Research Article
BibTex RIS Cite
Year 2021, , 287 - 297, 31.12.2021
https://doi.org/10.17350/HJSE19030000241

Abstract

References

  • [1] Zamri MH, Akil HM, MohdIshak ZA. Pultruded Kenaf Fibre Reinforced Composites: Effect of Different Kenaf Fibre Yarn Tex. Procedia Chem. 19 (2016) 577–585.
  • [2] Ilyas RA, Sapuan SM. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites. Curr. Org. Synth. 16 (2020) 1068–1070.
  • [3] Ilyas RA, Sapuan SM. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 16 (2020) 500–503.
  • [4] Abral H, Atmajaya A, Mahardika M, Hafizulhaq F, Handayani DK, Sapuan SM, Ilyas RA. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. J. Mater. Res. Technol. 9 (2020) 2477–2486.
  • [5] Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37 (2012) 1552–1596.
  • [6] Ilyas RA, Sapuan SM, Atikah, MSN, Asyraf MRM, Rafiqah SA, Aisyah HA, Nurazzi NM, Norrrahim MNF. Effect of hydrolysis time on the morphological, physical, chemical and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text. Res. J. 91(2021) 152–167.
  • [7] Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES, Atikah MSN, Mohd Nurazzi N, Atiqah A, Ansari MNM, Syafri E, Asrofi M, Sari NH, Cumaidink R. Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J. Mater. Res. Technol. 8 (2019) 4819–4830.
  • [8] Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES, Asrofi M, Atikah MSN, Huzaifah MMR, Radzi AM, Azammi AMN, Shaharuzaman MA, Nurazzi NM, Syafri E, Sari NH, Norrrahim MRF, Jumaidinp R. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nanoscale. J. Mater. Res. Technol. 8 (2019) 2753–2766.
  • [9] Aisyah HA, Paridah MT, Sapuan SM, Khalina A, Berkalp OB, Lee SH, Lee CH, Nurazzi NM, Ramli N, Wahab MS, Ilyas RA. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. (2019) 1–8.
  • [10] Jumaidin R, Saidi ZAS, Ilyas RA, Ahmad MN, Wahid MK, Yaakob MY, Maidin NA, Rahman MHA, Osman MH. Characteristics of Cogon Grass Fibre Reinforced Thermoplastic Cassava Starch Biocomposite: Water Absorption and Physical Properties. J. Adv. Res. Fluid Mech. Therm. Sci. 62 (2019) 43–52.
  • [11] Alsubari S, Zuhri MYM, Sapuan SM, Ishak M.R, Ilyas R.A, Asyraf M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers 13 (2021) 423.
  • [12] Omran AAB, Mohammed AABA, Sapuan SM, Ilyas RA, Asyraf MRM, Koloor SSR, Petru M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers. 13 (2021) 231.
  • [13] Nurazzi MN, Asyraf MRM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, Ahmad S, Mahat AM, Lee C.L, Aisyah H.A, Norrahim MNF, İlyas RA, Harussani MM, Ishak B, Sapuanca SM. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 13 (2021) 1047.
  • [14] Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, Lee SH, Lee CH. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers. 13 (2021) 471.
  • [15] Jumaidin R, Khiruddin MAA, Saidi ASZ, Salit MS, Ilyas RA. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 146 (2020) 746–755.
  • [16] Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 7 (2016)108–114.
  • [17] Asyraf MRM, Ishak MR, Sapuan SM, Yidris N, Ilyas RA. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 9 (2020) 6759–6776.
  • [18] Ayu RS, Khalina A, Harmaen A.S, Zaman K, Isma T, Liu Q, Ilyas RA, Lee CH. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly (Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers. 12 (2020) 1571.
  • [19] Holbery J, Houston D. Natural-fiber-reinforced polymer composites in automotive applications. JOM. 58 (2006) 80–86.
  • [20] Kim YK, Chalivendra V. Natural fibre composites (NFCs) for construction and automotive industries. In Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 469–498, 2020.
  • [21] Fragassa C. Marine applications of natural fibre-reinforced composites: A manufacturing case study. In Advances in Applications of Industrial Biomaterials; Springer: Berlin/Heidelberg, Germany, 21–47, 2017.
  • [22] Jaafar ACN, Zainol I, Ishak NS, Ilyas RA, Sapuan SM. Effects of the Liquid Natural Rubber (LNR) on Mechanical Properties and Microstructure of Epoxy/Silica/Kenaf Hybrid Composite for Potential Automotive Applications. J. Mater. Res. Technol. 12 (2021) 1026–1038.
  • [23] Rezaifard AH, Hodd KA, Tod DA, Barton JM. Toughening epoxy resins with poly (methyl methacrylate)-grafter-natural rubber and its use in adhesive formulations. Int. J. Adhes. Adhes. 14 (1994) 153–159.
