Swinney D.C., Anthony J. How were new medicines discovered? 2011;10(7):507–519. DOI: 10.1038/nrd3480
  • Tajbakhsh N., Shin J.Y., Gurudu S.R. et al. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? 2016;35(5):1299-1312.
  • Tan M. Prediction of anticancer drug response by kernelized multitask learning. Artif Intell Med. 2016;73:70-77. https://doi. org/10.1016/j.artmed.2016.09.004
  • Terstappen G.C., Reggiani A. In silico research in drug discovery. 2001;22(1):23-26. DOI:https://doi.org/10.1016/S0165- 6147(00)01584-4
  • Terstappen G.C., Schlüpen C., Raggiaschi R., Gaviraghi G. Target deconvolution strategies in drug discovery. 2007;6(11):891–903. DOI: 10.1038/nrd2410
  • Thorndike E. The Fundamentals of Learning. New York, NY: Teachers College Bureau of Publications; 1932.
  • Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York, NY: Basic Books; 2019.
  • Vamathevan J., Clark D., Czodrowski P. et al. Applications of machine learning in drug discovery and development. 2019;18(6):463-477.
  • Varian H. Artificial Intelligence, Economics, and Industrial Organizations. In: Agrawal A, Gans J, Goldfarb A, eds. The Economics of Artificial Intelligence: An Agenda. Chicago, IL: University of Chicago Press; 2019:399-422.
  • Vemula D., Jayasurya P., Sushmitha V. et al. CADD, AI and ML in drug discovery: A comprehensive review. 2023:181:106324.
  • Vora K.L., Gholap A.D., Jetha K. et al. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. 2023;15(7), 1916.
  • Wang S., Sim T.B., Kim Y.S. et al. Tools for target identification and validation. 2004; 8(4):371-7.
  • Wann F., Zeng J.M., 2016, Deep learning with feature embedding for compound-protein interaction prediction, doi: https://doi. org/10.1101/086033
  • Wann F., Zeng J.M. Deep learning with feature embedding for compound-protein interaction prediction. 2016. doi: https://doi. org/10.1101/086033
  • Waring M.J., Arrowsmith J., Leach A.R. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nature Reviews Drug Discovery,2015;14(7):475–486.
  • Wassermann A.M., Geppert H., Bajorath J. Application of Support Vector Machine-Based Ranking Strategies to Search for Target-Selective Compounds. Methods Mol Biol. 2011:672:517-30.
  • West DM, Allen JR. How Artificial Intelligence is Transforming the World. Access date: April 24, 2018. Access Adress: https:// www.brookings.edu/research/how-artificial-intelligence-istransforming-the-world/.
  • Yamashita R., Nishio M., Do R.K.G. et al. Convolutional neural networks: an overview and application in radiology. 2018; 9(4):611-629.
  • Yang X., Wang Y., Byrne R. et al. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. 2019;119(18): 10520– 10594.
  • Yu W., MacKerell A.D., Computer-Aided Drug Design Methods. 2017;1520:85-106. doi: 10.1007/978-1-4939-6634-9_5
  • Zang Q., Mansouri K., Williams A.J. et al. , In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. 2017;57(1):36-49.
  • Zhang L., Tan J., Dan H. et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. 2017;22(11):1680-1685.
  • Zhou, Y., Wang, F., Tang, J. et al. Artificial intelligence in COVID19 drug repurposing. The Lancet Digital Health, 2020;2(12): e667– e676.
There are 137 citations in total.

Details

Primary Language English
Subjects Biological Network Analysis, Genetics (Other)
Journal Section Reviews
Authors

Irmak Şevval Topcu 0009-0000-9848-7731

Orçun Avşar 0000-0003-3556-6218

Publication Date July 31, 2024
Submission Date June 15, 2024
Acceptance Date July 12, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

Vancouver Topcu IŞ, Avşar O. Artificial Intelligence-assisted Drug Development. HJS. 2024;1(1):8-21.