  • [24] Technotes BE. Composite Recycling, and Disposal An Environmental R&D Issue. Boeing Environ. Technotes. 8 (2003) 1–4.
  • [25] Bandyopadhyay S. Source composite curve for waste reduction. Chem. Eng. J. 125 (2006) 99–110.
  • [26] Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 172 (2018) 566–581.
  • [27] Vinod A, Sanjay MR, Suchart S, Jyotishkumar P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers, and biocomposites. J. Clean. Prod. 258 (2020) 120978.
  • [28] Ramnath VB, Kokan JS, Raja NR, Sathyanarayanan R, Elanchezhian C, Prasad RA, Manickavasagam V.M. Evaluation of mechanical properties of abaca-jute-glass fibre reinforced epoxy composite. Mater. Des. 51 (2013) 357–366.
  • [29] Szolnoki B, Bocz K, Sóti PL, Bodzay B, Zimonyi E, Toldy A, Morlin B, Bujnowicz K, Wladyka-Przybylak M, Marosi G. Development of natural fibre reinforced flame retarded epoxy resin composites. Polym. Degrad. Stab. 119 (2015) 68–76.
  • [30] Pickering KL, Le TM. High performance aligned short natural fibre—Epoxy composites. Compos. Part B Eng. 85 (2016) 123–129.
  • [31] Mittal V, Saini R, Sinha S. Natural fiber-mediated epoxy composites—A review. Compos. Part B 99 (2016) 425–435.
  • [32] Abu Bakar MA, Ahmad S, Kuntjoro W. Effect of epoxidized natural rubber on mechanical properties of epoxy reinforced kenaf fibre composites. Pertanika J. Sci. Technol. 20 (2012) 129–137.
  • [33] Hassan F, Zulkifli R, Ghazali MJ, Azhari CH. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 7 (2017) 315.
  • [34] Nurazzi NM, Khalina A, Sapuan SM, Ilyas, R.A. Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment. Polimery. 64 (2019) 12–22.
  • [35] Rihayat T, Suryani S, Fauzi T, Agusnar H, Wirjosentono B, Syafruddin, Helmi, Zulkifli, Alam PN, Sami M. . Mechanical properties evaluation of single and hybrid composites epoxy reinforced bamboo, PALF and coir fiber. IOP Conf Ser Mater Sci Eng. 334 (2018) 012081. doi:10.1088/1757-899X/334/1/012081 [36] Wang F, Shao Z. Study on the variation law of bamboo fibers’ tensile properties and the organization structure on the radial direction of bamboo stem. Ind Cros Products. 152 (2020) 112521.
  • [37] Mahmoud MA. Oil spill cleanup by raw flax fiber: modification effect, sorption isotherm, kinetics, and thermodynamics. Arabian J Chem. 13 (2020) 5553– 5563.
  • [38] Kang JT, Kim SH. Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macromol Res. 19 (2011)789–796.
  • [39] Lee SH, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Appl Sci Manuf. 37 (2006) 80–91.
  • [40] Fan M. Chemical compositions of natural fibres. In: S. R. Reid, G. Zhou, editors. Advanced high strength natural fibre composites in construction. London: Woodhead Publishing, 35–41, 2016.
  • [41] Ahmed Moosa AR. Effects of carbon nanotubes on the mechanical and electrical properties of epoxy nanocomposites. Int J Current Eng Technol. 5 (2015) 3253–3258. [42] Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS. Bamboo fibre reinforced biocomposites: a review. Mater Des. 42 (2012) 353–368. Retrieved 19 February 2021 from 10.1016/j.matdes.2012.06.015
  • [43] Kushwaha PK, Kumar R. Effect of silanes on mechanical properties of bamboo fiber-epoxy composites. J Reinf Plast Compos. 29 (2010) 718–724. Retrieved 19 February 2021 from 10.1177/0731684408100691
  • [44] Remanan M, Kannan M, Rao RS, Bhowmik S, Varshney L, Abraham M, Jayanarayanan K. Microstructure Development, Wear Characteristics and Kinetics of Thermal Decomposition of Hybrid Nanocomposites Based on Poly Aryl Ether Ketone, Boron Carbide and Multi Walled Carbon Nanotubes. Journal of Inorganic and Organometallic Polymers and Materials. 27 (2017) 1649–1663. https://doi.org/10.1007/s10904-017-0626-5
  • [45] Xu Y, Yang Y, Shen R, Parker T, Zhang Y, Wang Z, Wang Q. Thermal behavior and kinetics study of carbon/epoxy resin composites. Polymer Composites, 40 (2019) 4530–4546. https://doi.org/10.1002/pc.25309
  • [46] Tikhani F, Moghari S, Jouyandeh M, Laoutid F, Vahabi H, Saeb MR, Dubois P. Curing kinetics and thermal stability of epoxy composites containing newly obtained nano-scale aluminum hypophosphite (AlPO2). Polymers. 12 (2020), 1–22. https://doi.org/10.3390/polym12030644
  • [47] Tranchard P, Samyn F, Duquesne S, Estèbe B, Bourbigot S. Modelling behaviour of a carbon epoxy composite exposed to fire: Part I-Characterisation of thermophysical properties. Materials, 10 (2017) 494. https://doi.org/10.3390/ma10050494
  • [48] Tranchard P, Duquesne S, Samyn F, Estèbe B, Bourbigot S. Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. Journal of Analytical and Applied Pyrolysis, 126 (2017) 14–21. https://doi.org/10.1016/j.jaap.2017.07.002
  • [49] Wang R, Xie C, Zeng L, Xu H. Thermal decomposition behavior and kinetics of nanocomposites at low-modified ZnO content. RSC Advances. 9 (2019), 790–800. https://doi.org/10.1039/c8ra09206k
  • [50] Xiong X, Zhou L, Ren R, Liu S, Chen P. The thermal decomposition behavior and kinetics of epoxy resins cured with a novel phthalide-containing aromatic diamine. Polymer Testing. 68 (2018) 46–52. https://doi.org/10.1016/j.polymertesting.2018.02.012
  • [51] Hassan MZ, Sapuan SM, Roslan SA, Aziz SA, Sarip S. Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology. Journal of Materials Research and Technology, 8 (2019), 3517–3528. https://doi.org/10.1016/j.jmrt.2019.06.026
  • [52] Sinha AK, Bhattacharya S, Narang HK. Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polymers and Polymer Composites, 27 (2019) 597–608. https://doi.org/10.1177/0967391119855843
  • [53] Oladele IO, Akinola OS, Agbabiaka OG, Omotoyinbo JA. Mathematical Model for the Prediction of Impact Energy of Organic Material Based Hydroxyapatite (HAp) Reinforced Epoxy Composites. Fibers and Polymers. 19 (2018), 452–459. https://doi.org/10.1007/s12221-018-7844-5
  • [54] Antil P. Modelling and Multi-Objective Optimization during ECDM of Silicon Carbide Reinforced Epoxy Composites. Silicon, 12 (2020) 275–288. https://doi.org/10.1007/s12633-019-00122-8
  • [55] Sinha AK, Narang HK, Bhattacharya S. Experimental Determination, Modelling and Prediction of Sliding Wear of Hybrid Polymer Composites Using RSM and Fuzzy Logic. Arabian Journal for Science and Engineering, 46(3), 2071–2082. https://doi.org/10.1007/s13369-020-04997-3
  • [56] Sarafrazi, M., Hamadanian, M., & Ghasemi, A. R. (2019). Optimize epoxy matrix with RSM/CCD method and influence of multi-wall carbon nanotube on mechanical properties of epoxy/polyurethane. Mechanics of Materials, 138 (2021) 103154. https://doi.org/10.1016/j.mechmat.2019.103154
  • [57] Dadrasi A, Farzi GA, Shariati M, Fooladpanjeh S, Parvaneh V. Experimental study and optimization of fracture properties of epoxy-based nano-composites: Effect of using nano-silica by GEP, RSM, DTM and PSO. Engineering Fracture Mechanics. 232 (2020), 107047. https://doi.org/10.1016/j.engfracmech.2020.107047.
  • [58] Wahab, AAA, Chang SH, Som, AM. Characterisation of waste cooking oil as a potential green solvent for liquid-liquid extraction. International Conference on Advances in Civil and Environmental Engineering, s. 20–28, 2015.
  • [59] Lim SF, Hamdan A, Chua SND, Lim BH. Comparison and optimization of conventional and ultrasound-assisted solvent extraction for synthetization of lemongrass (Cymbopogon)-infused cooking oil. Food Sci Nutr. 9 (2021) 2722–2732. DOI: 10.1002/fsn3.2234.
  • [60] El-Aouni N, Hsissou R, El Azzaoui J, El Bouchti M, Elbachiri A, Elharfi A, Rafik M. One-pot Synthesis of Trifunctional Epoxy Resin and its Nanocomposite: Investigation of Thermal and Rheological Properties, Biointerface Res. Appl. Chem. 11 (2021) 12403–12413. https://doi.org/10.33263/BRIAC114.1240312413.
  • [61] Baxter JN, Cymerman-Craig J, Willis JB. The infrared spectra of some sulphonamides. J. Chem. Soc. (1955) 669–679.
  • [62] Goldstein M, Russell MA, Willis HA. The infrared spectra of N-substituted sulphonamides. Spectrochim. Acta A. 25 (1969) 1275–1285.
  • [63] Reiss A, Cioateră N, Dobritescu A, Rotaru M, Carabet AC, Parisi F, Gănescu A, Dăbuleanu I, Spînu CI, Rotaru P. Bioactive Co(II), Ni(II), and Cu(II) Complexes Containing a Tridentate Sulfathiazole-Based (ONN) Schiff Base. Molecules 26 (2021) 3062. https://doi.org/10.3390/molecules26103062
  • [64] Mubarik A, Rasool N, Hashmi MA, Mansha A, Zubair M, Shaik MR, Sharaf MAF, Awwad EM, Abdelgawad A. Computational Study of Structural, Molecular Orbitals, Optical and Thermodynamic Parameters of Thiophene Sulfonamide Derivatives. Crystals. 11 (2021) 211. https://doi.org/10.3390/cryst11020211

Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design

Year 2021, , 287 - 297, 31.12.2021
https://doi.org/10.17350/HJSE19030000241

Abstract

In this research, some physical and chemical properties of the biocomposite obtained from synthesized epoxy modified palm oil (MPO) and epoxy resin have been characterized. The experimental study plan is made according to Response Surface Methodology (RSM) and biocomposites with different MPO rates are obtained. The chemical bond structure of MPO and epoxy biocomposite has been evaluated with Fourier Transform Infrared Spektrofotometre (FTIR). The experimental, and RSM model results obtained, the density of the biocomposite rise as the MPO rate increases. It is determined that the Shore D hardness of the biocomposite is inversely proportional to the MPO rate by mass. The thermal conductivity coefficient and thermal stability also rise with the rate of MPO (wt.%) in the biocomposite.
In the thermal degradation experiments of the obtained biocomposite, it is observed that the thermal stability of the composite goes up as the MPO rate rises. Activation energies are calculated using the Flynn Wall Ozawa, Kissinger, and Coats Redfern models. The activation energies calculated for the 9th, 2nd, and 13th experiments according to the Flynn Wall Ozawa method are approximately 139.65, 143.56, and 145.28 kJ/mol, respectively. The function with the highest R2 value has been determined according to the Coats Redfern method, and the deviation in Flynn Wall Ozawa and Kissinger model results was below 7%.

References

  • [1] Zamri MH, Akil HM, MohdIshak ZA. Pultruded Kenaf Fibre Reinforced Composites: Effect of Different Kenaf Fibre Yarn Tex. Procedia Chem. 19 (2016) 577–585.
  • [2] Ilyas RA, Sapuan SM. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites. Curr. Org. Synth. 16 (2020) 1068–1070.
  • [3] Ilyas RA, Sapuan SM. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 16 (2020) 500–503.
  • [4] Abral H, Atmajaya A, Mahardika M, Hafizulhaq F, Handayani DK, Sapuan SM, Ilyas RA. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. J. Mater. Res. Technol. 9 (2020) 2477–2486.
  • [5] Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37 (2012) 1552–1596.
  • [6] Ilyas RA, Sapuan SM, Atikah, MSN, Asyraf MRM, Rafiqah SA, Aisyah HA, Nurazzi NM, Norrrahim MNF. Effect of hydrolysis time on the morphological, physical, chemical and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text. Res. J. 91(2021) 152–167.
  • [7] Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES, Atikah MSN, Mohd Nurazzi N, Atiqah A, Ansari MNM, Syafri E, Asrofi M, Sari NH, Cumaidink R. Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J. Mater. Res. Technol. 8 (2019) 4819–4830.
  • [8] Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES, Asrofi M, Atikah MSN, Huzaifah MMR, Radzi AM, Azammi AMN, Shaharuzaman MA, Nurazzi NM, Syafri E, Sari NH, Norrrahim MRF, Jumaidinp R. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nanoscale. J. Mater. Res. Technol. 8 (2019) 2753–2766.
  • [9] Aisyah HA, Paridah MT, Sapuan SM, Khalina A, Berkalp OB, Lee SH, Lee CH, Nurazzi NM, Ramli N, Wahab MS, Ilyas RA. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. (2019) 1–8.
  • [10] Jumaidin R, Saidi ZAS, Ilyas RA, Ahmad MN, Wahid MK, Yaakob MY, Maidin NA, Rahman MHA, Osman MH. Characteristics of Cogon Grass Fibre Reinforced Thermoplastic Cassava Starch Biocomposite: Water Absorption and Physical Properties. J. Adv. Res. Fluid Mech. Therm. Sci. 62 (2019) 43–52.
  • [11] Alsubari S, Zuhri MYM, Sapuan SM, Ishak M.R, Ilyas R.A, Asyraf M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers 13 (2021) 423.
  • [12] Omran AAB, Mohammed AABA, Sapuan SM, Ilyas RA, Asyraf MRM, Koloor SSR, Petru M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers. 13 (2021) 231.
  • [13] Nurazzi MN, Asyraf MRM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, Ahmad S, Mahat AM, Lee C.L, Aisyah H.A, Norrahim MNF, İlyas RA, Harussani MM, Ishak B, Sapuanca SM. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 13 (2021) 1047.
  • [14] Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, Lee SH, Lee CH. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers. 13 (2021) 471.
  • [15] Jumaidin R, Khiruddin MAA, Saidi ASZ, Salit MS, Ilyas RA. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 146 (2020) 746–755.
  • [16] Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 7 (2016)108–114.
  • [17] Asyraf MRM, Ishak MR, Sapuan SM, Yidris N, Ilyas RA. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 9 (2020) 6759–6776.
  • [18] Ayu RS, Khalina A, Harmaen A.S, Zaman K, Isma T, Liu Q, Ilyas RA, Lee CH. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly (Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers. 12 (2020) 1571.
  • [19] Holbery J, Houston D. Natural-fiber-reinforced polymer composites in automotive applications. JOM. 58 (2006) 80–86.
  • [20] Kim YK, Chalivendra V. Natural fibre composites (NFCs) for construction and automotive industries. In Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 469–498, 2020.
  • [21] Fragassa C. Marine applications of natural fibre-reinforced composites: A manufacturing case study. In Advances in Applications of Industrial Biomaterials; Springer: Berlin/Heidelberg, Germany, 21–47, 2017.
  • [22] Jaafar ACN, Zainol I, Ishak NS, Ilyas RA, Sapuan SM. Effects of the Liquid Natural Rubber (LNR) on Mechanical Properties and Microstructure of Epoxy/Silica/Kenaf Hybrid Composite for Potential Automotive Applications. J. Mater. Res. Technol. 12 (2021) 1026–1038.
  • [23] Rezaifard AH, Hodd KA, Tod DA, Barton JM. Toughening epoxy resins with poly (methyl methacrylate)-grafter-natural rubber and its use in adhesive formulations. Int. J. Adhes. Adhes. 14 (1994) 153–159.
  • [24] Technotes BE. Composite Recycling, and Disposal An Environmental R&D Issue. Boeing Environ. Technotes. 8 (2003) 1–4.
  • [25] Bandyopadhyay S. Source composite curve for waste reduction. Chem. Eng. J. 125 (2006) 99–110.
  • [26] Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 172 (2018) 566–581.
  • [27] Vinod A, Sanjay MR, Suchart S, Jyotishkumar P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers, and biocomposites. J. Clean. Prod. 258 (2020) 120978.
  • [28] Ramnath VB, Kokan JS, Raja NR, Sathyanarayanan R, Elanchezhian C, Prasad RA, Manickavasagam V.M. Evaluation of mechanical properties of abaca-jute-glass fibre reinforced epoxy composite. Mater. Des. 51 (2013) 357–366.
  • [29] Szolnoki B, Bocz K, Sóti PL, Bodzay B, Zimonyi E, Toldy A, Morlin B, Bujnowicz K, Wladyka-Przybylak M, Marosi G. Development of natural fibre reinforced flame retarded epoxy resin composites. Polym. Degrad. Stab. 119 (2015) 68–76.
  • [30] Pickering KL, Le TM. High performance aligned short natural fibre—Epoxy composites. Compos. Part B Eng. 85 (2016) 123–129.
  • [31] Mittal V, Saini R, Sinha S. Natural fiber-mediated epoxy composites—A review. Compos. Part B 99 (2016) 425–435.
  • [32] Abu Bakar MA, Ahmad S, Kuntjoro W. Effect of epoxidized natural rubber on mechanical properties of epoxy reinforced kenaf fibre composites. Pertanika J. Sci. Technol. 20 (2012) 129–137.
  • [33] Hassan F, Zulkifli R, Ghazali MJ, Azhari CH. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 7 (2017) 315.
  • [34] Nurazzi NM, Khalina A, Sapuan SM, Ilyas, R.A. Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment. Polimery. 64 (2019) 12–22.
  • [35] Rihayat T, Suryani S, Fauzi T, Agusnar H, Wirjosentono B, Syafruddin, Helmi, Zulkifli, Alam PN, Sami M. . Mechanical properties evaluation of single and hybrid composites epoxy reinforced bamboo, PALF and coir fiber. IOP Conf Ser Mater Sci Eng. 334 (2018) 012081. doi:10.1088/1757-899X/334/1/012081 [36] Wang F, Shao Z. Study on the variation law of bamboo fibers’ tensile properties and the organization structure on the radial direction of bamboo stem. Ind Cros Products. 152 (2020) 112521.
  • [37] Mahmoud MA. Oil spill cleanup by raw flax fiber: modification effect, sorption isotherm, kinetics, and thermodynamics. Arabian J Chem. 13 (2020) 5553– 5563.
  • [38] Kang JT, Kim SH. Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macromol Res. 19 (2011)789–796.
  • [39] Lee SH, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Appl Sci Manuf. 37 (2006) 80–91.
  • [40] Fan M. Chemical compositions of natural fibres. In: S. R. Reid, G. Zhou, editors. Advanced high strength natural fibre composites in construction. London: Woodhead Publishing, 35–41, 2016.
  • [41] Ahmed Moosa AR. Effects of carbon nanotubes on the mechanical and electrical properties of epoxy nanocomposites. Int J Current Eng Technol. 5 (2015) 3253–3258. [42] Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS. Bamboo fibre reinforced biocomposites: a review. Mater Des. 42 (2012) 353–368. Retrieved 19 February 2021 from 10.1016/j.matdes.2012.06.015
  • [43] Kushwaha PK, Kumar R. Effect of silanes on mechanical properties of bamboo fiber-epoxy composites. J Reinf Plast Compos. 29 (2010) 718–724. Retrieved 19 February 2021 from 10.1177/0731684408100691
  • [44] Remanan M, Kannan M, Rao RS, Bhowmik S, Varshney L, Abraham M, Jayanarayanan K. Microstructure Development, Wear Characteristics and Kinetics of Thermal Decomposition of Hybrid Nanocomposites Based on Poly Aryl Ether Ketone, Boron Carbide and Multi Walled Carbon Nanotubes. Journal of Inorganic and Organometallic Polymers and Materials. 27 (2017) 1649–1663. https://doi.org/10.1007/s10904-017-0626-5
  • [45] Xu Y, Yang Y, Shen R, Parker T, Zhang Y, Wang Z, Wang Q. Thermal behavior and kinetics study of carbon/epoxy resin composites. Polymer Composites, 40 (2019) 4530–4546. https://doi.org/10.1002/pc.25309
  • [46] Tikhani F, Moghari S, Jouyandeh M, Laoutid F, Vahabi H, Saeb MR, Dubois P. Curing kinetics and thermal stability of epoxy composites containing newly obtained nano-scale aluminum hypophosphite (AlPO2). Polymers. 12 (2020), 1–22. https://doi.org/10.3390/polym12030644
  • [47] Tranchard P, Samyn F, Duquesne S, Estèbe B, Bourbigot S. Modelling behaviour of a carbon epoxy composite exposed to fire: Part I-Characterisation of thermophysical properties. Materials, 10 (2017) 494. https://doi.org/10.3390/ma10050494
  • [48] Tranchard P, Duquesne S, Samyn F, Estèbe B, Bourbigot S. Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. Journal of Analytical and Applied Pyrolysis, 126 (2017) 14–21. https://doi.org/10.1016/j.jaap.2017.07.002
  • [49] Wang R, Xie C, Zeng L, Xu H. Thermal decomposition behavior and kinetics of nanocomposites at low-modified ZnO content. RSC Advances. 9 (2019), 790–800. https://doi.org/10.1039/c8ra09206k
  • [50] Xiong X, Zhou L, Ren R, Liu S, Chen P. The thermal decomposition behavior and kinetics of epoxy resins cured with a novel phthalide-containing aromatic diamine. Polymer Testing. 68 (2018) 46–52. https://doi.org/10.1016/j.polymertesting.2018.02.012
  • [51] Hassan MZ, Sapuan SM, Roslan SA, Aziz SA, Sarip S. Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology. Journal of Materials Research and Technology, 8 (2019), 3517–3528. https://doi.org/10.1016/j.jmrt.2019.06.026
  • [52] Sinha AK, Bhattacharya S, Narang HK. Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polymers and Polymer Composites, 27 (2019) 597–608. https://doi.org/10.1177/0967391119855843
  • [53] Oladele IO, Akinola OS, Agbabiaka OG, Omotoyinbo JA. Mathematical Model for the Prediction of Impact Energy of Organic Material Based Hydroxyapatite (HAp) Reinforced Epoxy Composites. Fibers and Polymers. 19 (2018), 452–459. https://doi.org/10.1007/s12221-018-7844-5
  • [54] Antil P. Modelling and Multi-Objective Optimization during ECDM of Silicon Carbide Reinforced Epoxy Composites. Silicon, 12 (2020) 275–288. https://doi.org/10.1007/s12633-019-00122-8
  • [55] Sinha AK, Narang HK, Bhattacharya S. Experimental Determination, Modelling and Prediction of Sliding Wear of Hybrid Polymer Composites Using RSM and Fuzzy Logic. Arabian Journal for Science and Engineering, 46(3), 2071–2082. https://doi.org/10.1007/s13369-020-04997-3
  • [56] Sarafrazi, M., Hamadanian, M., & Ghasemi, A. R. (2019). Optimize epoxy matrix with RSM/CCD method and influence of multi-wall carbon nanotube on mechanical properties of epoxy/polyurethane. Mechanics of Materials, 138 (2021) 103154. https://doi.org/10.1016/j.mechmat.2019.103154
  • [57] Dadrasi A, Farzi GA, Shariati M, Fooladpanjeh S, Parvaneh V. Experimental study and optimization of fracture properties of epoxy-based nano-composites: Effect of using nano-silica by GEP, RSM, DTM and PSO. Engineering Fracture Mechanics. 232 (2020), 107047. https://doi.org/10.1016/j.engfracmech.2020.107047.
  • [58] Wahab, AAA, Chang SH, Som, AM. Characterisation of waste cooking oil as a potential green solvent for liquid-liquid extraction. International Conference on Advances in Civil and Environmental Engineering, s. 20–28, 2015.
  • [59] Lim SF, Hamdan A, Chua SND, Lim BH. Comparison and optimization of conventional and ultrasound-assisted solvent extraction for synthetization of lemongrass (Cymbopogon)-infused cooking oil. Food Sci Nutr. 9 (2021) 2722–2732. DOI: 10.1002/fsn3.2234.
  • [60] El-Aouni N, Hsissou R, El Azzaoui J, El Bouchti M, Elbachiri A, Elharfi A, Rafik M. One-pot Synthesis of Trifunctional Epoxy Resin and its Nanocomposite: Investigation of Thermal and Rheological Properties, Biointerface Res. Appl. Chem. 11 (2021) 12403–12413. https://doi.org/10.33263/BRIAC114.1240312413.
  • [61] Baxter JN, Cymerman-Craig J, Willis JB. The infrared spectra of some sulphonamides. J. Chem. Soc. (1955) 669–679.
  • [62] Goldstein M, Russell MA, Willis HA. The infrared spectra of N-substituted sulphonamides. Spectrochim. Acta A. 25 (1969) 1275–1285.
  • [63] Reiss A, Cioateră N, Dobritescu A, Rotaru M, Carabet AC, Parisi F, Gănescu A, Dăbuleanu I, Spînu CI, Rotaru P. Bioactive Co(II), Ni(II), and Cu(II) Complexes Containing a Tridentate Sulfathiazole-Based (ONN) Schiff Base. Molecules 26 (2021) 3062. https://doi.org/10.3390/molecules26103062
  • [64] Mubarik A, Rasool N, Hashmi MA, Mansha A, Zubair M, Shaik MR, Sharaf MAF, Awwad EM, Abdelgawad A. Computational Study of Structural, Molecular Orbitals, Optical and Thermodynamic Parameters of Thiophene Sulfonamide Derivatives. Crystals. 11 (2021) 211. https://doi.org/10.3390/cryst11020211
There are 62 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hakan Şahal 0000-0001-8714-1735

Ercan Aydoğmuş 0000-0002-1643-2487

Publication Date December 31, 2021
Submission Date June 24, 2021
Published in Issue Year 2021

Cite

Vancouver Şahal H, Aydoğmuş E. Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design. Hittite J Sci Eng. 2021;8(4):287-9.

Cited By









Physical and Chemical Properties of Organic Waste Reinforced Polyester Composites
International Journal of Advanced Natural Sciences and Engineering Researches
https://doi.org/10.59287/ijanser.536







Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).